The Geometry of 4-Manifolds:

Curvature in the Balance

III

Claude LeBrun Stony Brook University

Centro di Ricerca Matematica Ennio De Giorgi,
Pisa, Italia. Il 10 giugno 2022.

Special Character of Dimension Four:

Special Character of Dimension Four:

On oriented $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

Special Character of Dimension Four:

On oriented $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2} \\
\star^{2}=1 .
\end{gathered}
$$

Special Character of Dimension Four:

On oriented $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2} \\
\star^{2}=1 .
\end{gathered}
$$

Λ^{+}self-dual 2-forms.
Λ^{-}anti-self-dual 2-forms.

Riemann curvature of $\left(M^{4}, g\right)$

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

Riemann curvature of $\left(M^{4}, g\right)$

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

$$
W_{-}+\frac{s}{12} .
$$

Riemann curvature of $\left(M^{4}, g\right)$

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

$$
W_{-}+\frac{s}{12} .
$$

where

$$
\begin{aligned}
s & =\text { scalar curvature } \\
\dot{r} & =\text { trace-free Ricci curvature } \\
W_{+} & =\text {self-dual Weyl curvature } \\
W_{-} & =\text {anti-self-dual Weyl curvature }
\end{aligned}
$$

Riemann curvature of $\left(M^{4}, g\right)$

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

$$
W_{-}+\frac{s}{12} .
$$

where
$s=$ scalar curvature
$\stackrel{\circ}{r}=$ trace-free Ricci curvature
$W_{+}=$self-dual Weyl curvature (conformally invariant)
$W_{-}=$anti-self-dual Weyl curvature

Four Basic Quadratic Curvature Functionals

Four Basic Quadratic Curvature Functionals

$$
\begin{aligned}
& \mathcal{G}_{M} \longrightarrow \mathbb{R} \\
& g \longmapsto\left\{\begin{array}{l}
\int_{M} s^{2} d \mu_{g} \\
\int_{M}|\stackrel{r}{ }|^{2} d \mu_{g} \\
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \\
\int_{M}\left|W_{-}\right|^{2} d \mu_{g}
\end{array}\right.
\end{aligned}
$$

Four Basic Quadratic Curvature Functionals

$$
\begin{aligned}
& \mathcal{G}_{M} \longrightarrow \mathbb{R} \\
& g \longmapsto\left\{\begin{array}{l}
\int_{M} s^{2} d \mu_{g} \\
\int_{M}|\stackrel{r}{ }|^{2} d \mu_{g} \\
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \\
\int_{M}\left|W_{-}\right|^{2} d \mu_{g}
\end{array}\right.
\end{aligned}
$$

However, these are not independent!

For $\left(M^{4}, g\right)$ compact oriented Riemannian,

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Euler characteristic

$$
\chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+\left|W_{+}\right|^{2}+\left|W_{-}\right|^{2}-\frac{|\stackrel{\circ}{ }|^{2}}{2}\right) d \mu
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Euler characteristic
$\chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+\left|W_{+}\right|^{2}+\left|W_{-}\right|^{2}-\left.\frac{\mid r}{2}\right|^{2}\right) d \mu$

Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

For example,

$$
\mathscr{W}([g]):=\int_{M}\left(\left|W_{+}\right|^{2}+\left|W_{+}\right|^{2}\right) d \mu_{g}
$$

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

For example,

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

For example,

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

So $\int\left|W_{+}\right|^{2} d \mu$ equivalent to Weyl functional,

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

For example,

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

So $\int\left|W_{+}\right|^{2} d \mu$ equivalent to Weyl functional, which measures deviation from conformal flatness.

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

Today's theme: How do these compare in size,

So any quadratic curvature functional expressible in terms of

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \quad \text { and } \quad \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

Today's theme: How do these compare in size, for specific classes of metrics on interesting 4-manifolds?

Yesterday: Kähler case.

Yesterday: Kähler case.
Suppose g Kähler metric on (M, J).

Yesterday: Kähler case.
Suppose g Kähler metric on (M, J).
Give M orientation determined by J.

Yesterday: Kähler case.

Suppose g Kähler metric on (M, J).
Give M orientation determined by J.
Then

$$
\frac{s^{2}}{24}=\left|W_{+}\right|^{2}
$$

at every point.

Yesterday: Kähler case.

Suppose g Kähler metric on (M, J).
Give M orientation determined by J.
Then

$$
\frac{s^{2}}{24}=\left|W_{+}\right|^{2}
$$

at every point.
\therefore Two basic functionals agree on Kähler metrics!

Yesterday: Kähler case.

Suppose g Kähler metric on (M, J).
Give M orientation determined by J.
Then

$$
\frac{s^{2}}{24}=|W+|^{2}
$$

at every point.
\therefore Two basic functionals agree on Kähler metrics!

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g}=\int_{M}\left|W_{+}\right|^{2} d \mu_{g} .
$$

Yesterday: Kähler case.

Suppose g Kähler metric on (M, J).
Give M orientation determined by J.
Then

$$
\frac{s^{2}}{24}=\left|W_{+}\right|^{2}
$$

at every point.
\therefore Two basic functionals agree on Kähler metrics!

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g}=\int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

More general Riemannian metrics?

Theorem (Gursky-L '99, Gursky '00). Let (M, g)
be a compact oriented Einstein 4-manifold

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with $s>0$

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.

Excluded: Round S^{4}, Fubini-Study $\overline{\mathbb{C P}}_{2}$.

Theorem (Gursky-L '99, Gursky '00). Let (M, g) be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space. Then$$
\int_{M}|W+|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.
(K-E after at worst passing to a double cover.)

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but

Theorem (L'95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$.

Excluded: Del Pezzo Surfaces (10 diffeotypes)

Theorem (L'95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$.

Then, with respect to the symplectic orientation,

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.
$\lambda>0$

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

$$
\lambda \leq 0
$$

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.
$\lambda>0$

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

$$
\lambda \leq 0
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,

$$
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}-\frac{|\dot{r}|^{2}}{2}\right) d \mu
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,

$$
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}-\frac{|\stackrel{r}{ }|^{2}}{2}\right) d \mu
$$

Einstein case:

$$
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}\right) d \mu
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,

$$
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}-\frac{\mid \stackrel{r}{r}}{2} 2\right) d \mu
$$

Einstein case:

$$
\begin{gathered}
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}\right) d \mu \\
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \\
\geq \int_{M} \frac{s^{2}}{24} d \mu_{g} \\
\Longleftrightarrow \\
\frac{1}{4 \pi^{2}} \int_{M}\left|W_{+}\right|^{2} d \mu
\end{gathered}
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,

$$
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}-\frac{\mid \stackrel{r}{2}}{2}\right) d \mu
$$

Einstein case:

$$
\begin{gathered}
(2 \chi+3 \tau)(M)=\frac{1}{4 \pi^{2}} \int_{M}\left(\frac{s^{2}}{24}+2\left|W_{+}\right|^{2}\right) d \mu \\
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g} \\
\Longleftrightarrow \\
\frac{1}{4 \pi^{2}} \int_{M} \frac{s^{2}}{24} d \mu
\end{gathered}
$$

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space. Then$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space. Then$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_{+}=0$.

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_{+}=0$.
$0=\Delta\left|W_{+}\right|^{2}+2\left|\nabla W_{+}\right|^{2}+s\left|W_{+}\right|^{2}-36 \operatorname{det}\left(W_{+}\right)$

Theorem (Gursky-L '99, Gursky '00). Let (M, g)

 be a compact oriented Einstein 4-manifold with $s>0$ that is not an irreducible symmetric space.Then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is locally Kähler-Einstein.

Method: Weitzenböck formula for $\delta W_{+}=0$.

$$
\begin{aligned}
0 & =\Delta\left|W_{+}\right|^{2}+2\left|\nabla W_{+}\right|^{2}+s\left|W_{+}\right|^{2}-36 \operatorname{det}\left(W_{+}\right) \\
& \Longrightarrow \exists \widehat{g}=u^{2} g \quad \text { s.t. } \quad \widehat{\mathfrak{s}}:=\widehat{s}-2 \sqrt{6}\left|\widehat{W_{+}}\right| \leq 0
\end{aligned}
$$

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.
Hypotheses $\Longrightarrow \exists$ solution (Φ, θ) of SW equations for spin^{c} structure determined by ω.

Theorem (L '95, '09). Let M be a smooth compact 4-manifold that

- admits a symplectic form ω, but
- does not admit an Einstein metric with $s>0$. Then, with respect to the symplectic orientation, any Einstein metric g on M satisfies

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow g$ is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.
Hypotheses $\Longrightarrow \exists$ solution (Φ, θ) of SW equations for spin^{c} structure determined by $\omega . \Longrightarrow$

$$
0=2 \Delta|\Phi|^{2}+4\left|\nabla_{\theta} \Phi\right|^{2}+s|\Phi|^{2}+|\Phi|^{4}
$$

Might therefore seem interesting to ask when

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!
Our discussion of Yamabe problem \Longrightarrow

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!
Our discussion of Yamabe problem \Longrightarrow
\exists metrics g_{j} in any conformal class
$[g]=\left\{u^{2} g\right\}$ with $\int_{M} \frac{s^{2}}{24} d \mu_{g_{j}} \rightarrow+\infty ;$

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!
Our discussion of Yamabe problem \Longrightarrow
\exists metrics g_{j} in any conformal class
$[g]=\left\{u^{2} g\right\}$ with $\int_{M} \frac{s^{2}}{24} d \mu_{g_{j}} \rightarrow+\infty$;
so any M certainly carries metrics with

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \gg \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!
Our discussion of Yamabe problem \Longrightarrow
\exists metrics g_{j} in any conformal class
$[g]=\left\{u^{2} g\right\}$ with $\int_{M} \frac{s^{2}}{24} d \mu_{g_{j}} \rightarrow+\infty$; but
\exists minimizer of $\int_{M} \frac{s^{2}}{24} d \mu_{g}$ in any [g], and $s=$ constant for any such minimizer.

Might therefore seem interesting to ask when

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

for all metrics g on M.
But this is actually a silly question!
$\int_{M}\left|W_{+}\right|^{2} d \mu_{g}$ conformally invariant.
$\int_{M} \frac{s^{2}}{24} d \mu_{g}$ is certainly not!
Our discussion of Yamabe problem \Longrightarrow
\exists metrics g_{j} in any conformal class
$[g]=\left\{u^{2} g\right\}$ with $\int_{M} \frac{s^{2}}{24} d \mu_{g_{j}} \rightarrow+\infty$; but
\exists minimizer of $\int_{M} \frac{s^{2}}{24} d \mu_{g}$ in any $[g]$, and $s=$ constant for any such minimizer.

So any Kähler-type complex surface M carries (conformally Kähler) metrics with $>$ and $<$.

Thus, our question only becomes sensible if we

Thus, our question only becomes sensible if we

- restrict our question to a class of metrics where general conformal rescaling is not possible:

Thus, our question only becomes sensible if we

- restrict our question to a class of metrics where general conformal rescaling is not possible:
- Kähler metrics;

Thus, our question only becomes sensible if we

- restrict our question to a class of metrics where general conformal rescaling is not possible:
- Kähler metrics;
- Einstein metrics;

Thus, our question only becomes sensible if we

- restrict our question to a class of metrics where general conformal rescaling is not possible:
- Kähler metrics;
- Einstein metrics;
- almost-Kähler metrics.

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M}\left(\frac{s^{2}}{24}-\frac{|\stackrel{i}{ }|^{2}}{2}\right) d \mu_{g}
$$

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M}\left(\frac{s^{2}}{24}-\frac{|\stackrel{i}{r}|^{2}}{2}\right) d \mu_{g}
$$

agrees with previous question in the Einstein case.

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M}\left(\frac{s^{2}}{24}-\frac{|\stackrel{i}{r}|^{2}}{2}\right) d \mu_{g}
$$

agrees with previous question in the Einstein case.
Equivalent to

Thus, our question only becomes sensible if we

- restrict our question to a class of general conformal rescaling is not possible; or
- modify problem to make it conformally invariant.

One conformally-invariant version:

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \int_{M}\left(\frac{s^{2}}{24}-\frac{|\mathfrak{r}|^{2}}{2}\right) d \mu_{g}
$$

agrees with previous question in the Einstein case.
Equivalent to

$$
\frac{1}{4 \pi^{2}} \int_{M}\left|W_{+}\right|^{2} d \mu_{g} \stackrel{?}{\geq} \frac{1}{3}(2 \chi+3 \tau)(M)
$$

Since

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

this is really a question about $\inf \mathscr{W}$.

Since

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

this is really a question about $\inf \mathscr{W}$.
But, similarly,

$$
\mathscr{W}([g])=12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{-}\right|^{2} d \mu_{g}
$$

so any self-dual metric achieves $\inf \mathscr{W}$

Since

$$
\mathscr{W}([g])=-12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

this is really a question about $\inf \mathscr{W}$.
But, similarly,

$$
\mathscr{W}([g])=12 \pi^{2} \tau(M)+2 \int_{M}\left|W_{-}\right|^{2} d \mu_{g}
$$

so any self-dual metric achieves $\inf \mathscr{W}$:

$$
W_{-}=0
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Proposition (Atiyah-Hitchin-Singer). The FubiniStudy metric on $\mathbb{C P}_{2}$ is self-dual. Consequently, minimizes Weyl functional.

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Theorem (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on $\mathbb{C P}_{2}$ with $Y([g])>0$.

$$
Y([g])=\inf _{\widehat{g}=u^{2} g} \frac{\int_{M} s_{\widehat{g}} d \mu_{\widehat{g}}}{\sqrt{\int_{M} d \mu_{\widehat{g}}}} ;
$$

$$
Y([g])=\inf _{\widehat{g}=u^{2} g} \frac{\int_{M} s_{\widehat{g}} d \mu_{\widehat{g}}}{\sqrt{\int_{M} d \mu_{\widehat{g}}}} ;
$$

If g has s of fixed sign, agrees with sign of $Y_{[g]}$.

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Theorem (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on $\mathbb{C P}_{2}$ with $Y([g])>0$.

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Theorem (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on $\mathbb{C P}_{2}$ with $Y([g])>0$.

Gursky '98 later gave a much simpler proof. . .

For $\left(M^{4}, g\right)$ compact oriented Riemannian,
Signature

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Proposition (Atiyah-Hitchin-Singer '78). The FubiniStudy metric on $\mathbb{C P}_{2}$ is self-dual. Consequently, minimizes Weyl functional.

Osamu Kobayashi '86:

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?
No self-dual metric!
Would be conformally flat, because $\tau=0$.

$$
\tau(M)=\frac{1}{12 \pi^{2}} \int_{M}\left(\left|W_{+}\right|^{2}-\left|W_{-}\right|^{2}\right) d \mu
$$

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.
Also $\pi_{1}=0$.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.
Also $\pi_{1}=0$.
Kuiper '49:

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.
Also $\pi_{1}=0$.
Kuiper '49: In dimension $n \geq 3$, any simply connected conformally flat ($M^{n},[g]$)

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.
Also $\pi_{1}=0$.
Kuiper '49: In dimension $n \geq 3$, any simply connected conformally flat ($M^{n},[g]$) is conformally diffeomorphic to round S^{n}.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2} ?$
No self-dual metric!
Would be conformally flat, because $\tau=0$.
Also $\pi_{1}=0$.
Kuiper '49: In dimension $n \geq 3$, any simply connected conformally flat ($M^{n},[g]$) is conformally diffeomorphic to round S^{n}.
$\Rightarrow \Leftarrow$

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Gave weak evidence:

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Gave weak evidence:
Local minimum.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Commonality between $\mathbb{C P}_{2}$ and $S^{2} \times S^{2}$?

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Commonality between $\mathbb{C P}_{2}$ and $S^{2} \times S^{2}$?
Kähler-Einstein, with $\lambda>0$.

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Commonality between $\mathbb{C P}_{2}$ and $S^{2} \times S^{2}$?
Kähler-Einstein, with $\lambda>0$.
Pursuing this lead will lead to interesting places!

Osamu Kobayashi '86:

What about $S^{2} \times S^{2}$?

Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^{2} \times S^{2}$ minimizes the Weyl functional \mathscr{W}.

Natural Generalization:

Natural Generalization:

Conjecture. On any del Pezzo surface $\left(M^{4}, J\right)$, the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathscr{W}.

Del Pezzo surfaces:

$\left(M^{4}, J\right)$ for which c_{1} is a Kähler class $[\omega]$. Shorthand: " $c_{1}>0$."

Blow-up of $\mathbb{C P}_{2}$ at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Del Pezzo surfaces:

$\left(M^{4}, J\right)$ for which c_{1} is a Kähler class $[\omega]$. Shorthand: " $c_{1}>0$."

Blow-up of $\mathbb{C P}_{2}$ at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Theorem. Each del Pezzo $\left(M^{4}, J\right)$ admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Natural Generalization:

Conjecture. On any del Pezzo surface $\left(M^{4}, J\right)$, the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathscr{W}.

Natural Generalization:

Conjecture. On any del Pezzo surface $\left(M^{4}, J\right)$, the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathscr{W}.

Persuasive partial results.

Natural Generalization:

Conjecture. On any del Pezzo surface $\left(M^{4}, J\right)$, the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathscr{W}.

Persuasive partial results.
But problem still not settled!

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$

$$
Y([g])=\inf _{\widehat{g}=u^{2} g} \frac{\int_{M} s_{\widehat{g}} d \mu_{\widehat{g}}}{\sqrt{\int_{M} d \mu_{\widehat{g}}}} ;
$$

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

In particular, any K-E g with $s>0$ minimizes restriction of \mathscr{W} to $s>0$ metrics.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

In particular, any K-E g with $s>0$ minimizes restriction of \mathscr{W} to $s>0$ metrics.

Big step in direction of Kobayashi's conjecture.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

In particular, any K-E g with $s>0$ minimizes restriction of \mathscr{W} to $s>0$ metrics.

Big step in direction of Kobayashi's conjecture.
Applies in much greater generality.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

In particular, any K-E g with $s>0$ minimizes restriction of \mathscr{W} to $s>0$ metrics.

Big step in direction of Kobayashi's conjecture.
But says nothing about $Y([g])<0$ realm.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

In particular, any K-E g with $s>0$ minimizes restriction of \mathscr{W} to $s>0$ metrics.

Big step in direction of Kobayashi's conjecture.
But says nothing about "most" conformal classes.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

Method: Weitzenböck formula

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

Method: Weitzenböck formula

$$
0=\frac{1}{2} \Delta|\omega|^{2}+|\nabla \omega|^{2}-2 W_{+}(\omega, \omega)+\frac{s}{3}|\omega|^{2}
$$

for self-dual harmonic 2-form ω.

Theorem (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class $[g]$ with $Y([g])>0$ satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains Kähler-Einstein \widehat{g} with $s>0$.

Method: Weitzenböck formula

$$
\Longrightarrow \exists \widehat{g}=u^{2} g \quad \text { s.t. } \quad \widehat{\mathfrak{s}}:=\widehat{s}-2 \sqrt{6}\left|\widehat{W_{+}}\right| \leq 0
$$

A different use of self-dual harmonic forms

 yields a complementary result.A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type \Leftrightarrow

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g)

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.
Every symplectic 4-manifold arises this way.

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.
Every symplectic 4-manifold arises this way.
Choose $g \in[g]$ so that $|\omega| \equiv \sqrt{2}$.

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.
Every symplectic 4-manifold arises this way.
Choose $g \in[g]$ so that $|\omega| \equiv \sqrt{2}$.
Then (M, g, ω) is almost-Kähler manifold:

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Implies ω is orientation-compatible symplectic form.
Every symplectic 4-manifold arises this way.
Choose $g \in[g]$ so that $|\omega| \equiv \sqrt{2}$.
Then (M, g, ω) is almost-Kähler manifold:

$$
\exists J \quad \text { s.t. } \quad \omega=g(J \cdot, \cdot)
$$

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Open condition in C^{2} topology on metrics.

A different use of self-dual harmonic forms yields a complementary result.

Definition. A conformal class $[g]$ on a compact oriented 4-manifold M is said to be of symplectic type $\Leftrightarrow \exists$ self-dual harmonic 2 -form ω on (M, g) such that $\omega \neq 0$ everywhere.

Open condition in C^{2} topology on metrics.
(Harmonic forms depend continuously on metric.)

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface.

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

This recovers Gursky's inequality

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

This recovers Gursky's inequality - but for a different open set of conformal classes!

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.
\exists conformal classes of symplectic type with

$$
Y\left(\left[g_{j}\right]\right) \rightarrow-\infty
$$

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.
\exists conformal classes of symplectic type with

$$
Y\left(\left[g_{j}\right]\right) \rightarrow-\infty
$$

Inequality not limited to the positive Yamabe realm!

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

Method: Almost-Kähler geometry:

$$
\int_{M}\left[\frac{2 s}{3}+W_{+}(\omega, \omega)\right] d \mu=4 \pi c_{1} \bullet[\omega]
$$

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

Method: Almost-Kähler geometry:

$$
3 \int_{M} W_{+}(\omega, \omega) d \mu \geq 4 \pi c_{1} \bullet[\omega]
$$

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

Same method shows conformally Kähler, Einstein metrics on $\mathbb{C P}_{2} \# \overline{\mathbb{C P}}_{2}$ and $\mathbb{C P}_{2} \# 2 \overline{\mathbb{C P}}_{2}$ minimize $\int_{M}\left|W_{+}\right|^{2} d \mu$ among toric symplectic-type $[g]$.

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

However, only works for M del Pezzo.

Theorem (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies

$$
\int_{M}\left|W_{+}\right|^{2} d \mu \geq \frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

with equality $\Leftrightarrow[g]$ contains a Kähler-Einstein metric g.

However, only works for M del Pezzo.
This is apparently not an accident!

Kobayashi's conjecture concerned $S^{2} \times S^{2}$.

Kobayashi's conjecture concerned $S^{2} \times S^{2}$.
But Gursky's theorem also works for $\left(S^{2} \times S^{2}\right) \#\left(S^{2} \times S^{2}\right)$.

Kobayashi's conjecture concerned $S^{2} \times S^{2}$.
But Gursky's theorem also works for $\left(S^{2} \times S^{2}\right) \#\left(S^{2} \times S^{2}\right)$.
And indeed for all iterated connect-sums $m\left(S^{2} \times S^{2}\right)$.

Kobayashi's conjecture concerned $S^{2} \times S^{2}$.
But Gursky's theorem also works for $\left(S^{2} \times S^{2}\right) \#\left(S^{2} \times S^{2}\right)$.
And indeed for all iterated connect-sums $m\left(S^{2} \times S^{2}\right)$.
What happens there in the Yamabe-negative realm?

Theorem (L '22). For any sufficiently large integer m,

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes $[g]$ such that

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes $[g]$ such that

$$
\int_{M}\left|W_{+}\right|^{2} d \mu<\frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes [g] such that

$$
\int_{M}\left|W_{+}\right|^{2} d \mu<\frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1 ,

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes $[g]$ such that

$$
\int_{M}\left|W_{+}\right|^{2} d \mu<\frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1 , the smooth compact simply-connected non-spin manifold

$$
M=m \mathbb{C P}_{2} \# n \overline{\mathbb{C P}}_{2}:=\underbrace{\mathbb{C P}_{2} \# \cdots \# \mathbb{C P}_{2}}_{m} \# \underbrace{\overline{\mathbb{C P}}_{2} \# \cdots \# \overline{\mathbb{C P}}_{2}}_{n}
$$

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes $[g]$ such that

$$
\int_{M}\left|W_{+}\right|^{2} d \mu<\frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1 , the smooth compact simply-connected non-spin manifold

$$
M=m \mathbb{C P}_{2} \# n \overline{\mathbb{C P}}_{2}:=\underbrace{\mathbb{C P}_{2} \# \cdots \# \mathbb{C P}_{2}}_{m} \# \underbrace{\overline{\mathbb{C P}}_{2} \# \cdots \# \overline{\mathbb{C P}}_{2}}_{n}
$$

admits conformal classes $[g]$ where the above inequality holds.

Key facts used in proof:

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds,

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!
Roulleau-Urzúa '15: \exists sequences with $\tau / \chi \rightarrow 1 / 3$.
\rightarrow Miyaoka-Yau line! Can choose spin or non-spin!

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds, then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.

In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!
Strategy: Use Kähler-Einstein orbifold metric on pluricanonical model of X.

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds,
then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.
In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!
Strategy: Use Kähler-Einstein orbifold metric on pluricanonical model of X.

Make tiny ball conformally flat with only tiny change in $\int|W+|^{2} d \mu$.

Key facts used in proof:
Wall '66: If Y and Z are homotopy-equivalent simplyconnected smooth compact 4-manifolds,
then $Y \# \ell\left(S^{2} \times S^{2}\right) \approx Z \# \ell\left(S^{2} \times S^{2}\right)$ for all $\ell \gg 0$.
In proof, we apply this to

$$
M=(k+\ell)(X \# \bar{X}) \#(k+2 \ell)\left(S^{2} \times S^{2}\right)
$$

where X simply-connected minimal complex surface of general type with $\tau(X)>0$.

Such X now known to exist in profusion!
Strategy: Use Kähler-Einstein orbifold metric on pluricanonical model of X.

Make tiny ball conformally flat with only tiny change in $\int|W+|^{2} d \mu$. Now glue by conformal reflections.

Theorem (L '22). For any sufficiently large integer m, the smooth compact simply-connected spin manifold

$$
M=m\left(S^{2} \times S^{2}\right):=\underbrace{\left(S^{2} \times S^{2}\right) \# \cdots \#\left(S^{2} \times S^{2}\right)}_{m}
$$

admits Riemannian conformal classes $[g]$ such that

$$
\int_{M}\left|W_{+}\right|^{2} d \mu<\frac{4 \pi^{2}}{3}(2 \chi+3 \tau)(M)
$$

Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1 , the smooth compact simply-connected non-spin manifold

$$
M=m \mathbb{C P}_{2} \# n \overline{\mathbb{C P}}_{2}:=\underbrace{\mathbb{C P}_{2} \# \cdots \# \mathbb{C P}_{2}}_{m} \# \underbrace{\overline{\mathbb{C P}}_{2} \# \cdots \# \overline{\mathbb{C P}}_{2}}_{n}
$$

admits conformal classes $[g]$ where the above inequality holds.

Our discussion today has touched on

Our discussion today has touched on

- Question of balance;

Our discussion today has touched on

- Question of balance;
- Almost-Kähler Manifolds; and

Our discussion today has touched on

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

Our discussion today has touched on

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

Dessert course:

Our discussion today has touched on

- Question of balance;
- Almost-Kähler Manifolds; and
- Harmonic self-dual Weyl curvature.

Dessert course:
Another result involving these ideas.

Theorem (L '22). If (M, g, ω) is a compact almostKähler 4-manifold

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$,

Theorem (L '22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g},
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$,

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

again with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

again with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
In particular, any compact almost-Kähler 4-manifold (M, g, ω) with $\delta W_{+}=0$ and $s \geq 0$ is Kähler.

Equation $\delta W_{+}=0$ implies Weitzenböck formula

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

for $W_{+} \in \operatorname{End}\left(\Lambda^{+}\right)$, with respect to g.

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

for $W_{+} \in \operatorname{End}\left(\Lambda^{+}\right)$, with respect to g.
Contract with $\omega \otimes \omega$ and integrate by parts:

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

for $W_{+} \in \operatorname{End}\left(\Lambda^{+}\right)$, with respect to g.
Contract with $\omega \otimes \omega$ and integrate by parts:

$$
\int s W_{+}(\omega, \omega) d \mu=\int\left[8\left|W_{+}\right|^{2}-4\left|W_{+}(\omega)\right|^{2}+2\left[W_{+}(\omega, \omega)\right]^{2}\right] d \mu
$$

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

for $W_{+} \in \operatorname{End}\left(\Lambda^{+}\right)$, with respect to g.
Contract with $\omega \otimes \omega$ and integrate by parts:

$$
\begin{aligned}
& \int s W_{+}(\omega, \omega) d \mu=\int\left[8\left|W_{+}\right|^{2}-4\left|W_{+}(\omega)\right|^{2}+2\left[W_{+}(\omega, \omega)\right]^{2}\right] d \mu \\
& \text { Using } W_{+}(\omega, \omega)=\frac{1}{2}|\nabla \omega|^{2}+\frac{s}{3}
\end{aligned}
$$

Equation $\delta W_{+}=0$ implies Weitzenböck formula

$$
0=\nabla^{*} \nabla W_{+}+\frac{s}{2} W_{+}-6 W_{+} \circ W_{+}+2\left|W_{+}\right|^{2} I
$$

for $W_{+} \in \operatorname{End}\left(\Lambda^{+}\right)$, with respect to g.
Contract with $\omega \otimes \omega$ and integrate by parts:
$\int s W_{+}(\omega, \omega) d \mu=\int\left[8\left|W_{+}\right|^{2}-4\left|W_{+}(\omega)\right|^{2}+2\left[W_{+}(\omega, \omega)\right]^{2}\right] d \mu$.
Using $W_{+}(\omega, \omega)=\frac{1}{2}|\nabla \omega|^{2}+\frac{s}{3}$, one then shows

$$
\int \frac{s^{2}}{24} d \mu \geq \int\left|W_{+}\right|^{2} d \mu+\frac{3}{32} \int|\nabla \omega|^{4} d \mu
$$

By contrast, when $s>0$, the identity

By contrast, when $s>0$, the identity
$W_{+}(\omega, \omega)=\frac{1}{2}|\nabla \omega|^{2}+\frac{s}{3}$ easily implies that

By contrast, when $s>0$, the identity
$W_{+}(\omega, \omega)=\frac{1}{2}|\nabla \omega|^{2}+\frac{s}{3}$ easily implies that

$$
\int\left|W_{+}\right|^{2} d \mu \geq \int \frac{s^{2}}{24} d \mu
$$

By contrast, when $s>0$, the identity $W_{+}(\omega, \omega)=\frac{1}{2}|\nabla \omega|^{2}+\frac{s}{3}$ easily implies that

$$
\int\left|W_{+}\right|^{2} d \mu \geq \int \frac{s^{2}}{24} d \mu
$$

with equality only when $\nabla \omega=0$.

Theorem (L'22). If (M, g, ω) is a compact almostKähler 4-manifold such that $\delta W_{+}=0$, where δ denotes the divergence operator, then

$$
\int_{M} \frac{s^{2}}{24} d \mu_{g} \geq \int_{M}\left|W_{+}\right|^{2} d \mu_{g}
$$

with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
By contrast, if (M, g, ω) instead has scalar curvature $s \geq 0$, then

$$
\int_{M}\left|W_{+}\right|^{2} d \mu_{g} \geq \int_{M} \frac{s^{2}}{24} d \mu_{g}
$$

again with equality $\Leftrightarrow(M, g, \omega)$ is Kähler.
In particular, any compact almost-Kähler 4-manifold (M, g, ω) with $\delta W_{+}=0$ and $s \geq 0$ is Kähler.

Infine, vorrei ringraziare il Centro Ennio De Giorgi per avermi invitato!

Infine, vorrei ringraziare il Centro

 Ennio De Giorgi per avermi invitato!

Che piacere, tornare a Pisa!

