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Special Character of Dimension Four:

On oriented (M4, g), =⇒
Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

?2 = 1.

Λ+ self-dual 2-forms.
Λ− anti-self-dual 2-forms.
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Riemann curvature of (M4, g)

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s
12 r̊

Λ− r̊ W− + s
12

where

s = scalar curvature

r̊ = trace-free Ricci curvature

W+ = self-dual Weyl curvature (conformally invariant)

W− = anti-self-dual Weyl curvature ′′
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GM −→ R

g 7−→



∫
Ms

2dµg∫
M |̊r|

2dµg∫
M |W+|2dµg∫
M |W−|

2dµg

However, these are not independent!
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For (M4, g) compact oriented Riemannian,

Euler characteristic

χ(M) =
1

8π2

∫
M

(
s2

24
+ |W+|2 + |W−|2 −

|̊r|2

2

)
dµ
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For (M4, g) compact oriented Riemannian,

Euler characteristic

χ(M) =
1

8π2

∫
M

(
s2

24
+ |W+|2 + |W−|2 −

|̊r|2

2

)
dµ

Signature

τ (M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dµ
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So any quadratic curvature functional expressible
in terms of∫

M
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∫
M
|W+|2dµg .
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So any quadratic curvature functional expressible
in terms of∫

M

s2

24
dµg and

∫
M
|W+|2dµg .

For example,

W ([g]) :=

∫
M

(
|W+|2 + |W+|2

)
dµg
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So any quadratic curvature functional expressible
in terms of∫

M

s2

24
dµg and

∫
M
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For example,

W ([g]) = −12π2τ (M) + 2

∫
M
|W+|2dµg
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So any quadratic curvature functional expressible
in terms of∫

M

s2

24
dµg and

∫
M
|W+|2dµg .

For example,

W ([g]) = −12π2τ (M) + 2

∫
M
|W+|2dµg

So
∫
|W+|2dµ equivalent to Weyl functional,

which measures deviation from conformal flatness.
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So any quadratic curvature functional expressible
in terms of∫

M

s2

24
dµg and

∫
M
|W+|2dµg .

Today’s theme: How do these compare in size,

for specific classes of metrics on interesting 4-manifolds?
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Yesterday: Kähler case.

Suppose g Kähler metric on (M,J).

Give M orientation determined by J .

Then

s2

24
= |W+|2

at every point.

∴ Two basic functionals agree on Kähler metrics!∫
M

s2

24
dµg =

∫
M
|W+|2dµg .

More general Riemannian metrics?
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Theorem (Gursky-L ’99, Gursky ’00). Let (M, g)
be a compact oriented Einstein 4-manifold with
s > 0 that is not an irreducible symmetric space.
Then

Excluded: Round S4, Fubini-Study CP2.
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be a compact oriented Einstein 4-manifold with
s > 0 that is not an irreducible symmetric space.
Then ∫

M
|W+|2dµg ≥

∫
M

s2

24
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with equality ⇔ g is locally Kähler-Einstein.

(K-E after at worst passing to a double cover.)
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Theorem (L ’95, ’09). Let M be a smooth com-
pact 4-manifold that

• admits a symplectic form ω, but

• does not admit an Einstein metric with s > 0.

Excluded: Del Pezzo Surfaces (10 diffeotypes)
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For (M4, g) compact oriented Riemannian,

(2χ + 3τ )(M) =
1

4π2

∫
M

(
s2

24
+ 2|W+|2 −

|̊r|2

2

)
dµ

52



For (M4, g) compact oriented Riemannian,

(2χ + 3τ )(M) =
1

4π2

∫
M

(
s2

24
+ 2|W+|2 −

|̊r|2

2

)
dµ

Einstein case:

(2χ + 3τ )(M) =
1

4π2

∫
M

(
s2

24
+ 2|W+|2

)
dµ
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1

3
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24
dµg ≥

∫
M
|W+|2dµg
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1

4π2

∫
M
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24
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3
(2χ + 3τ )(M)
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Theorem (Gursky-L ’99, Gursky ’00). Let (M, g)
be a compact oriented Einstein 4-manifold with
s > 0 that is not an irreducible symmetric space.
Then ∫

M
|W+|2dµg ≥

∫
M

s2

24
dµg

with equality ⇔g is locally Kähler-Einstein.

Method: Weitzenböck formula for δW+ = 0.

0 = ∆|W+|2 + 2|∇W+|2 + s|W+|2− 36 det(W+)

=⇒ ∃ĝ = u2g s.t. ŝ := ŝ− 2
√

6|̂W+| ≤ 0.
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Theorem (L ’95, ’09). Let M be a smooth com-
pact 4-manifold that

• admits a symplectic form ω, but

• does not admit an Einstein metric with s > 0.

Then, with respect to the symplectic orientation,
any Einstein metric g on M satisfies∫

M

s2

24
dµg ≥

∫
M
|W+|2dµg ,

with equality ⇔ g is a Kähler-Einstein metric.

Method: Seiberg-Witten theory.

Hypotheses =⇒ ∃ solution (Φ, θ) of SW equations
for spinc structure determined by ω. =⇒

0 = 2∆|Φ|2 + 4|∇θΦ|2 + s|Φ|2 + |Φ|4

63



Might therefore seem interesting to ask when

64



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

65



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

66



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!

67



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.

68



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.∫
M
s2

24dµg is certainly not!

69



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.∫
M
s2

24dµg is certainly not!

Our discussion of Yamabe problem =⇒

70



Might therefore seem interesting to ask when∫
M
|W+|2dµg

?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.∫
M
s2

24dµg is certainly not!

Our discussion of Yamabe problem =⇒
∃ metrics gj in any conformal class

[g] = {u2g} with
∫
M
s2

24dµgj → +∞; but

71



Might therefore seem interesting to ask when∫
M
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?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.∫
M
s2

24dµg is certainly not!

Our discussion of Yamabe problem =⇒
∃ metrics gj in any conformal class

[g] = {u2g} with
∫
M
s2

24dµgj → +∞; but

so any M certainly carries metrics with∫
M

s2

24
dµg �

∫
M
|W+|2dµg
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Might therefore seem interesting to ask when∫
M
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?
≥
∫
M

s2

24
dµg

for all metrics g on M .

But this is actually a silly question!∫
M |W+|2dµg conformally invariant.∫
M
s2

24dµg is certainly not!

Our discussion of Yamabe problem =⇒
∃ metrics gj in any conformal class

[g] = {u2g} with
∫
M
s2

24dµgj → +∞; but

∃ minimizer of
∫
M
s2

24dµg in any [g],
and s = constant for any such minimizer.

So any Kähler-type complex surface M carries
(conformally Kähler) metrics with > and <.
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Thus, our question only becomes sensible if we

• restrict our question to a class of metrics where
general conformal rescaling is not possible: or

– Kähler metrics;

– Einstein metrics;

– almost-Kähler metrics.
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24
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2

2

)
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4π2
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Since

W ([g]) = −12π2τ (M) + 2

∫
M
|W+|2dµg

this is really a question about inf W .

But, similarly,

W ([g]) = 12π2τ (M) + 2

∫
M
|W−|2dµg

so any self-dual metric achieves inf W :

W− = 0
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)
dµ

= 〈p1(M), [M ]〉
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For (M4, g) compact oriented Riemannian,

Signature

τ (M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dµ

= 〈p1(M), [M ]〉

Proposition (Atiyah-Hitchin-Singer). The Fubini-
Study metric on CP2 is self-dual. Consequently,
minimizes Weyl functional.
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For (M4, g) compact oriented Riemannian,

Signature

τ (M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dµ

= 〈p1(M), [M ]〉

Theorem (Poon ’86). Up conformal isometry,
the Fubini-Study class is the unique self-dual con-
formal class on CP2 with Y ([g]) > 0.
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M dµĝ
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ĝ=u2g

∫
M sĝ dµĝ√∫

M dµĝ

;

If g has s of fixed sign, agrees with sign of Y [g].
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(
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)
dµ

= 〈p1(M), [M ]〉

Theorem (Poon ’86). Up conformal isometry,
the Fubini-Study class is the unique self-dual con-
formal class on CP2 with Y ([g]) > 0.

Gursky ’98 later gave a much simpler proof. . .
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For (M4, g) compact oriented Riemannian,

Signature

τ (M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dµ

= 〈p1(M), [M ]〉

Proposition (Atiyah-Hitchin-Singer ’78). The Fubini-
Study metric on CP2 is self-dual. Consequently,
minimizes Weyl functional.
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No self-dual metric!

Would be conformally flat, because τ = 0.

Also π1 = 0.

Kuiper ’49: In dimension n ≥ 3,

any simply connected conformally flat (Mn, [g])

is conformally diffeomorphic to round Sn.
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What about S2 × S2?

No self-dual metric!

Would be conformally flat, because τ = 0.

Also π1 = 0.

Kuiper ’49: In dimension n ≥ 3,

any simply connected conformally flat (Mn, [g])

is conformally diffeomorphic to round Sn.

⇒⇐
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Conjecture (Kobayashi). The Kähler-Einstein
product metric on S2 × S2 minimizes the Weyl
functional W .

Gave weak evidence:

Local minimum.
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Osamu Kobayashi ’86:

What about S2 × S2?

Conjecture (Kobayashi). The Kähler-Einstein
product metric on S2 × S2 minimizes the Weyl
functional W .

Commonality between CP2 and S2 × S2?

Kähler-Einstein, with λ > 0.

Pursuing this lead will lead to interesting places!
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What about S2 × S2?

Conjecture (Kobayashi). The Kähler-Einstein
product metric on S2 × S2 minimizes the Weyl
functional W .
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Natural Generalization:

Conjecture. On any del Pezzo surface (M4, J),
the conformally Kähler, Einstein product metric
minimizes the Weyl functional W .
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Del Pezzo surfaces:

(M4, J) for which c1 is a Kähler class [ω].
Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,
in general position, or CP1 × CP1.
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Del Pezzo surfaces:

(M4, J) for which c1 is a Kähler class [ω].
Shorthand: “c1 > 0.”

Blow-up of CP2 at k distinct points, 0 ≤ k ≤ 8,
in general position, or CP1 × CP1.

Theorem. Each del Pezzo (M4, J) admits a
J-compatible conformally Kähler, Einstein
metric, and this metric is geometrically unique.
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Natural Generalization:

Conjecture. On any del Pezzo surface (M4, J),
the conformally Kähler, Einstein product metric
minimizes the Weyl functional W .

Persuasive partial results.

But problem still not settled!
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with s > 0.

In particular, any K-E g with s > 0 minimizes
restriction of W to s > 0 metrics.

132



Theorem (Gursky ’98). Let M be a smooth com-
pact 4-manifold with b+(M) 6= 0. Then any con-
formal class [g] with Y ([g]) > 0 satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains Kähler-Einstein ĝ
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M
|W+|2dµ ≥
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3
(2χ + 3τ )(M),

with equality ⇔ [g] contains Kähler-Einstein ĝ
with s > 0.

In particular, any K-E g with s > 0 minimizes
restriction of W to s > 0 metrics.

Big step in direction of Kobayashi’s conjecture.

Applies in much greater generality.
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Theorem (Gursky ’98). Let M be a smooth com-
pact 4-manifold with b+(M) 6= 0. Then any con-
formal class [g] with Y ([g]) > 0 satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains Kähler-Einstein ĝ
with s > 0.

In particular, any K-E g with s > 0 minimizes
restriction of W to s > 0 metrics.

Big step in direction of Kobayashi’s conjecture.

But says nothing about “most” conformal classes.
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Theorem (Gursky ’98). Let M be a smooth com-
pact 4-manifold with b+(M) 6= 0. Then any con-
formal class [g] with Y ([g]) > 0 satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains Kähler-Einstein ĝ
with s > 0.

Method: Weitzenböck formula

0 =
1

2
∆|ω|2 + |∇ω|2 − 2W+(ω, ω) +

s

3
|ω|2

for self-dual harmonic 2-form ω.
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Theorem (Gursky ’98). Let M be a smooth com-
pact 4-manifold with b+(M) 6= 0. Then any con-
formal class [g] with Y ([g]) > 0 satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains Kähler-Einstein ĝ
with s > 0.

Method: Weitzenböck formula

=⇒ ∃ĝ = u2g s.t. ŝ := ŝ− 2
√

6|̂W+| ≤ 0.
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type ⇔∃ self-dual harmonic 2-form ω on (M, g)
such that ω 6= 0 everywhere.
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oriented 4-manifold M is said to be of symplectic
type ⇔∃ self-dual harmonic 2-form ω on (M, g)
such that ω 6= 0 everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Choose g ∈ [g] so that |ω| ≡
√

2.
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class [g] on a compact
oriented 4-manifold M is said to be of symplectic
type ⇔∃ self-dual harmonic 2-form ω on (M, g)
such that ω 6= 0 everywhere.

Implies ω is orientation-compatible symplectic form.

Every symplectic 4-manifold arises this way.

Choose g ∈ [g] so that |ω| ≡
√

2.

Then (M, g, ω) is almost-Kähler manifold:

∃J s.t. ω = g(J ·, ·)
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class [g] on a compact
oriented 4-manifold M is said to be of symplectic
type ⇔∃ self-dual harmonic 2-form ω on (M, g)
such that ω 6= 0 everywhere.

Open condition in C2 topology on metrics.
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class [g] on a compact
oriented 4-manifold M is said to be of symplectic
type ⇔∃ self-dual harmonic 2-form ω on (M, g)
such that ω 6= 0 everywhere.

Open condition in C2 topology on metrics.

(Harmonic forms depend continuously on metric.)
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Theorem (L ’15). Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M
satisfies
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with equality ⇔ [g] contains a Kähler-Einstein
metric g.
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This recovers Gursky’s inequality — but for a dif-
ferent open set of conformal classes!
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oriented 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M
satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains a Kähler-Einstein
metric g.

∃ conformal classes of symplectic type with

Y ([gj])→ −∞.

Inequality not limited to the positive Yamabe realm!
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Theorem (L ’15). Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M
satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains a Kähler-Einstein
metric g.

Method: Almost-Kähler geometry:∫
M

[
2s

3
+ W+(ω, ω)

]
dµ = 4πc1 • [ω]
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Method: Almost-Kähler geometry:

3

∫
M
W+(ω, ω) dµ ≥ 4πc1 • [ω]
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Theorem (L ’15). Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M
satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains a Kähler-Einstein
metric g.

Same method shows conformally Kähler, Einstein
metrics on CP2#CP2 and CP2#2CP2 minimize∫
M |W+|2dµ among toric symplectic-type [g].
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Theorem (L ’15). Let M be the underlying smooth
oriented 4-manifold of a del Pezzo surface. Then
any conformal class [g] of symplectic type on M
satisfies∫

M
|W+|2dµ ≥

4π2

3
(2χ + 3τ )(M),

with equality ⇔ [g] contains a Kähler-Einstein
metric g.

However, only works for M del Pezzo.

This is apparently not an accident!
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Kobayashi’s conjecture concerned S2 × S2.

But Gursky’s theorem also works for (S2 × S2)#(S2 × S2).

And indeed for all iterated connect-sumsm(S2 × S2).

What happens there in the Yamabe-negative realm?
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3
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Similarly, for any any sufficiently large integer
m and any integer n such that n

m is sufficiently
close to 1, the smooth compact simply-connected
non-spin manifold

M = mCP2#nCP2 := CP2# · · ·#CP2︸ ︷︷ ︸
m

#CP2# · · ·#CP2︸ ︷︷ ︸
n
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Theorem (L ’22). For any sufficiently large in-
teger m, the smooth compact simply-connected
spin manifold

M = m(S2×S2) := (S2×S2)# · · ·#(S2×S2)︸ ︷︷ ︸
m

admits Riemannian conformal classes [g] such
that ∫

M
|W+|2dµ <

4π2

3
(2χ + 3τ )(M).

Similarly, for any any sufficiently large integer
m and any integer n such that n

m is sufficiently
close to 1, the smooth compact simply-connected
non-spin manifold

M = mCP2#nCP2 := CP2# · · ·#CP2︸ ︷︷ ︸
m

#CP2# · · ·#CP2︸ ︷︷ ︸
n

admits conformal classes [g] where the above in-
equality holds.
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Roulleau-Urzúa ’15: ∃ sequences with τ/χ→ 1/3.

→ Miyaoka-Yau line! Can choose spin or non-spin!
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Theorem (L ’22). For any sufficiently large in-
teger m, the smooth compact simply-connected
spin manifold

M = m(S2×S2) := (S2×S2)# · · ·#(S2×S2)︸ ︷︷ ︸
m

admits Riemannian conformal classes [g] such
that ∫

M
|W+|2dµ <

4π2

3
(2χ + 3τ )(M).

Similarly, for any any sufficiently large integer
m and any integer n such that n

m is sufficiently
close to 1, the smooth compact simply-connected
non-spin manifold

M = mCP2#nCP2 := CP2# · · ·#CP2︸ ︷︷ ︸
m

#CP2# · · ·#CP2︸ ︷︷ ︸
n
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• Almost-Kähler Manifolds; and

• Harmonic self-dual Weyl curvature.

Dessert course:

Another result involving these ideas.
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∫
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24
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again with equality ⇔ (M, g, ω) is Kähler.

In particular, any compact almost-Kähler 4-manifold
(M, g, ω) with δW+ = 0 and s ≥ 0 is Kähler.
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0 = ∇∗∇W+ +
s
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W+ − 6W+ ◦W+ + 2|W+|2I

for W+ ∈ End(Λ+), with respect to g.
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∫ [
8|W+|2−4|W+(ω)|2+2[W+(ω, ω)]2

]
dµ.

Using W+(ω, ω) = 1
2|∇ω|

2 + s
3, one then shows∫

s2

24
dµ ≥

∫
|W+|2dµ +

3

32

∫
|∇ω|4dµ
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By contrast, when s > 0, the identity

W+(ω, ω) = 1
2|∇ω|

2 + s
3 easily implies that∫

|W+|2dµ ≥
∫
s2

24
dµ

with equality only when ∇ω = 0.
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Theorem (L ’22). If (M, g, ω) is a compact almost-
Kähler 4-manifold such that δW+ = 0, where δ
denotes the divergence operator, then∫

M
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24
dµg ≥
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M
|W+|2dµg ,

with equality ⇔ (M, g, ω) is Kähler.

By contrast, if (M, g, ω) instead has scalar cur-
vature s ≥ 0, then∫

M
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∫
M
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24
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again with equality ⇔ (M, g, ω) is Kähler.

In particular, any compact almost-Kähler 4-manifold
(M, g, ω) with δW+ = 0 and s ≥ 0 is Kähler.
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Infine, vorrei ringraziare il Centro
Ennio De Giorgi per avermi invitato!
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Che piacere, tornare a Pisa!
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