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exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Proposition. Ifn > 3, a Riemannian n-manifold
(M™, g) is Einstein iff the trace-free part of its
Ricci tensor vanishes:

ro=r——g=0.
n

Proof. Bianchi identity = V. = (% — %)ds
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Dimension 4 is exceptional. ..
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Variational Problem:

If M smooth compact n-manifold, n > 3,
G s = { smooth metrics g on M}

then Einstein metrics are critical points of the scale-
invariant action functional

QM%R

QH/ 59" 2dp1g
M

Conversely:
Critical points are Einstein or scalar-flat (s=0).

Try to find Einstein metrics by minimizing?
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A Differential-Topological Invariant:

700 = [ sy,
9 JM

Theorem. Let M be a compact simply connected
n-manifold, n > 3. If n # 4, Ts(M) = 0.

Theorem. There exist compact simply connected
4-manifolds M ; with Ts(M ;) — +o0.

Moreover, can choose M ; such that

7.0) = inf [ sy
9 Ju;

18 realized by an Einstein metric g; with A < 0.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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Dimension < 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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has infinitely many connected components. Unit-
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(Bohm, Wang, Ziller, et al.)

Same behavior for connected sums
(5% x 3 4(5% x 7).

Unit-volume Einstein metrics exist for sequence of
A—07. (Van Coevering, Kollar)

Related results for exotic 7-spheres, many other
manifolds. (Boyer, Galicki, Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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The Lie group SO(4) is not simple:

s0(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Importance?
Curvature is a bundle-valued 2-form!

Vector-bundle-with-connection (E, V) over
oriented Riemannian (M?, ¢) has curvature

Fy=F"+F~
where F* € AT ® End(E).

If F~ =0, so that F'y = F'T,
V is called self-dual (SD).

Donaldson: moduli spaces of SD connections
— differential topological invariants of M*.

These lectures will instead emphasize Seiberg-Witten
invariants. (Interaction w/ Riemannian geometry.)



Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s50(4) = s0(3) P so(3).

On oriented (M4, g), —
A=At @A~
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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FEinstein <= sectional curvatures are equal for
any pair of perpendicular 2-planes.

K(P) = K(PY)
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QM —3 R
2
g H/ |5g|“djig
M
for metrics on M*%.

But also natural and interesting to consider

9
g — / 2y
M
or

g — / \R@dﬂg
M
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Polynomial Curvature Functionals

QMHR
g [ PRy,
M

where P(R) is SO(4)-invariant polynomial
function of curvature.

Scale invariance = P quadratic.

Any such P(R) is linear combinations of
2 0 |2 2 2
SR U P LS8 e L

Integrals give four scale-invariant functionals.
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However, these are not independent!
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

-] (2wt 18).
X =gz [l T e SR

for Euler-characteristic x (M) = Z(—l)j bi(M).
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4-dimensional signature formula

|
M) = @VQ—wzﬂd
) =g [ (W -

for signature 7(M) = by (M) — b_(M).

Here b4 (M) = maxdim subspaces C H?(M,R)
on which intersection pairing

H*(M,R) x H*(M,R) — R
(4. 1) = [ on

is positive (resp. negative) definite.
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in terms of e.g.
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M M

Note that [ M]W+\2dug is conformally invariant:

unchanged by g~~u2g.

By contrast, [ MSQd,LLg varies on any conformal class.

gwuly = /szd,uQW/ (8+6u_1Au)2d,ug
M M

Critical in [g] <= s = constant.

Minimizer in |g] <= ¢ is “Yamabe metric.”
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must have constant scalar curvature.

Similarly for any quadratic curvature functional which
is not conformally invariant.
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Einstein metrics are critical for both.
.. Einstein metrics critical V quadratic functionals!

e.g. critical for conformally invariant functional

g — / \W@dug
M

Fuler-Lagrange equations B = 0, where

1,
Bab = (chd + 57“Cd)Wacbd .

“Bach-flat” metrics. Conformally invariant!
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Main Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Kahler geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Our Focus. If (M*,J) is a compact complex
surface, when does M* admit an Finstein metric
g (unrelated to .J)?
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Kahler, for many different J’s.

Sp(f) = O(40) N GL(¢, H)
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Hyper-Kahler metrics:

(M*, ¢) Hyper-Kihler <= holonomy C SU(2)
= (AT, V) flat, trivial.
If T (M) =0, <= Kabhler and Ricci-flat
Calabi-Yau metrics
Any simply connected, compact hyper-Kahler is K3.

Yau: Conversely, any K3 admits such metrics.
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Berger’s Inequality:

1 2 2
X(M) = ( P WL+ ] - —) g

872 24 2
Einstein = 1 2+\W 2+ W_? ) d
111Steln —

87’(’2 24 + Hy

Theorem (Berger Inequality). If smooth compact
M* admits Einstein g, then

x(M) >0,

with equality only if (M, g) flat, and finitely cov-
ered by T* = R/A.
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, g) is locally hyper-Kahler.
The latter case happens only if M finitely cov-
ered by flat T* or K3.
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Hitchin-Thorpe Inequality:

1 52 2 \ :
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Certainly > 0.

But if we could get better lower bounds for
2 2
/8 dfig aﬂd/ Wi dpyg
we would obtain a better result.

Next lecture: Obtaining such estimates,
using Seiberg-Witten theory:.
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