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for some constant A € R.

Central Question. Which smooth compact man-
ifolds M™ admit Einstein metrics h? When they
exist, what are their moduli?
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Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-
trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions
to the existence of Einstein metrics on 4-manifolds.

Key point: Lie group SO(4) is not simple:

s50(4) = s0(3) P so0(3).
On oriented (M*, g), =
A=At @A™

AT self-dual 2-forms
A7 anti-self-dual 2-forms
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Narrow Question. If (M* w) is a symplectic 4-
manifold, when does M* admit an Finstein met-
ric h (unrelated to w)? What if we also require

A>07
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Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

Existence: Yau, Tian, Page, Chen-L-Weber, et al.
Constructed Einstein metrics all conformally Kahler.

Key to construction: Weyl functional.
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Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M.

e Are there any critical points?

e Can we classity them?



Dimension Four is Exceptional



Dimension Four is Exceptional

For M4,



Dimension Four is Exceptional

For M*,

i) = [ WP,



Dimension Four is Exceptional

For M*,

i) = [ WP,

Euler-Lagrange equations B = 0 elliptic mod gauge.



Dimension Four is Exceptional

For M*,
7 (lg)) = / W, P,
M

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd>Wacbd



Dimension Four is Exceptional

For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (chd + §%Cd>Wacbd

called Bach tensor.



Dimension Four is Exceptional

For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd>Wacbd

called Bach tensor.

Solutions called Bach-flat metrics.



Dimension Four is Exceptional

For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd>Wacbd

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.



Dimension Four is Exceptional

For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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By contrast:

For M™
7 (g]) = / W, 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬁl)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
Clalabi-Yau x flat on K3 x T never critical

when ¢ > 0, because # o Vol(T*)!
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No! Anti-self-dual 4-manifolds: W = 0.

Another possibility: Double Poincaré-Einstein.
This prototype is rather degenerate.

But 4 genuine examples that aren’t.
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Open Problem:

Every Bach-flat 4-manifold one of these three types?
Einstein, 2ASD, Double Poincaré-Einstein?
Locally this is wildly false!

But no compact counter-examples are known!
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Today:

Bach-flat Kahler = one of these three types.
Builds on earlier local results of Andrzej Derdzinski.
Scalar curvature s plays the starring role.

Kahler surfaces:

1
B = o 251" 4+ Hessg(s) + SJ*HGSS()(S)}
so Bach-flat = ¢ extremal and
0 = s+ 2Hessg(s).

On set where s # 0, the metric s™2¢ is Einstein.
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where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).

Proposition. If g is a Kahler metric on a com-
pact complex surface (M*,.J), with Kdihler class
wl, then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and

e (W] is a critical point of A: I — R.
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If not Kahler-Einstein:

. s 1s positive. Then
(M, s72qg) Einstein, A > 0, Hol = SO(4).

1. s 1s zero. Then
(M, q,.J) SFK, but not Ricci-flat.
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M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= (A%, J) is a Del Pezzo surface.



Del Pezzo surfaces:



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points,
in general position,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.

CP,



Blowing up:



Blowing up:

If V is a complex surface,



Blowing up:

If NV is a complex surface, may replace p € NV



Blowing up:

If NV is a complex surface, may replace p € NV
with CIPy

[ \M
|
[ \N



Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.

CP,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line, no 6 on conic,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line, no 6 on conic, no 8 on nodal cubic.



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M*,.]) admits a com-
patible conformally Kahler Einstein metric, and
this metric 1s unique up to automorphisms.



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and

this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
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Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .

Uniqueness: Bando-Mabuchi, L "12. ..
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Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

For each topological type:
Moduli space of such (M4, .J) is connected.

Just a point if by( M) < 5.



Theorem A. Let (M*, g, J) be compact connected
Bach-flat Kahler surface. Then exactly one holds:

[.mins > 0. Then
(a) (M, g, J) Kdhler-Finstein, A > 0; or else
(b) (M, s™2%g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Einstein.
[II.mins < 0. Then
(a) (M, g,.J) Kahler-Einstein, A < 0; or else

(b) (M, s~2g) double Poincaré-Einstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= (A%, J) is a Del Pezzo surface.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= (A%, J) is a Del Pezzo surface.

(a) when Autg(M, J) reductive.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= (A%, J) is a Del Pezzo surface.

(a) when Autg(M, J) reductive.
(b) when Autg(M, .J) non-reductive.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).

This happens <= (M*, J) is a Del Pezzo surface.

(a) when Autg(M, J) reductive.
(bh) when M = CPy#CPy or CPy#2CPs.



[.mins > 0. Then

(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.

Main point: if mins = 0,



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.

Main point: if mins = 0, then s = 0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.

(a) = Kod (M, J) = 0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.

Previously discussed this case: W, = 0.

(a) = Kod (M, .J) = 0.
(h) = Kod (M, .J) = —o0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[fmins < 0,



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[f min s < 0, then s either constant,



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

[f min s < 0, then s either constant, or changes sign.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

(a) = Kod (M, .J) = 2.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[Il.mins < 0. Then
(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

(a) = Kod (M, .J) =2.(b) = Kod (M, .J) = —o0.



[.mins > 0. Then
(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
II.s=0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
(b) (M, g,.J) anti-self-dual, but not Finstein.
[II. mins < 0. Then

(a) (M, g, J) Kdhler-Finstein, A < 0; or else

(b) (M, s72g) double Poincaré-FEinstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.
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(a) (M, g,J) Kdhler-Finstein, A > 0; or else
(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
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s = 0 defines smooth connected Z3, and
M — Z has exactly two components.

Examples of (b): Hwang-Simanca, Te¢nnesen-Friedman
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A few words about the proof...

Lemma. Suppose (M*,g,J) Bach-flat Kdihler,
with s non-constant. Then s : M — R is a
Morse-Bott function, with critical submanifolds
either complexr curves, or isolated points.

Define
k= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as mins. On set where
s =+ 0, the metric h = 8_29 1s Finstein, with
scalar curvature r.
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Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):
Ricci-flat i must be flat!

So Wi = 0.

Contradiction! So s = 0.



Theorem A. Let (M*, g, J) be compact connected
Bach-flat Kahler surface. Then exactly one holds:
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(b) (M, s~2g) double Poincaré-Einstein. Here,

s = 0 defines smooth connected Z3, and
M — Z has exactly two components.



Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an

Einstein metric h with A > 0 if and only if
rCPQ#k@Q, 0 <k<Sg,
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K3,
di
M 2 K37,
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Above the line:
Moduli space &(M) # @. But is it connected?

CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zo,

T4

T4 )2, T )23, T )24, T* ) Zs,

TY)(Zo © 7o), T/ (Z3 ® Z3), or T*)(Zo  Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!
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Every del Pezzo surface has by =1. <

Up to scale, V h, d! self-dual harmonic 2-form w:

dw = 0, *W = W.
This allows us to associate the scalar quantity
Wi (w,w)
with any metric /4 on such a manifold.
Our focus will be on metrics h for which

Wi(w,w) >0

everywhere on M.
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Wi (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for harmonic self-dual 2-form w:

0=V*Vw —2W4(w,-) + gw

Taking inner product with w and integrating:

/ W (o, w)dpt > / ol dp
M M6

In particular, an Einstein metric with A > 0 has

Wi(w,w) >0

on average. But we will need this everywhere.
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However, W (w, w) conformally invariant, with weight:

If b~ u’h, then Wi(w,w) ~ u "W (w,w)

Much simpler than scalar curvature!

In particular, if h satisfies

Wi(w,w) >0

so does every other metric 4 in conformal class [A].
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Theorem B. Let (M,h) be a smooth compact
4-dimensional Einstein manifold with by = 1. If
h satisfies
Wi(w,w) >0

everywhere on M, then h is conformally Kahler
and has Einstein constant A > 0. Moreover, M
i1s diffeomorphic to a Del Pezzo surface. Con-
versely, every Del Pezzo surface admits Einstein
metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo sur-
faces have these properties. These known metrics
are all conformal to Bach-flat Kahler metrics.
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For M*? a Del Pezzo surface, set
&(M) = {Einstein h on M }/(Diffeos x RT)

& (M) = {Einstein h with W (w,w) > 0} /~

Theorem C. & (M) is connected. Moreover,
if bo(M) < 5, then &5 (M) = {point}.

Corollary. & (M) is exactly one connected com-
ponent of &(M).
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First Key Observation:
If Wi(w,w) >0, then w A w # 0 everywhere.
So w is a symplectic form.

Rescale h to obtain g with |w| = v/2:
1
TV

This g is almost-Kahler: related to w by

w)h.

9= w('v J)

for some g-preserving almost-complex structure /.
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Second Key Observation:
By second Bianchi identity,

h Einstein = 0W, = (6W)* = 0.
Strategy:

study weaker equation

SW =0

as proxy for Einstein equation.
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Equation 01/ = 0 not conformally invariant!

If h = f2g satisfies
oWy =0

then ¢ instead satisfies

o(fWy) =0

which in turn implies the Weitzenbock formula

0= V*V(fIV.) + ng+ 6 o W+ 2f WL 2T

for fIW; € End(A™).
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Now take inner product of Weitzenbock formula

0= V*V(FIVy) + ng+ CGf W o W + 2f WL |2

with 2w ® w and integrate by parts. One obtains

Proposition. If compact almost-Kéhler (M*?, g, w)
satisfies O(fWi) =0 for some f > 0, then

0> / W (w0, w)| Ve 2f dy
M

If Wi (w,w) > 0, we thus conclude that ¢ is Kahler!



