Four-Manifolds,

Einstein Metrics, &

Differential Topology

Claude LeBrun Stony Brook University

Rademacher Lectures University of Pennsylvania Four-Manifolds,

Einstein Metrics, &

Differential Topology, III

Moduli Spaces of Einstein Metrics

October 21, 2016 University of Pennsylvania For simplicity,

(*) Either $b_{+}(M) \geq 2$,

(*) Either $b_{+}(M) \geq 2$, or $(2\chi + 3\tau)(M) \geq 0$.

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*),

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J.

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

is called a basic class of M.

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

is called a basic class of M.

Example. If (M, J) is a complex surface of general type, then $c_1(M, J)$ is a basic class.

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

is called a basic class of M.

Example. If (M, J) is a complex surface of general type, then $c_1(M, J)$ is a basic class.

If X admits a Kähler-Einstein metric with $\lambda < 0$, then X is of general type.

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

is called a basic class of M.

Example. If (M, J) is a complex surface of general type, then $c_1(M, J)$ is a basic class. If X admits a Kähler-Einstein metric with $\lambda < 0$,

then X is of general type. So is $M = X \# k \overline{\mathbb{CP}}_2$.

Every basic class

Every basic class

$$b \in H^2(M, \mathbb{R})$$

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a $spin^c$ structure

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i \sigma(\Phi).$$

have a solution (Φ, A) for every metric g on M.

For simplicity,

(*) Either $b_{+}(M) \geq 2$,

(*) Either $b_{+}(M) \geq 2$, or $(2\chi + 3\tau)(M) \geq 0$.

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*),

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J.

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

is called a basic class of M.

Curvature Estimates:

Curvature Estimates: L '96, L '01

Curvature Estimates: L '96, L '01

Fix a spin^c-structure on M^4 .

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} = u^2 g$

If SW equations have solution $\forall \tilde{g} \in [g]$

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

$$H^2(M,\mathbb{R})$$

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

The existence of SW solutions $\forall g$ may occur even when not detected by invariant we have discussed.

Example. Bauer-Furuta invariant...

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

Weitzenböck formula:

$$0 = 2\Delta |\Phi|^2 + 4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$0 \ge \int [s|\Phi|^2 + |\Phi|^4] d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int \mathbf{s}^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

$$= 8 \int |F_A^+|^2 d\mu$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

$$= 8 \int |F_A^+|^2 d\mu$$

$$\ge 32\pi^2 [c_1^+]^2$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality
$$\Longrightarrow$$

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality
$$\Longrightarrow$$

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$. More robust version works for Kähler with $\int s d\mu < 0$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$. More robust version works for Kähler with $c_1 \cdot [\omega] < 0$.

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$|c_1^-|^2 = |c_1^+|^2 - (2\chi + 3\tau)(M)$$

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$|c_1^-|^2 = |c_1^+|^2 - (2\chi + 3\tau)(M)$$

$$|c_1^+|^2 \le \frac{1}{32\pi^2} \int_M s^2 d\mu$$

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$|c_1^-|^2 = |c_1^+|^2 - (2\chi + 3\tau)(M)$$

$$|c_1^+|^2 \le \frac{1}{32\pi^2} \int_M s^2 d\mu$$

$$|c_1^+|^2 + |c_1^-|^2 \le -(2\chi + 3\tau)(M) + \frac{1}{16\pi^2} \int_M s^2 d\mu$$

Any M^4 can only admit finitely many basic classes.

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$|c_1^-|^2 = |c_1^+|^2 - (2\chi + 3\tau)(M)$$

$$|c_1^+|^2 \le \frac{1}{32\pi^2} \int_M s^2 d\mu$$

$$|c_1^+|^2 + |c_1^-|^2 \le -(2\chi + 3\tau)(M) + \frac{1}{16\pi^2} \int_M s^2 d\mu$$

for any chosen metric.

Any M^4 can only admit finitely many basic classes.

$$(2\chi + 3\tau)(M) = c_1^2 = |c_1^+|^2 - |c_1^-|^2.$$

$$|c_1^-|^2 = |c_1^+|^2 - (2\chi + 3\tau)(M)$$

$$|c_1^+|^2 \le \frac{1}{32\pi^2} \int_M s^2 d\mu$$

$$|c_1^+|^2 + |c_1^-|^2 \le -(2\chi + 3\tau)(M) + \frac{1}{16\pi^2} \int_M s^2 d\mu$$

for any chosen metric. But $c_1 \in H^2(M, \mathbb{Z})/\text{torsion}!$

Since

$$|c_1^+|^2 \ge |c_1^+|^2 - |c_1^-|^2$$

$$= c_1^2(M, J)$$

$$= (2\chi + 3\tau)(M)$$

Since

$$|c_1^+|^2 \ge |c_1^+|^2 - |c_1^-|^2$$

$$= c_1^2(M, J)$$

$$= (2\chi + 3\tau)(M)$$

first estimate yields

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M)$$

$$= 8 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

Since

$$|c_1^+|^2 \ge |c_1^+|^2 - |c_1^-|^2$$

= $c_1^2(M, J)$
= $(2\chi + 3\tau)(M)$

first estimate yields

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M)$$

$$= 8 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

and it follows that

Since

$$|c_1^+|^2 \ge |c_1^+|^2 - |c_1^-|^2$$

= $c_1^2(M, J)$
= $(2\chi + 3\tau)(M)$

first estimate yields

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} (2\chi + 3\tau)(M)$$

$$= 8 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2} - \frac{|\mathring{r}|^{2}}{2} \right) d\mu_{g}$$

and it follows that

$$g \text{ Einstein} \Longrightarrow \int_{M} \frac{s^2}{24} d\mu_g \ge \int_{M} |W_{+}|^2 d\mu_g$$

Proposition. If the smooth compact 4-manifold M

Proposition. If the smooth compact 4-manifold M admits both

Proposition. If the smooth compact 4-manifold M admits both an Einstein metric g

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$(\chi - 3\tau)(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left[\left(\frac{s^2}{24} - |W_+|^2 \right) + 3|W_-|^2 - \frac{|\mathring{r}|^2}{2} \right] d\mu_g$$

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$(\chi - 3\tau)(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left[\left(\frac{s^2}{24} - |W_+|^2 \right) + 3|W_-|^2 - \frac{|\mathring{r}|^2}{2} \right] d\mu_g$$

Hence:

Theorem. If the smooth compact 4-manifold *M* admits

Theorem. If the smooth compact 4-manifold M admits both an Einstein metric g

$$\chi(M) \ge 3\tau(M) ,$$

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

$$(\chi - 3\tau)(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left[\left(\frac{s^2}{24} - |W_+|^2 \right) + 3|W_-|^2 - \frac{|\mathring{r}|^2}{2} \right] d\mu_g$$

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary.

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M, modulo diffeomorphisms and rescaling,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M, modulo diffeomorphisms and rescaling, consists of exactly one point.

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

Second Estimate:

By conformal invariance of Dirac,

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

so self-dual 2-form $\psi = 2\sqrt{2}\sigma(\Phi)$ satisfies

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

so self-dual 2-form $\psi = 2\sqrt{2}\sigma(\Phi)$ satisfies

$$0 \ge \int \left[|\nabla \psi|^2 + \mathbf{s}|\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$.

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$.

$$0 \ge \int \left[|\nabla \psi|^2 + \mathbf{s}|\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(\frac{2s}{3} - 2\sqrt{\frac{2}{3}} |W_+| \right) |\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^{4}d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_{+}|\right|^{3} f^{-2}d\mu\right)^{2/3} \ge \frac{9}{4} \int f^{2}|\psi|^{2}d\mu$$

$$\ge 72\pi^{2} [c_{1}^{+}]^{2}$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$
$$\ge 72\pi^2 [c_1^+]^2$$

Take sequence $f_j \searrow \sqrt{\left|s - \sqrt{6}|W_+|\right|}$. In limit:

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$
$$\ge 72\pi^2 [c_1^+]^2$$

Take sequence $f_j \searrow \sqrt{|s-\sqrt{6}|W_+|}$. In limit:

$$\int_{M} \left(s - \sqrt{6} |W_{+}| \right)^{2} d\mu \ge 72\pi^{2} [c_{1}^{+}]^{2}$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + \frac{1}{2} |W_+|^2 \right) d\mu_g \ge \frac{1}{36} \int_{M} \left(s - \sqrt{6} |W_+| \right)^2 d\mu_g$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + \frac{1}{2} |W_{+}|^2 \right) d\mu_g \ge \frac{1}{36} \int_{M} \left(s - \sqrt{6} |W_{+}| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + \frac{1}{2} |W_+|^2 \right) d\mu_g \ge \frac{1}{2} |c_1^+|^2$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + \frac{1}{2} |W_{+}|^2 \right) d\mu_g \ge \frac{1}{36} \int_{M} \left(s - \sqrt{6} |W_{+}| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + \frac{1}{2} |W_+|^2 \right) d\mu_g \ge \frac{1}{2} |c_1^+|^2$$

$$|c_1^+|^2 + |c_1^-|^2 = 2|c_1^+|^2 - (2\chi + 3\tau)(M) \Longrightarrow$$

$$\int_M |r|^2 d\mu \ge 8\pi^2 \left(|c_1^+|^2 + |c_1^-|^2 \right)$$

Theorem (L). Let (M^4, J) be a compact complex surface with $Kod \neq -\infty$ and b_1 even. Let g be any Riemannian metric on M. Then, possibly after moving J by a self-diffeomorphism of M, the curvature of g satisfies

$$\int_{M} s^{2} d\mu \geq 32\pi^{2} |c_{1}^{+}|^{2}$$

$$\int_{M} |r|^{2} d\mu \geq 8\pi^{2} (|c_{1}^{+}|^{2} + |c_{1}^{-}|^{2})$$

with equality iff g is constant-scalar-curvature $K\ddot{a}hler$ (for some J' with same c_1 as J).

Theorem (L). Let (M^4, J) be a compact complex surface with $Kod \neq -\infty$ and b_1 even. Let g be any Riemannian metric on M. Then, possibly after moving J by a self-diffeomorphism of M, the curvature of g satisfies

$$\int_{M} s^{2} d\mu \ge 32\pi^{2} |c_{1}^{+}|^{2}$$

$$\int_{M} |r|^{2} d\mu \ge 8\pi^{2} \left(|c_{1}^{+}|^{2} + |c_{1}^{-}|^{2} \right)$$

with equality iff g is constant-scalar-curvature $K\ddot{a}hler$ (for some J' with same c_1 as J).

"Kähler Paradigms in a Riemannian World"

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

This decomposition still depends on metric.

$$H^2(M,\mathbb{R})$$

$$H^2(M,\mathbb{R})$$

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

This decomposition still depends on metric.

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

This decomposition still depends on metric.

But there is a metric-independent improvement!

Theorem (L). Let M be a smooth compact 4-manifold with $(2\chi + 3\tau)(M) > 0$, and suppose that $\mathbf{a} \in H^2(M, \mathbb{R})$ belongs to the convex hull of $\mathfrak{S} = \{basic\ classes\}$. Then every Riemannian metric g on M satisfies

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

Theorem (L). Let M be a smooth compact 4-manifold with $(2\chi + 3\tau)(M) > 0$, and suppose that $\mathbf{a} \in H^2(M, \mathbb{R})$ belongs to the convex hull of $\mathfrak{S} = \{basic\ classes\}$. Then every Riemannian metric g on M satisfies

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

and equality can only occur if g is CSCK, with s < 0.

Typical application:

Typical application: suppose

$$M = X \# k \overline{\mathbb{CP}}_2$$

Typical application: suppose

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J') = c_1(X) + \sum_{j=1}^{k} E_j$$

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^k E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J') = c_1(X) + \sum_{j=1}^{k} E_j$$

Hence $c_1(X) \in \text{Hull}(\mathfrak{S})$.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^k E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J') = c_1(X) + \sum_{j=1}^k E_j$$

Hence $c_1(X) \in \text{Hull}(\mathfrak{S})$. : Curvature estimates!

Theorem (L). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

Theorem (L). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Theorem (L). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

For both, equality holds iff M = X, and g is $K\ddot{a}hler$ -Einstein with $\lambda < 0$.

Cauchy-Schwarz argument ⇒

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{2}{3} c_1^2(X)$$

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\Longrightarrow (2\chi + 3\tau)(M) > \frac{2}{3}c_1^2(X)$$

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\implies c_1^2(M) > \frac{2}{3}c_1^2(X)$$

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\implies c_1^2(X) - k > \frac{2}{3}c_1^2(X)$$

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\Longrightarrow \frac{1}{3}c_1^2(X) > k$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

(Better than Hitchin-Thorpe by a factor of 3.)

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \geq c_1^2(X)/3$.

(Better than Hitchin-Thorpe by a factor of 3.)

So being "very" non-minimal is an obstruction.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff c_1 < 0$.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

When n = 2m = 4, such M are the minimal complex surfaces of general type such that

$$\nexists \mathbb{CP}_1 \stackrel{\mathcal{O}}{\hookrightarrow} M$$

of homological self-intersection -2.

Example. Let N be double branched cover \mathbb{CP}_2 ,

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Aubin/Yau $\Longrightarrow N$ carries Einstein metric.

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Here

$$c_1^2(X) = 3$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

In example:

$$c_1^2(X) = 3$$

 $k = 1 = c_1^2(X)/3$

X is triple cover \mathbb{CP}_2 ramified at sextic

$$M = X \# \overline{\mathbb{CP}}_2.$$

Theorem $\Longrightarrow no$ Einstein metric on M.

But M and N are both simply connected & non-spin,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!Moral: Existence depends on diffeotype!

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

On T^4 and K3, Einstein \iff hyper-Kähler.

If only mod out by $Diff_H(M)$, use period map.

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

Invariant under $Diff_H(M)$

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

 $H^2(M,\mathbb{R})$

$$H^2(M,\mathbb{R})$$

 $H^2(M,\mathbb{R})$

$$H^2(M,\mathbb{R})$$

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

On T^4 and K3, Einstein \iff hyper-Kähler.

If only mod out by $Diff_H(M)$, use period map.

 $Diff_H(M) = \{ \text{ diffeos acting trivially on } H^2(M, \mathbb{R}) \}.$

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

On T^4 and K3, Einstein \iff hyper-Kähler.

If only mod out by $Diff_H(M)$, use period map.

For T^4 , Einstein metrics parameterized by $Gr_3^+(\mathbb{R}^{3,3})$.

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

On T^4 and K3, Einstein \iff hyper-Kähler.

If only mod out by $Diff_H(M)$, use period map.

For T^4 , Einstein metrics parameterized by $Gr_3^+(\mathbb{R}^{3,3})$.

For K3, orbifold Einstein metrics parameterized by $Gr_3^+(\mathbb{R}^{3,19})$.

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Completely understood for certain 4-manifolds...

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

On T^4 and K3, Einstein \iff hyper-Kähler.

If only mod out by $Diff_H(M)$, use period map.

For T^4 , Einstein metrics parameterized by $Gr_3^+(\mathbb{R}^{3,3})$.

For K3, orbifold Einstein metrics parameterized by $Gr_3^+(\mathbb{R}^{3,19})$.

Smooth: complement of codimension-3 subset.

When a complex surface (M, J) admits an Einstein metric g, also admits a symplectic structure ω .

When a complex surface (M, J) admits an Einstein metric g, also admits a symplectic structure ω .

When $\lambda \geq 0$, we will now see that symplectic alone suffices to imply strong results.

Theorem (L).

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J.

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω .

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g


```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \end{array} 
ight.
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \\ \end{array} \right.
```

```
 \begin{array}{c} \text{ ...ifold} \\ \text{ ...if } g \text{ with } \lambda \geq 0 \text{ if } \alpha \\ \\ & \\ C\mathbb{P}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \\ \\ M \overset{diff}{\approx} \end{array}
```

Theorem (L). Suppose that
$$M$$
 is a small pact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$,

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

Theorem (L). Suppose that
$$M$$
 is a small pact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric g with $\lambda \geq 0$ if and o
$$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \end{cases}$$

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$\begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & K3, \\
K3/\mathbb{Z}_2, & T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,
\end{cases}$$

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

```
Instein metric g with X \subseteq S \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, \\ T^4, & T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & or \ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}
```

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

```
Instein metric g with X \subseteq S \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3, & K3/\mathbb{Z}_2, \\ T^4, & T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & or \ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}
```

Theorem (L). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

Definitive list ...

```
\mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8,
S^{2} \times S^{2},
K3,
K3/\mathbb{Z}_{2},
T^{4},
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6},
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$ completely understood.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Know an Einstein metric on each manifold.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected?

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

 $\forall g, \exists! \text{ self-dual harmonic 2-form } \omega$:

 $\forall g, \exists ! \text{ self-dual harmonic 2-form } \omega$:

$$d\omega = 0, \qquad \star \omega = \omega.$$

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Every del Pezzo surface has $b_{+} = 1$. \iff

Up to scale, $\forall g$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Our focus will be on metrics g

Every del Pezzo surface has $b_{+} = 1$. \iff

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Our focus will be on metrics g for which

$$W_{+}(\omega,\omega) > 0$$

Every del Pezzo surface has $b_{+} = 1$. \iff

Up to scale, $\forall g, \exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric g on such a manifold.

Our focus will be on metrics g for which

$$W_{+}(\omega,\omega) > 0$$

everywhere on M.

 $W_{+}(\omega,\omega)$ is non-trivially related

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

 $W_{+}(\omega,\omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average.

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average. But we will need this everywhere.

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_{+}(\omega,\omega) > 0$$

If
$$g \rightsquigarrow u^2 g$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_{+}(\omega,\omega) > 0$$

so does every other metric \tilde{g} in conformal class [g].

Theorem.

Theorem. Let (M, g) be a smooth compact

Theorem. Let (M, g) be a smooth compact 4-dimensional Einstein manifold

$$W_{+}(\omega,\omega) > 0$$

$$W_{+}(\omega,\omega) > 0$$

everywhere on M,

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

• the Kähler-Einstein metrics with $\lambda > 0$;

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and
- the CLW metric on $\mathbb{CP}_2\#2\overline{\mathbb{CP}}_2$.

Del Pezzo surfaces:

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

Del Pezzo surfaces:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber...

Uniqueness: Bando-Mabuchi, L 2012...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

 $\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem. $\mathscr{E}^+_{\omega}(M)$ is connected.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem. $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem.
$$\mathscr{E}^+_{\omega}(M)$$
 is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem. $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$.

Method of Proof.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale g to obtain \tilde{g} with $|\omega| \equiv \sqrt{2}$:

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale g to obtain \tilde{g} with $|\omega| \equiv \sqrt{2}$:

$$\tilde{g} = \frac{1}{\sqrt{2}} |\omega| g.$$

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale g to obtain \tilde{g} with $|\omega| \equiv \sqrt{2}$:

$$\tilde{g} = \frac{1}{\sqrt{2}} |\omega| g.$$

This \tilde{g} is almost-Kähler: related to ω by

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale g to obtain \tilde{g} with $|\omega| \equiv \sqrt{2}$:

$$\tilde{g} = \frac{1}{\sqrt{2}} |\omega| g.$$

This \tilde{g} is almost-Kähler: related to ω by

$$\tilde{g} = \boldsymbol{\omega}(\cdot, J \cdot)$$

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale g to obtain \tilde{g} with $|\omega| \equiv \sqrt{2}$:

$$\tilde{g} = \frac{1}{\sqrt{2}} |\boldsymbol{\omega}| g.$$

This \tilde{g} is almost-Kähler: related to ω by

$$\tilde{g} = \omega(\cdot, J \cdot)$$

for some \tilde{g} -preserving almost-complex structure J.

By second Bianchi identity,

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} g_{b[c} \nabla_{d]} s$$

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} g_{b[c} \nabla_{d]} s$$

Our strategy:

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} g_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a{}_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} g_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

By second Bianchi identity,

$$g \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\boldsymbol{\delta}W)_{bcd} := -\boldsymbol{\nabla}_a W^a{}_{bcd} = -\boldsymbol{\nabla}_{[c}\boldsymbol{r}_{d]b} + \frac{1}{6}g_{b[c}\boldsymbol{\nabla}_{d]}\boldsymbol{s}$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

as proxy for Einstein equation.

Equation $\delta W^+ = 0$?

If $g = f^2 \tilde{g}$ satisfies

If
$$g = f^2 \tilde{g}$$
 satisfies

$$\delta W^+ = 0$$

If $g = f^2 \tilde{g}$ satisfies

$$\delta W^+ = 0$$

then \tilde{g} instead satisfies

If $g = f^2 \tilde{g}$ satisfies

$$\delta W^+ = 0$$

then \tilde{g} instead satisfies

$$\delta(fW^+) = 0$$

If $g = f^2 \tilde{g}$ satisfies

$$\delta W^+ = 0$$

then \tilde{g} instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

If $g = f^2 \tilde{g}$ satisfies

$$\delta W^+ = 0$$

then \tilde{g} instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

If $g = f^2 \tilde{g}$ satisfies

$$\delta W^+ = 0$$

then \tilde{g} instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

for
$$fW^+ \in \operatorname{End}(\Lambda^+)$$
.

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts,

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

where $W^{+}(\omega)^{\perp}$ = projection of $W^{+}(\omega, \cdot)$ to ω^{\perp} .

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 \ge \int_{M} \left(-sW^{+}(\omega, \omega) + 3 \left[W^{+}(\omega, \omega) \right]^{2} \right) f d\mu$$

Now take inner product of Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 \ge 3 \int_{M} W^{+}(\omega, \omega) \left(W^{+}(\omega, \omega) - \frac{s}{3} \right) f d\mu$$

Now take inner product of Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 \ge 3 \int_{M} W^{+}(\omega, \omega) \left(\frac{1}{2} |\nabla \omega|^{2} \right) f d\mu$$

Proposition.

Proposition. If compact almost-Kähler (M^4, \tilde{g}, ω)

Proposition. If compact almost-Kähler (M^4, \tilde{g}, ω) satisfies $\delta(fW^+) = 0$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary.

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$.

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If $\delta(fW^+) = 0$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If $\delta(fW^+) = 0$

for some f > 0,

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some f > 0, then \tilde{g} is a Kähler metric

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, \tilde{g}, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some f > 0, then \tilde{g} is a Kähler metric with scalar curvature s > 0.

Theorem.

Theorem. Let (M, g)

Theorem. Let (M, g) be a compact oriented

Theorem. Let (M, g) be a compact oriented Riemannian 4-manifold

Theorem. Let (M, g) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If $W^+(\omega, \omega) > 0$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω ,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g}

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

 $for\ a\ unique\ K\"ahler\ metric\ \~g\ of\ scalar\ curvature$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g}

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$ satisfies $\delta W^+ = 0$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

Remark. If such metrics exist, $b_{+}(M) = 1$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$g = s^{-2}\tilde{g}$$

for a unique Kähler metric \tilde{g} of scalar curvature s > 0.

Conversely, for any Kähler metric \tilde{g} of positive scalar curvature, the conformally related metric $g = s^{-2}\tilde{g}$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

Restrict to Einstein case; use results of [L '12]...