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Every oriented 4-manifold admits spin® structures.
Standard proof due to Hirzebruch and Hopf (1958),
but was first hinted at by Whitney (1941).

['ll begin today by explaining a new, simpler proof.
Inspired by Nigel Hitchin’s papers from the 1980s,
which grew out of Atiyah-Hitchin-Singer (1978),

which in turn grew out of Penrose (1976).
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This implies non-compact case by standard trick.
Statement is actually metric-independent.

But we begin by choosing Riemannian metric g.

Still, result also applies to pseudo-Riemannian case.
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Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms
A7 anti-self-dual 2-forms
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Twistor Philosophy:
Choose a chirality!

Focus on the R3-bundle AT — 174,

Geometric meaning: if w € AT has |w|? = 2, then
w=e Ne?+ednet

in a suitable oriented orthonormal frame.

Under index raising w,p ~ wa? becomes

J= 1

which is almost-complex structure compatible with
metric and determining given orientation.
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The Euler Class:

The Euler class e(A") € H3(M,Z) = H{(M,Z)

plays an important part in our story.

Given an oriented rank-3 bundle E — M,
e(E) is Poincaré dual to oriented curve C
that is the zero locus of a generic section of E.

Because —1 defines an orientation-reversing
isomorphism E — E we automatically have

e(E) = —e(E), so e(E) € H3(M,Z) is 2-torsion.

We will soon see that e(AT) = 0
for any oriented 4-manifold M,
even if H3(M,7Z) # 0.
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Integrability:

The almost-complex structure .J
of Z is conformally invariant.

But it is only integrable if W, = 0.
But d partial integrability in general case.

e Livery twistor fiber is a holomorphic curve CIPy.

e Normal bundle of fiber is holomorphic bundle
v =0(1) 8 O(1).

Non-integrability only involves [normal, normal.
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Proposition. Geometric and Standard Defini-
tions of a spin® structure are equivalent.

Idea of proof:
7 =5/U(2).
Let S(.Z) = circle bundle of . — 7.

Then S(.Z) pulls back to circle bundle over §.

This can be made into a principal Spin©(4)-bundle
§ — M in an essentially unique way.
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Proposition. Geometric and Standard Defini-
tions of a spin structure are equivalent.

Sketch of proof:

Let F =5 /Sp(1).

Then Z = F/SO(2).

F = unit vertical vectors in V.
Square-root of 7 <= double cover of F.
But 71(F) = m1(F).

So double cover of § <= double cover of F.
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We will now prove:

Theorem. Fvery smooth compact Riemannian
manifold (M?*, g) admits spin® structures. More-

over, H 2(M 7)) acts freely and transitively on
the set of all spin® structures.

Also gives a self-contained proof of the following:

Corollary. A smooth Riemannian manifold (M?, g)
admits a spin structure <=

wo(TM) = wy(AT) € H*(M, Zs)

vanishes. When this happens, H'(M,Z3) then
acts freely and transitively on {spin structures}.
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Let E — M be an oriented R3-bundle over
a compact connected oriented 4-manifold.

Choose positive-definite inner product on E.

Let w : Z — M be corresponding
oriented unit-2-sphere bundle.

We can now consider this as a CIP{-bundle.

But Z = P(V) <= 4 complex line bundle
<L = Z

with (¢i(Z), F) = +1,
where F' = [S?] € Hy(Z,Z) is fiber class.
«— Jac H*Z,7) with

(a, F') = 1.
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(iv) |Zo(Z)| = |Z9(M)], where T5 is the torsion
subgroup of Ho(__,Z).



Key tool:



Key tool:

Gysin sequence:



Key tool:

Gysin sequence:

0— H2M) S H2(2) % gor) =5



Key tool:
Gysin sequence:
0— H?(M)
— H3(M)



Key tool:

Gysin sequence:



Key tool:

Gysin sequence:
(]
“H(M,Z) —— HXZ2.Z) —— HM,Z)
- HYM,Z) —— HY2,Z) —— HY(M.,Z)
“HYM,Z) —— HNZ.Z) —— H2(M,Z)

|y



Key tool:

Gysin sequence:



Key tool:

Gysin sequence:

0— HXM) D H2(2) 55 HO(M) S
= HBIOM) D BY(2) Fs HY ()
~ HAOM) B BN Z) S B2

Exact sequence of pair:
— H?*(E) - HXE—-0) —

H3(E,E—0) — HYE) - H}E—-0) —
H*E,E—0) - HYE) - HYE—-0) —
H°(E,E —0) —



Key tool:

Gysin sequence:

0 H2M) D HXA(Z) % HO(M) S
= HBIOM) D BY(2) Fs HY ()
~ BN S HY(Z) T m200) o

Exact sequence of pair:
— H?*(E) - HXE—-0) —
H3(E,E—0) — HYE) - H}E—-0) —
H*E,E—0) - HYE) - HYE—-0) —
H°(E,E —0) —

Thom isomorphism:

HY3(0M) — H¥(E,E —0)
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Poincaré duality:
0= 7 5 Hy2,7) = Ho(M,Z) -0

If Ja € H*(Z,7) with (a, F) = 1, gives splitting
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To(2)| = [To(M)] = |T(2)] =T (M)
But

T(Z) =T(M)/(e(E))
Hence
T(Z2)] = |%2(M)] = e(E)=0.

In other words,

(iv)=(1).
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We'll prove that Z = S(A™) satisfies
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can be represented by a smoothly embedded com-
pact oriented surface
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Observation 2. Smoothly embedded compact
oriented surface > C M has canonical lift >J — Z

(1 (HY),[5]) = x(2) + Do
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Now, given . — Z, get spin® bundles

Ve — M
by setting

Vig = H(CP)(z),0(2))
V_; = HY(CP(z),0(v @ L @ V™))
where CPy(z) = @ (z). Formally,
VE=S+® /2
where L — M is defined by
o'l =L’ V"
(This defines fiber-wise O structure of .Z.)
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Z=P(V.)

so we have a projection

V+—O%Z.

This can be souped up to real quadratic map

o:Vy = AT
O sd®D

which e.g. appears in Seiberg-Witten equations

Dygd =0
F;r = 10(D).
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In particular,

Z=P(V.)

so we have a projection

V+—O%Z.

This can be souped up to real quadratic map
o:Vy = AT
O sd®D
so any ® € I'(V,) yields o(®) € I'(A™T).

But since rankp(V4) = 4 = dim M, always have
sections of Vi that only vanish at one point!
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oriented Riemannian 4-manifold. Let p € M be
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o V[ — {p} admits almost-complex structures .J
compatible with the given metric, orientation.
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@ ﬁﬁ 7 = S\/i(AjL)




Happy Birthday, Roger!




Happy Birthday, Roger!

And Many Happy Returns!



