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for specific classes of metrics on interesting 4-manifolds?
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with equality < g 1s a Kahler-Einstein metric.

Method: Seiberg-Witten theory:.

Hypotheses = 3 solution (P, 8) of SW equations
for spin® structure determined by w. —

0 = 2A|D) + 4|V®|* + s|D) + |D*
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But this is actually a silly question!
Ju W 4] 2d,ug conformally invariant.

9
f M%d/{q is certainly not!
Our discussion of Yamabe problem =—

4 metrics g; in any conformal class
9
g] = {u?g} with fM%dﬂgj — +-00; but
9
3 minimizer of [, 5714 in any [g],
and s = constant for any such minimizer.

So any Kahler-type complex surface M carries
(conformally Kéhler) metrics with > and <.
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class |g] on a compact
oriented 4-manifold M 1s said to be of symplectic
type <3 self-dual harmonic 2-form w on (M, g)
such that w # 0 everywhere.

Open condition in C? topology on metrics.

(Harmonic forms depend continuously on metric. )
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any conformal class |g] of symplectic type on M
satisfies

9 47'('2
(W |%dp = ——(2x + 37)(M),
Y 3

with equality < |g] contains a Kdahler-Einstein
metric g.

However, only works for M del Pezzo.

This is apparently not an accident!
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What happens there in the Yamabe-negative realm?
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non-spin manifold

M = mCPy#nCP5 := CPo# - - - #CPZ#@Q# X #@2

m n

e
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admits conformal classes |g] where the above in-
equality holds.
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In proof, we apply this to
M = (k+ O)(X#X)#(k + 20)(5? x S?)

where X simply-connected minimal complex sur-
face of general type with 7(X) > 0.

Such X now known to exist in profusion!

Strategy: Use Kahler-Einstein orbifold metric on
pluricanonical model of X.

Make tiny ball conformally flat with only tiny change
in [ |W +|?d. Now glue by conformal reflections.
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Another result involving these ideas.
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denotes the divergence operator, then
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0= V*VW+ + §W+ — 6Wi oWy + 2|W+|2]

for Wy € End(A™), with respect to g.

Contract with w ® w and integrate by parts:

/ SW i (w0, w)iljs = / I P AW () P2V (.00

Using Wi (w,w) = %\Vw\Z + 5, one then shows
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2 57
W l2dy > | =d
/I + M_/24M

with equality only when Vw = 0.
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