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Example. If (M, .J) is a complex surface of gen-
eral type, then ¢y (M, .J) is a basic class.

If X admits a Kahler-Einstein metric with A < 0,
then X is of general type. So is M = X#kCP.
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Ds® =0
Fi = io(d).

have a solution (®, A) for every metric g on M.
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X(M) = 37(M)

and equality = (M, g) is either flat or a com-
plex hyperbolic manifold CHy/T .

Corollary. For any compact complex-hyperbolic
4-manifold M = CHy/T', the Einstein moduli
space, consisting of Einstein metrics on M, mod-

ulo diffeomorphisms and rescaling, consists of
exactly one point.
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But there is a metric-independent improvement!
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manifold with (2x +37)(M) > 0, and suppose
that a € H?*(M,R) belongs to the convex hull

of G = {basic classes}. Then every Riemannian
metric g on M satisfies
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and equality can only occur if g 1s CSCK, with
s < 0.
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where X 1s the minimal model of M.

For both, equality holds iff M = X, and g is
Kahler-Einstein with A < Q.
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S0 being “very’ non-minimal is an obstruction.
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Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kdhler-Einstein
metric with s < 0 <= 4 holomorphic embedding

such that c1(M) is negative multiple of 7% ¢1(CPy.).

When n = 2m = 4, such M are the minimal com-
plex surfaces of general type such that

2CP; S M

of homological self-intersection —2.
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general type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if
k> c?(M)/3.

In example:

¢2(X) =3
k=1



X is triple cover CIP9 ramified at sextic

b

T~ C<

CP,

M = X#CP».

Theorem =— no Einstein metric on M.
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Moduli Spaces of Einstein metrics
& (M) = {Einstein h}/(Diffeos x RT)
Completely understood for certain 4-manifolds. . .

M = T K3, HYD,  CHyT.

On T* and K3, Einstein <= hyper-Kéahler.
If only mod out by Diffr (M), use period map.
For T*, Einstein metrics parameterized by Gr3 ™ (R39),

For K3, orbifold Einstein metrics parameterized by
GT3+(R3’19).

Smooth: complement of codimension-3 subset.
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When A > 0, we will now see that symplectic alone
suffices to imply strong results.
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Every del Pezzo surface has by =1. <

Up to scale, V g, d! selt-dual harmonic 2-form w:

dw = 0, *W = W.
This allows us to associate the scalar quantity
Wi (w,w)
with any metric ¢ on such a manifold.
Our focus will be on metrics g for which

Wi(w,w) >0

everywhere on M.
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Wi (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for harmonic self-dual 2-form w:

0=V*Vw —2W " (w, ) + gw

Taking inner product with w and integrating:

/ W (e, w)dpt > / ol dp
M M6

In particular, an Einstein metric with A > 0 has

Wi(w,w) >0

on average. But we will need this everywhere.
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However, W (w, w) conformally invariant, with weight:

If g~ u?g, then Wi(w,w) ~> u oW (w,w)

Much simpler than scalar curvature!

In particular, if ¢ satisfies

Wi(w,w) >0

so does every other metric g in conformal class [g].
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Theorem. Let (M, qg) be a smooth compact 4-
dimensional Einstein manifold with by = 1. If
g satisfies
Wi(w,w) >0

everywhere on M, then g is conformally Kahler
and has Einstein constant A > 0. Moreover, M
i1s diffeomorphic to a Del Pezzo surface. Con-
versely, every Del Pezzo surface admits Einstein
metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo
surfaces have these properties. They are

e the Kahler-Einstein metrics with A > 0:
e the Page metric on CPy#CPy: and

e the CLW metric on CPy#2CP».
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and
this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .

Uniqueness: Bando-Mabuchi, L 2012. ..
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

For each topological type:
Moduli space of such (M4, .J) is connected.

Just a point if by( M) < 5.
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For M*? a Del Pezzo surface, set
&(M) = {Einstein g on M }/(Diffeos x RT)

& (M) = {Einstein ¢ with W (w,w) > 0} /~

Theorem. &5 (M) is connected. Moreover, if
bo(M) < 5, then &L (M) = {point}.

Corollary. &%(M) is exactly one connected com-
ponent of &(M).
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First Key Observation:

If Wi(w,w) >0, then w # 0 everywhere.
Moreover, dw = 0 and w A w = |w|?du # 0.
So w is a symplectic form.

Rescale g to obtain § with |w| = v/2:
= —=lu
= —|w|g.
g /2 g

This g is almost-Kahler: related to w by
g — w('v J)

for some g-preserving almost-complex structure .J.
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Second Key Observation:
By second Bianchi identity;,
g Einstein = 6W ™ = (6W)* = 0.

1
(OW)pea = =VaW e = =Vierap + £95cV g

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.



Equation 6W™ = 0?7
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Equation dW ™ = 0 not conformally invariant!
If ¢ = £2§ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(A™).




Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T




Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w & w



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w @ w and integrate by parts,



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity

W, V*V(weuw)) = [W+(w,w)]2+4|W+(w)|2—3W+(w,w) .



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + ngW 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields

0:/ (—sW* (w,0) + 82— W) 2) 1 i,
M



Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields
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where W (w)+ = projection of W (w, ) to w.
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Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields
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Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields

1
0> S/M W (w,w) ( §|Vw\2 ) f du
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Proposition. If compact almost-Kéhler (M*, §, w)
satisfies O(fW ™) =0 for some f > 0, then

0> / W (w, )| Vl2f du
M

Corollary. Let (M*, 5, w) be a compact almost-
Kdhler manifold with W™ (w,w) > 0. If

S(fWH) =0

for some f > 0, then g s a Kahler metric with
scalar curvature s > 0.
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Remark. If such metrics exist, b4 (M) = 1.
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Theorem. Let (M, g) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0

for some self-dual harmonic 2-form w, then

g=s"2%

for a unique Kahler metric g of scalar curvature
s > 0.

Conversely, for any Kahler metric g of positive
scalar curvature, the conformally related metric
g = 52§ satisfies W =0 and W (w,w) > 0.

Restrict to Einstein case; use results of [ "12]. ..



