Curvature Functionals,

Kähler Metrics, &

the Geometry of 4-Manifolds II

Claude LeBrun Stony Brook University

IHP, December 4, 2012

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Dimension 4 exceptional for Einstein metrics.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Dimension 4 exceptional for Einstein metrics.

Problem extremely rigid in lower dimensions.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Dimension 4 exceptional for Einstein metrics.

Problem extremely rigid in lower dimensions.

Much more flexible in higher dimensions.

Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

For (M^4, g) compact oriented Riemannian,

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $\cdot \cdot \cdot \cdot \cdot +1$
 -1
 $\cdot \cdot \cdot \cdot \cdot -1$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M)
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

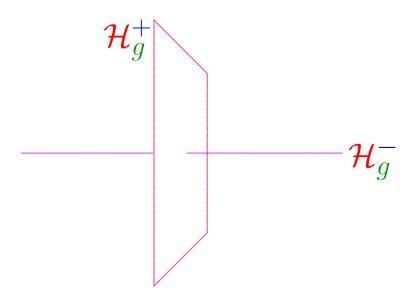
$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

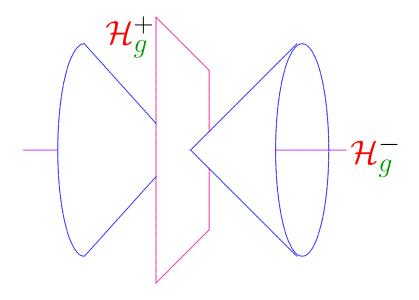
$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

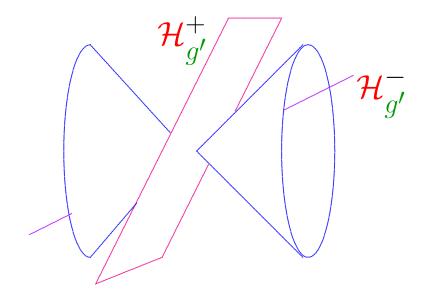
$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



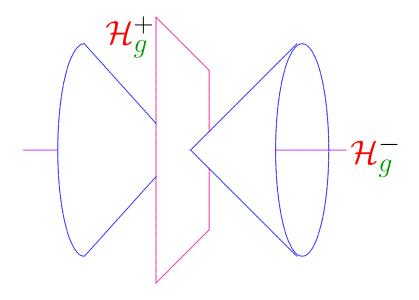
$$H^2(M,\mathbb{R})$$



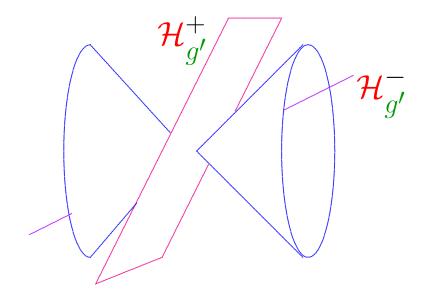
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



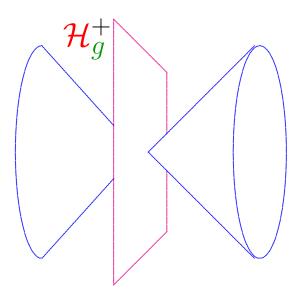
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



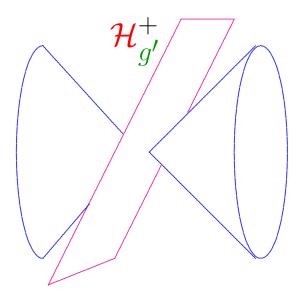
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



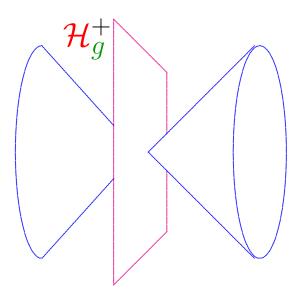
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



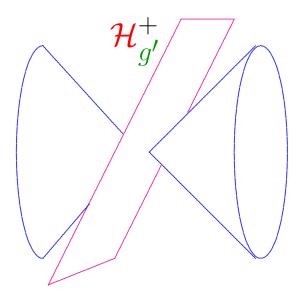
 $H^2(M,\mathbb{R})$



$$H^2(M,\mathbb{R})$$



 $H^2(M,\mathbb{R})$



$$H^2(M,\mathbb{R})$$

Period map:

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$

Period map:

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

Period map:

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

Invariant under $Diff_0(M)$

Period map:

{Metrics on
$$M$$
} $\longrightarrow Gr_{b_+}^+[H^2(M,\mathbb{R})]$
 $g \longmapsto \mathcal{H}_g^+$

Invariant under $Diff_0(M)$ & conformal rescalings.

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Simply connected case:

$$\chi = 2 + b_{+} + b_{-}$$

$$\tau = b_{+} - b_{-}$$

• they have the same Euler characteristic χ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

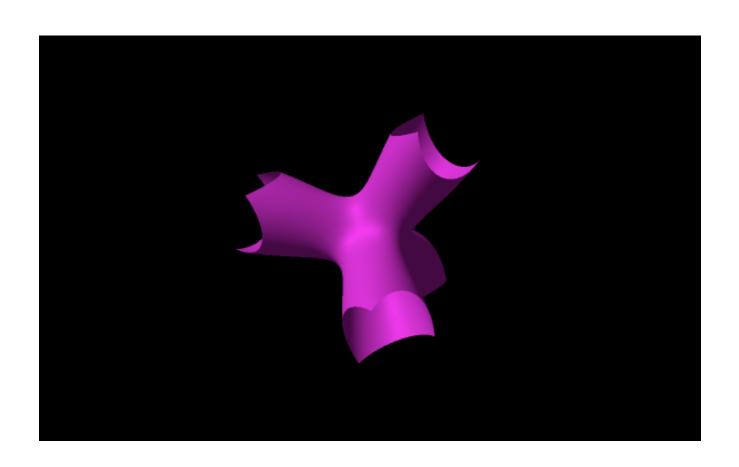
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

$K3 = \text{Kummer-K\"{a}hler-Kodaira manifold.}$

Diffeomorphic to quartic in \mathbb{CP}_3

$$x^4 + y^4 + z^4 + w^4 = 0$$



Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

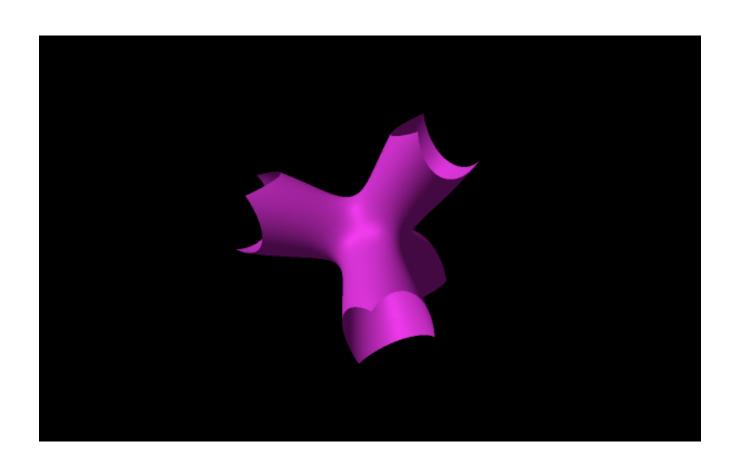
Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Proof posted on ArXiv yesterday by Stefan Bauer.

$$x^n + y^n + z^n + w^n = 0$$

$$x^n + y^n + z^n + w^n = 0$$



$$x^n + y^n + z^n + w^n = 0$$

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

spin if n is even

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

spin if n is even

non-spin if n is odd

Example. Let $M \subset \mathbb{CP}_3$ a smooth hypersurface of degree n. For example

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

spin if n is even

non-spin if n is odd

$$b_{+} = 1 + \frac{(n-1)(n-2)(n-3)}{3}$$

Example. Let $M \subset \mathbb{CP}_3$ a smooth hypersurface of degree n. For example

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

spin if n is even

non-spin if n is odd

$$b_{+} = 1 + \frac{(n-1)(n-2)(n-3)}{3}$$

$$b_{-} = 1 + \frac{(n-2)(2n^2 - 2n + 3)}{3}$$

Example. Let $M \subset \mathbb{CP}_3$ a smooth hypersurface of degree n. For example

$$x^n + y^n + z^n + w^n = 0$$

simply connected for all n

spin if n is even

non-spin if n is odd

$$b_{+} = 1 + \frac{(n-1)(n-2)(n-3)}{3}$$

$$b_{-} = 1 + \frac{(n-2)(2n^{2} - 2n + 3)}{3}$$

$$\tau = -\frac{(n+2)n(n-2)}{3}$$

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Our Focus. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Kodaira Classification

Most important invariant: Kodaira dimension.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface,

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then
$$\operatorname{Kod}(M, J) \in \{-\infty, 0, 1, 2\}$$

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then
$$\operatorname{Kod}(M,J) \in \{-\infty,0,1,2\}$$
 is exactly
$$\max \ \dim_{\mathbb{C}} \operatorname{Image}(M \dashrightarrow \mathbb{CP}_{N})$$

Most important invariant: Kodaira dimension.

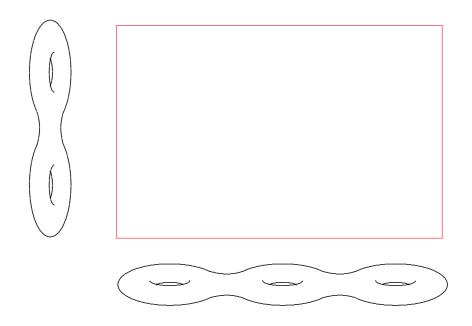
Given (M^4, J) compact complex surface, set

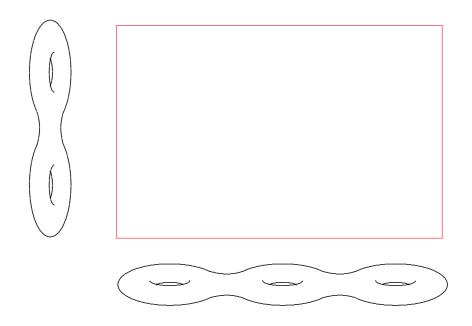
$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

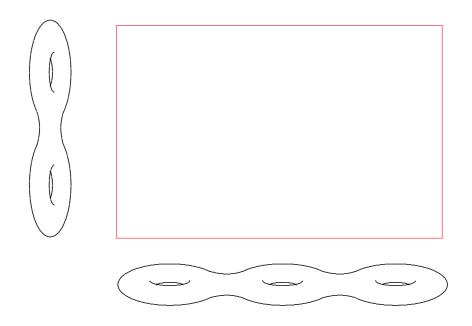
Then $\operatorname{Kod}(M,J) \in \{-\infty,0,1,2\}$ is exactly $\max \ \dim_{\mathbb{C}} \operatorname{Image}(M \dashrightarrow \mathbb{CP}_N)$

over maps defined by holomorphic sections of $K^{\otimes \ell}$.

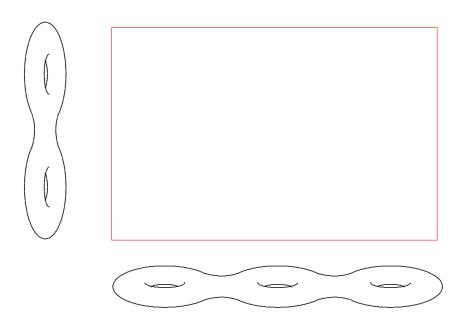




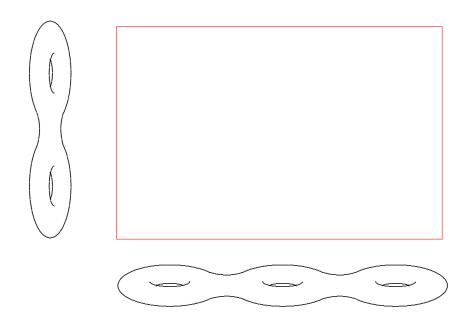
First-Factor	Second-Factor	Kodaira Dimension
Genus	Genus	of Product



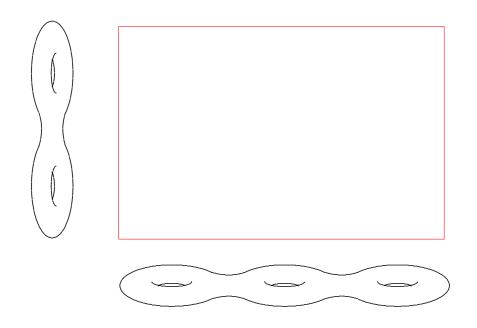
First-Factor	Second-Factor	Kodaira Dimension
Genus	Genus	of Product
0	anything	$-\infty$



First-Factor	Second-Factor	Kodaira Dimension
Genus	Genus	of Product
0	anything	$-\infty$
1	1	0



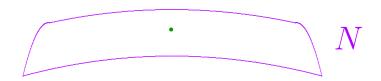
First-Factor	Second-Factor	Kodaira Dimension
Genus	Genus	of Product
0	anything	$-\infty$
1	1	0
1	≥ 2	1



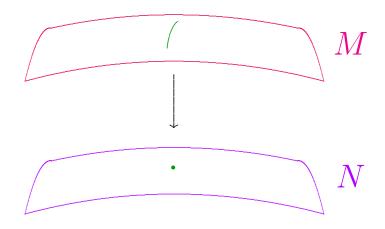
First-Factor	Second-Factor	Kodaira Dimension
Genus	Genus	of Product
0	anything	$-\infty$
1	1	0
1	≥ 2	1
≥ 2	≥ 2	2

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

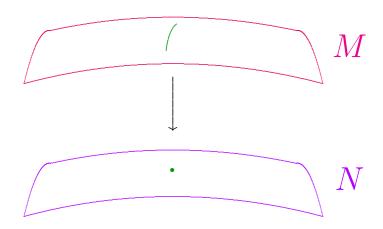


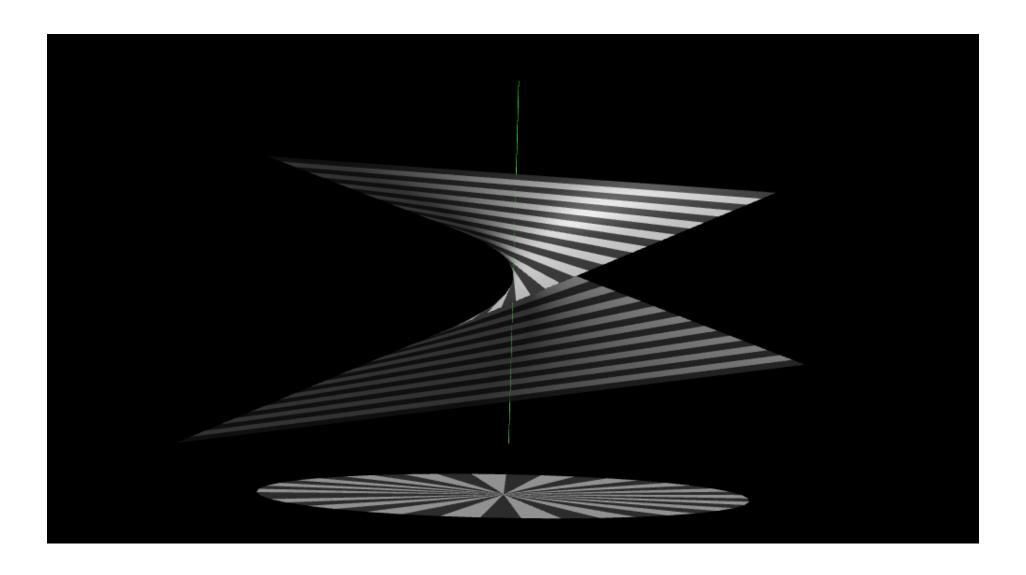
If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1



If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

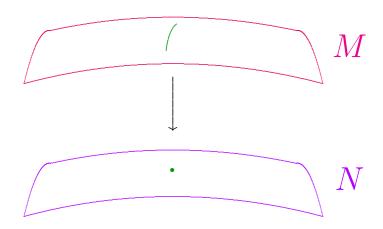
$$M \approx N \# \overline{\mathbb{CP}}_2$$

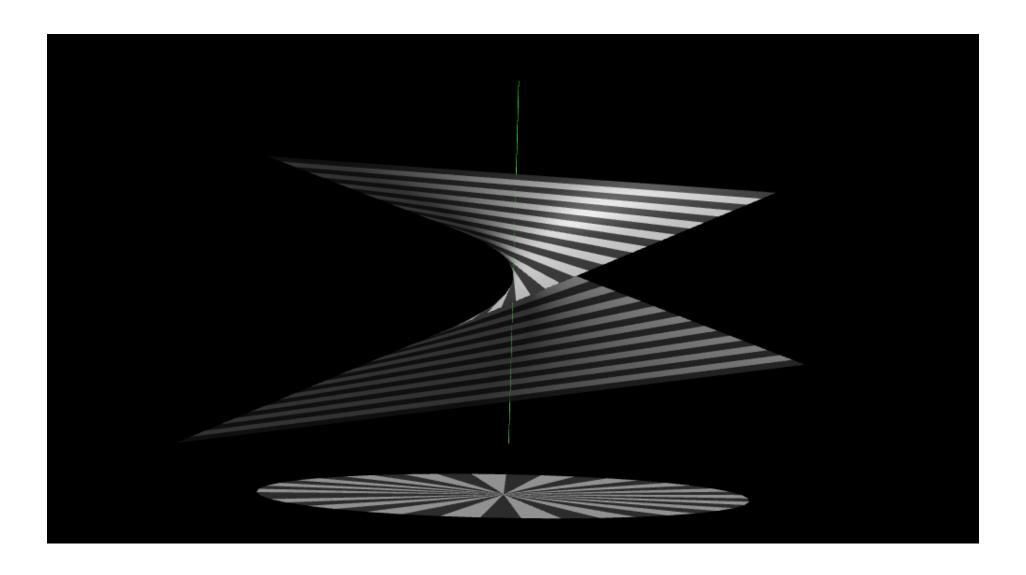




If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

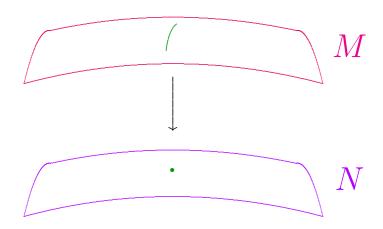
$$M \approx N \# \overline{\mathbb{CP}}_2$$

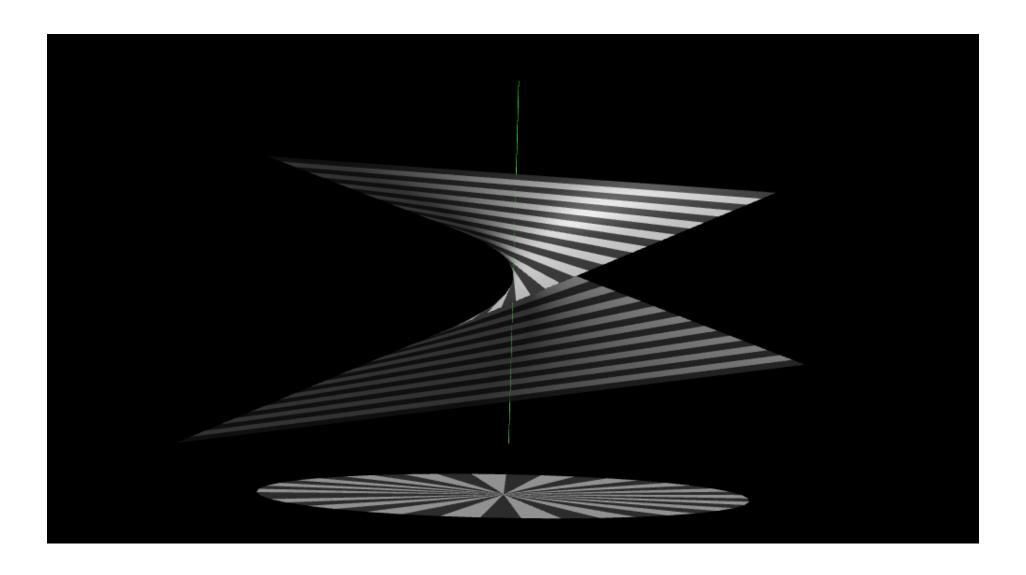




If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

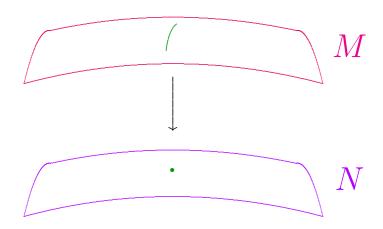
$$M \approx N \# \overline{\mathbb{CP}}_2$$





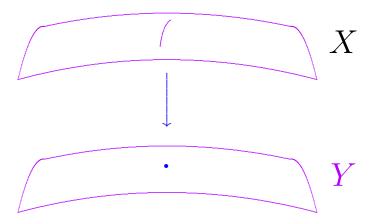
If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

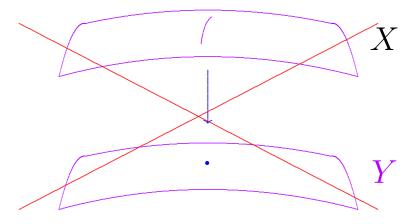
$$M \approx N \# \overline{\mathbb{CP}}_2$$



A complex surface X is called minimal

A complex surface X is called minimal if it is not the blow-up of another complex surface.





Any complex surface M can be obtained from a minimal surface X

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

One says that X is minimal model of M.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

One says that X is minimal model of M.

The minimal model X of M is unique if $\operatorname{Kod}(M) \geq 0$.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \mathbb{CP}_2$$

One says that X is minimal model of M.

The minimal model X of M is unique if

$$\operatorname{Kod}(M) \ge 0.$$

Moreover, always have

$$Kod(X) = Kod(M),$$

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \mathbb{CP}_2$$

One says that X is minimal model of M.

The minimal model X of M is unique if

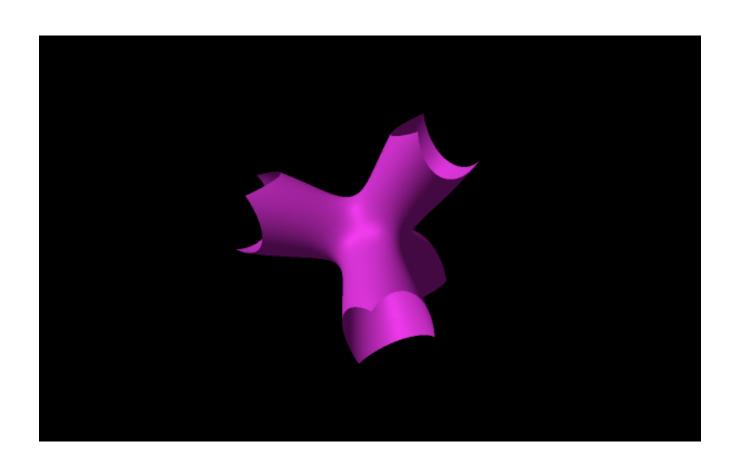
$$\operatorname{Kod}(M) \ge 0.$$

Moreover, always have

$$Kod(X) = Kod(M),$$

and Kod invariant under deformations.

$$x^n + y^n + z^n + w^n = 0$$



$$x^n + y^n + z^n + w^n = 0$$

n	M	$\operatorname{Kod}(M)$	minimal?
1	\mathbb{CP}_2	$-\infty$	Yes

$$x^n + y^n + z^n + w^n = 0$$

n	M	$\operatorname{Kod}(M)$	minimal?
1	\mathbb{CP}_2		Yes
2	$\mathbb{CP}_1 \times \mathbb{CP}_1$	$-\infty$	Yes

$$x^n + y^n + z^n + w^n = 0$$

n	M	$ \operatorname{Kod}(M) $	minimal?
1	\mathbb{CP}_2		Yes
2	$\mathbb{CP}_1 \times \mathbb{CP}_1$	$-\infty$	Yes
3	$\mathbb{CP}_2\#6\overline{\mathbb{CP}_2}$		No

$$x^n + y^n + z^n + w^n = 0$$

n	M	Kod(M)	minimal?
1	\mathbb{CP}_2		Yes
2	$\mathbb{CP}_1 \times \mathbb{CP}_1$	$-\infty$	Yes
3	$\mathbb{CP}_2\#6\overline{\mathbb{CP}}_2$		No
4	K3	0	Yes

$$x^n + y^n + z^n + w^n = 0$$

n	M	$\operatorname{Kod}(M)$	minimal?
1	\mathbb{CP}_2		Yes
2	$\mathbb{CP}_1 \times \mathbb{CP}_1$	$-\infty$	Yes
3	$\mathbb{CP}_2\#6\overline{\mathbb{CP}}_2$		No
4	K3	0	Yes
≥ 5	"general type"	2	Yes

For b_1 even:

For b_1 even:

Kod(X)	X	$c_1^2(X)$

For b_1 even:

Kod(X)	X	$c_1^2(X)$
$-\infty$	\mathbb{CP}_2 , and \mathbb{CP}_1 bundles over curves	+,0,-

For b_1 even:

$\overline{\mathrm{Kod}(X)}$	X	$c_1^2(X)$
$-\infty$	\mathbb{CP}_2 , and \mathbb{CP}_1 bundles over curves	+,0,-
0	$K3$, T^4 , and quotients	0

For b_1 even:

$\mathrm{Kod}(X)$	X	$c_1^2(X)$
$-\infty$	\mathbb{CP}_2 , and \mathbb{CP}_1 bundles over curves	+, 0, -
0	$K3$, T^4 , and quotients	0
1	most elliptic fibrations over curves	0

For b_1 even:

Kod(X)	X	$c_1^2(X)$
$-\infty$	\mathbb{CP}_2 , and \mathbb{CP}_1 bundles over curves	+,0,-
0	$K3$, T^4 , and quotients	0
1	most elliptic fibrations over curves	0
2	"general type"	+

For b_1 odd:

For b_1 odd:

$\mathrm{Kod}(X)$	X	$c_1^2(X)$

For b_1 odd:

$\mathrm{Kod}(X)$	X	$c_1^2(X)$
$-\infty$	"Type VII"	0, —

For b_1 odd:

$\overline{\mathrm{Kod}(X)}$	X	$c_1^2(X)$
$-\infty$	"Type VII"	0, —
0	certain T^2 bundles over T^2	0

For b_1 odd:

Kod(X)	X	$c_1^2(X)$
$-\infty$	"Type VII"	0, —
0	certain T^2 bundles over T^2	0
1	certain elliptic fibrations over curves	0

Grauert: happens because

$$\chi(X, \mathcal{O}(K^{\otimes \ell})) = h^0(\mathcal{O}(K^{\otimes \ell})) - h^1(\mathcal{O}(K^{\otimes \ell})) + h^2(\mathcal{O}(K^{\otimes \ell}))$$

$$= h^0(\mathcal{O}(K^{\otimes \ell})) - h^1(\mathcal{O}(K^{\otimes \ell})) + h^0(\mathcal{O}(K^{\otimes (1-\ell)}))$$

$$= \ell(\ell-1)\frac{c_1^2}{2} + \chi(X, \mathcal{O})$$

However,

$$c_1^2 = p_1(\Lambda^+) = 2\chi + 3\tau.$$

However,

$$c_1^2 = p_1(\Lambda^+) = 2\chi + 3\tau.$$

and hence

$$c_1^2(M) = c_1^2(X \# k \overline{\mathbb{CP}}_2) = c_1^2(X) - k.$$

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(M) \ge 0,$$

with equality only if (M, g) is locally hyper-Kähler. The latter case happens only if M finitely covered by flat T^4 or K3.

However,

$$c_1^2 = p_1(\Lambda^+) = 2\chi + 3\tau.$$

and hence

$$c_1^2(M) = c_1^2(X \# k \overline{\mathbb{CP}}_2) = c_1^2(X) - k.$$

Hitchin-Thorpe \Longrightarrow

However,

$$c_1^2 = p_1(\Lambda^+) = 2\chi + 3\tau.$$

and hence

$$c_1^2(M) = c_1^2(X \# k \overline{\mathbb{CP}}_2) = c_1^2(X) - k.$$

Hitchin-Thorpe \Longrightarrow

Proposition. If (M, J) compact complex surface, and if M admits Einstein metric g (unrelated to J) with $\lambda \neq 0$, then

$$Kod(M, J) \in \{-\infty, 2\},\$$

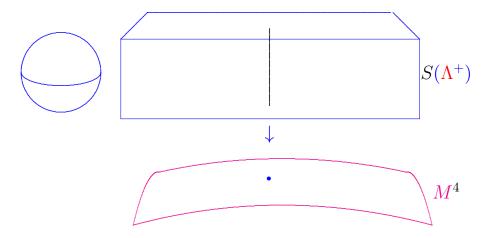
and M admits a symplectic structure.

Dirac Operators and Scalar Curvature

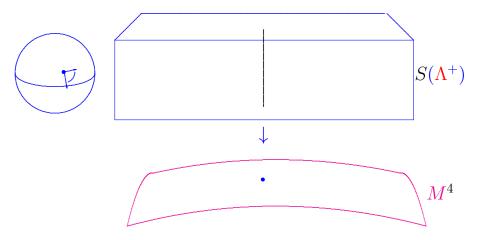
Dirac Operators and Scalar Curvature

The bundle $S(\Lambda^+)$ over any oriented (M^4, g)

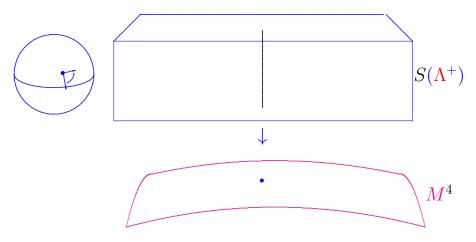
The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



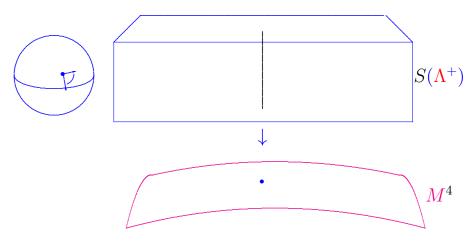
The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



can be viewed as a \mathbb{CP}_1 -bundle.

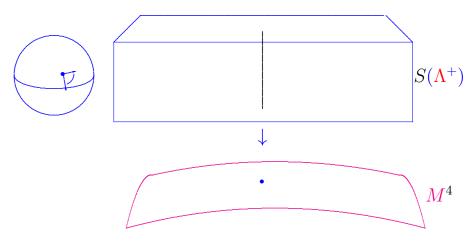
Always have $S(\Lambda^+) = \mathbb{P}(\mathbb{V}_+)$,

The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



Always have
$$S(\Lambda^+) = \mathbb{P}(\mathbb{V}_+)$$
, but if $w_2 = 0$ (M spin),

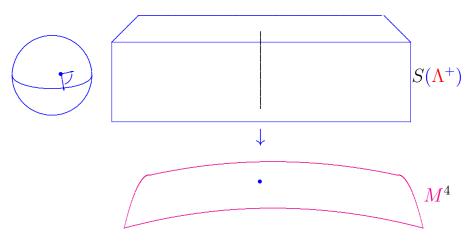
The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



Always have
$$S(\Lambda^+) = \mathbb{P}(\mathbb{V}_+)$$
, but if $w_2 = 0$ (M spin), then

$$S(\Lambda^{+}) = \mathbb{P}(\mathbb{S}_{+})$$
$$\wedge^{2}\mathbb{S}_{+} = \mathbb{C}$$

The bundle $S(\Lambda^+)$ over any oriented (M^4, g)



Always have
$$S(\Lambda^+) = \mathbb{P}(\mathbb{V}_+)$$
, but if $w_2 = 0$ (M spin), then

$$S(\Lambda^{+}) = \mathbb{P}(\mathbb{S}_{+})$$

$$\wedge^{2}\mathbb{S}_{+} = \mathbb{C}$$

$$S(\Lambda^{-}) = \mathbb{P}(\mathbb{S}_{-})$$

$$\wedge^{2}\mathbb{S}_{-} = \mathbb{C}$$

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\nabla : \Gamma(\mathbb{S}_+) \to \Gamma(\Lambda^1 \otimes \mathbb{S}_+)$$

$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\nabla : \Gamma(\mathbb{S}_+) \to \Gamma(\Lambda^1 \otimes \mathbb{S}_+)$$

Compose to get Dirac operator D:

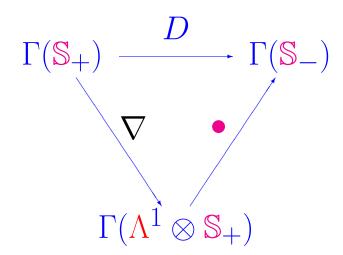
$$\Lambda^1_{\mathbb{C}} = \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\nabla: \Gamma(\mathbb{S}_+) \to \Gamma(\Lambda^1 \otimes \mathbb{S}_+)$$

Compose to get Dirac operator D:



$$D: \Gamma(\mathbb{S}_+) \to \Gamma(\mathbb{S}_-)$$

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Theorem (Rochlin). For any smooth compact $spin M^4$, $\tau(M) \equiv 0 \mod 16$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Theorem (Rochlin). For any smooth compact $spin M^4$, $\tau(M) \equiv 0 \mod 16$.

Example. $\tau(K3) = -16$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Weitzenböck formula: $\forall \Phi \in \Gamma(S_+)$,

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Weitzenböck formula: $\forall \Phi \in \Gamma(S_+)$,

$$\langle \Phi, D^* D \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla \Phi|^2 + \frac{s}{4} |\Phi|^2$$

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Weitzenböck formula: $\forall \Phi \in \Gamma(S_+)$,

$$\langle \Phi, D^*D\Phi \rangle = \frac{1}{2}\Delta|\Phi|^2 + |\nabla\Phi|^2 + \frac{s}{4}|\Phi|^2$$

Proposition (Lichnerowicz). If M^4 compact spin, with $\tau \neq 0$, then $\not\equiv$ metric g on M with s > 0.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic, with $\operatorname{ind}(D) = -\tau(M)/8$.

Weitzenböck formula: $\forall \Phi \in \Gamma(S_+)$,

$$\langle \Phi, D^*D\Phi \rangle = \frac{1}{2}\Delta|\Phi|^2 + |\nabla\Phi|^2 + \frac{s}{4}|\Phi|^2$$

Proposition (Lichnerowicz). If M^4 compact spin, with $\tau \neq 0$, then $\not\equiv$ metric g on M with s > 0.

Example. $\not\equiv$ metric of s > 0 on K3.

$$x^n + y^n + z^n + w^n = 0$$

spin if n is even

$$x^n + y^n + z^n + w^n = 0$$

spin if n = 2m

$$x^n + y^n + z^n + w^n = 0$$

spin if n = 2m

$$\tau = -\frac{(n+2)n(n-2)}{3}$$

$$x^n + y^n + z^n + w^n = 0$$

spin if n = 2m

$$\tau = -16 \, \binom{m+1}{3}$$

Divisible by 16, as predicted by Rochlin.

$$x^n + y^n + z^n + w^n = 0$$

spin if n = 2m

$$\tau = -16 \; \frac{(m+1)m(m-1)}{3!}$$

Divisible by 16, as predicted by Rochlin.

No s > 0 metrics if $n \ge 4$ even, by Lichnerowicz.

$$x^n + y^n + z^n + w^n = 0$$

spin if n = 2m

$$\tau = -16 \; \frac{(m+1)m(m-1)}{3!}$$

Divisible by 16, as predicted by Rochlin.

No s > 0 metrics if $n \ge 4$ even.

What about $n \geq 4$ odd?

$$w_2(TM^4) \in H^2(M,\mathbb{Z}_2)$$
 in image of
$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

⇒ ∃ Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, \Longrightarrow \exists rank-2 Hermitian vector bundles $\mathbb{V}_+ \to M$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, $\Longrightarrow \exists \text{ rank-2 Hermitian vector bundles } \forall \pm \to M \text{ which formally satisfy}$

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, $\Longrightarrow \exists \text{ rank-2 Hermitian vector bundles } \forall \pm \to M \text{ which formally satisfy}$

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are the (locally defined) left- and right-handed spinor bundles of (M, g).

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where S_{\pm} are left & right-handed spinor bundles.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are left & right-handed spinor bundles.

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Every unitary connection A on L

Every unitary connection A on L induces spin^c Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathbb{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2$$

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

Every unitary connection A on L induces spin^c Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

where F_A^+ = self-dual part curvature of A,

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

where $F_A^+ =$ self-dual part curvature of A, and $\sigma: \mathbb{V}_+ \to \Lambda^+$ is a natural real-quadratic map,

$$|\sigma(\Phi)| = \frac{1}{2\sqrt{2}} |\Phi|^2.$$

consider both Φ and A as unknowns,

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i \sigma(\Phi).$$

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Non-linear, but elliptic

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Non-linear, but elliptic once 'gauge-fixing'

$$d^*(A - A_0) = 0$$

imposed to eliminate automorphisms of $L \to M$.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

This invariant is non-zero for complex surfaces with b_1 even.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

This invariant is non-zero for complex surfaces with b_1 even.

Implies non-existence of metrics g for which s > 0.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated, but one can still do something. For complex surfaces, shows that s > 0 metrics can only exist when $Kod(M) = -\infty$.

End, Part II