Curvature Functionals,

Kahler Metrics, €

the Geometry of 4-Manifolds 11

Claude LeBrun
Stony Brook University

IHP, December 4, 2012



Definition. A Riemannian metric g s said to
be Einstein if it has constant Ricci curvature



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.

A called Einstein constant.



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature

_J _ pij
5—7“].—72 i



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.




Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Dimension 4 exceptional for Einstein metrics.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Dimension 4 exceptional for Einstein metrics.

Problem extremely rigid in lower dimensions.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

= Ag

for some constant A € R.

Dimension 4 exceptional for Einstein metrics.
Problem extremely rigid in lower dimensions.

Much more flexible in higher dimensions.



Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s50(4) = s0(3) P so(3).

On oriented (M4, g), —
A=At @A~
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dimH.
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Period map:

{Metrics on M} — Grg; [H?(M,R)]

glﬁﬂg—i_

[nvariant under Diffy(M) & conformal rescalings.
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For (M*, g) compact oriented Riemannian,

Euler characteristic

o= | I
Al S VI T

Signature

1
1272 S

(M) (W2 = W) du

Simply connected case:

X:2+b+—|—b_
T:b+—b_
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Typically, one homeotype +— oo many diffeotypes.
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K3 = Kummer-Kahler-Kodaira manifold.

Diffeomorphic to quartic in CIPg

eyttt =0
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Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-

orientedly) homeomorphic to either S* or a con-
nected sum jI34#k(S% x S?).

Equivalent to asserting that such manitfolds satisty

11
bo > —|7].
9 > 8\T|

Proof posted on ArXiv yesterday by Stefan Bauer.
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Nyt 4+ 24w =0
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3
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Example. Let M C CP3 a smooth hypersurface
of degree n. For example

"yt + 2N+ w" =0

simply connected for all n
spin if n is even

non-spin if n is odd

(n —1)(n —2)(n —3)

b =1
+ T 5
_ 2 _
b1 (n — 2)(2n* — 2n + 3)
3
2 — 2
(2 -2

3
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Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Our Focus. If (M*,J) is a compact complex
surface, when does M* admit an Finstein metric
g (unrelated to .J)?
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Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)
over maps defined by holomorphic sections of /& L



Examples. Products of complex curves:



Examples. Products of complex curves:




Examples. Products of complex curves:

First-Factor | Second-Factor || Kodaira Dimension
Genus Genus of Product




Examples. Products of complex curves:

First-Factor
Genus

Second-Factor
Genus

Kodaira Dimension
of Product

anything




Examples. Products of complex curves:

First-Factor

Second-Factor

Kodaira Dimension

Genus Genus of Product
0 anything —00
1 1 0




Examples. Products of complex curves:

First-Factor

Second-Factor

Kodaira Dimension

Genus Genus of Product
0 anything —00
1 1 0
1 > 9 1
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First-Factor | Second-Factor || Kodaira Dimension
Genus Genus of Product
0 anything —00
1 1 0
1 > 2 1
> 2 > 2 2
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#kCP;
One says that X is minimal model of M.

The minimal model X of M is unique if
Kod(M) > 0.
Moreover, always have
Kod(X') = Kod (M),

and Kod mmvariant under deformations.
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Example. Let M C CP3 a smooth hypersurface
of degree n. For example

"yt + 2N+ w" =0

n M Kod(M )| minimal?
1 CIPoy Yes

2 CPl X C]P)l — 00 Yes

3 | CPy#6CPs No

4 K3 0 Yes
> 5| “general type” 2 Yes
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Notice that ¢7 > 0 = Kod(X) € {—o0,2}, and
that X must be of Kahler type.

Grauert: happens because

X(X, 0(K%%) = B(O(K®Y) — RHO(K®Y)) + hA(O(K "))

= W(O(K®Y) — hH(O(K®) + h(O(x®1-9)
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, g) is locally hyper-Kahler.
The latter case happens only if M finitely cov-
ered by flat T* or K3.
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Notice that ¢7 > 0 = Kod(X) € {—o0,2}, and
that X must be of Kahler type.

However,

c% — p1(AT) = 2x + 37.

and hence

cH(M) = {(X#KCPy) = ¢i(X) — k.

Hitchin-Thorpe =

Proposition. If (M, J) compact complex sur-

face, and if M admits Finstein metric g (un-
related to J) with X\ # 0, then

Kod(M, J) € {—o0,2},

and M admits a symplectic structure.
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The bundle S(A™) over any oriented (M 4, q)

|
SO 1

can be viewed as a CIP{-bundle.

Always have S(AT) = P(V4),
but if wg = 0 (M spin), then

S(AT) =P(S4)
A’Sy = C
S(A7) =P(S_)
A’S_ =C
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A<1C = Hom(S4,S_)
so get natural Clifford multiplication map
o . ANl®S; > S_.
Also have covariant derivative
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Atiyah-Singer: Dirac operator

D :T'(Sy) = T'(S2)
is elliptic, with ind(D) = —7(M)/8.

Weitzenbock formula: VO € I'(S4),

1 S
(D, D*DP) = §Ay<1>|2+ yvq>|2+iyq>\2

Proposition (Lichnerowicz). If M* compact spin,
with 7 # 0, then 3 metric g on M with s> 0.

Example. # metric of s> 0 on K 3.
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Example. Let M C CP3 a smooth hypersurface
of degree n. For example

"yt + 2N+ w" =0
spin if n = 2m

(m+ 1)m(m — 1)
3!

T =—16

Divisible by 16, as predicted by Rochlin.
No s > 0 metrics if n > 4 even.

What about n > 4 odd?
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Spin© structures:

wo(TM?Y) € H* (M, Zs)
in image of
H?(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =S4+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).
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Vg on M, the bundles

V_|_ _ AO’O @/\072
V. = AO,l

can formally be written as
Ve =S4+ ® LY/ 2,
where S are left & right-handed spinor bundles.

Every unitary connection A on L induces
spin® Dirac operator

DA ) F(V+> — F(V_)
generalizing 9 + 0*.
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Every unitary connection A on L induces
spin® Dirac operator

DA ) F<V+> — F(V_)
Weitzenbock formula: VO € I'(Vy),

1 S
(P, DA"DpP) = §A|@\2 + V4P + Z’CMZ
+2({—iF 4T, 0(D))

where F' 47 = self-dual part curvature of A, and
oc:Vy—=ATisa natural real-quadratic map,

()] = —=|B[2

2/2
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Witten:

consider both ® and A as unknowns,

subject to Seiberg- Witten equations
Dpgd =0
F i = io(®).

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay =0

imposed to eliminate automorphisms of L — M.
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Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

When by (M) = 1, theory is more complicated,
but one can still do something. For complex sur-

faces, shows that s > 0 metrics can only exist when
Kod(M) = —o0.



End, Part 1



