Einstein Metrics,

Harmonic Forms, &

Symplectic Four-Manifolds

Claude LeBrun Stony Brook University

Oxford, July 22, 2015

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda h$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

Given a smooth compact manifold M^n ,

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Proof by Ricci flow. Perelman et al.

Given a smooth compact manifold M^n , can one decompose M in Einstein and collapsed pieces?

When n = 3, answer is "Yes."

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?

Suppose M^n admits Einstein metric h.

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

{Einstein metrics on S^n }/ \sim is highly disconnected.

Suppose M^n admits Einstein metric h.

What, if anything, does h then tell us about M?

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover S^3 , \mathbb{R}^3 , \mathcal{H}^3 ...

But when $n \geq 5$, situation seems hopeless.

{Einstein metrics on S^n }/ \sim is highly disconnected.

When $n \geq 4$, situation is more encouraging...

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M =$$

$$\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4$$

Berger,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+) \}$$

Known to be connected for certain 4-manifolds:

$$M = T^4, K3,$$

Berger, Hitchin,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+) \}$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma,$$

Berger, Hitchin, Besson-Courtois-Gallot,

$$\mathscr{E}(M) = \{ \text{Einstein } h \} / (\text{Diffeos} \times \mathbb{R}^+)$$

Known to be connected for certain 4-manifolds:

$$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma.$$

Berger, Hitchin, Besson-Courtois-Gallot, L.

When n=4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

When n=4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

When n=4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

When n=4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

One key question:

When n=4, Einstein metrics are genuinely non-trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension four to make this a genuine geometrization?

A laboratory for exploring Einstein metrics.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions.

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold,

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h (unrelated to ω)?

A laboratory for exploring Einstein metrics.

Kähler geometry is a rich source of examples.

If M admits a Kähler metric, it of course admits a symplectic form ω .

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

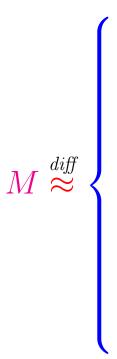
Some Suggestive Questions. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric h (unrelated to ω)? What if we also require $\lambda \geq 0$?

Theorem (L '09).

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω .

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω . Then M also admits an Einstein metric h



```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right.
```

```
\begin{array}{c} \text{ ... anifol} \\ \text{ ... are } \omega. \text{ Then I} \\ \text{ ... if } h \text{ with } \lambda \geq 0 \text{ if } \epsilon \\ \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \\ \\ M \overset{diff}{\approx} \end{array}
```

```
manifold are \ \omega. \ Then \ 1 with \lambda \geq 0 if \lambda \leq 0 if \lambda \leq 0 \lambda
```

Theorem (I 09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric h with $\lambda \geq 0$ if and of $\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$,

Theorem (L 09). Suppose that
$$M$$
 is compact oriented 4-manifold which symplectic structure ω . Then M also Einstein metric h with $\lambda \geq 0$ if and of $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$, T^4 ,

$$M \stackrel{diff}{\approx} \left\{ \begin{array}{l} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{array} \right.$$

```
\begin{array}{l}
\text{In Stein metric it was } \mathcal{L} = \mathcal{L} \\
& \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
& K3, \\
& K3/\mathbb{Z}_2, \\
& T^4, \\
& T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
& T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{array}
```

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .


```
\begin{array}{l}
\text{In Stein metric it was } \mathcal{L} = \mathcal{L} \\
& \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
& K3, \\
& K3/\mathbb{Z}_2, \\
& T^4, \\
& T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
& T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{array}
```

Einstein metric h with
$$\lambda \geq 0$$
 if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

Definitive list . . .

```
\mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) = \{\text{Einstein } h\}/(\text{Diffeos} \times \mathbb{R}^+)$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$ completely understood.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Know an Einstein metric on each manifold.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected?

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Describe modest recent progress on this issue.

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

 $\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

 $\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$

such that

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

 $\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$

such that

• Every known Einstein metric belongs to \(\mathscr{U} \);

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

 $\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$

such that

- Every known Einstein metric belongs to \(\mathscr{U} \);
- These form a connected family, mod diffeos;

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open

 $\mathcal{U} \subset \{\text{Riemannian metrics on } M\}$

such that

- Every known Einstein metric belongs to \(\mathscr{U} \);
- These form a connected family, mod diffeos; and
- No other Einstein metrics belong to $\mathscr{U}!$

Formulation will depend on...

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2$$
,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $+1$
 -1
 -1

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M) \\
 & b_{-}(M) \\
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

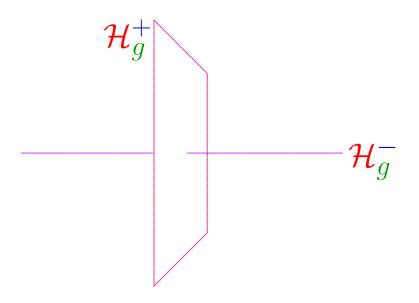
$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

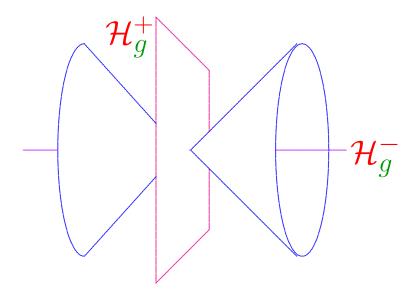
$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

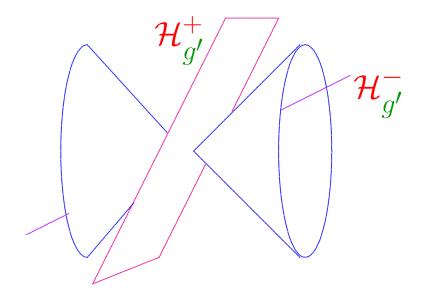
$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



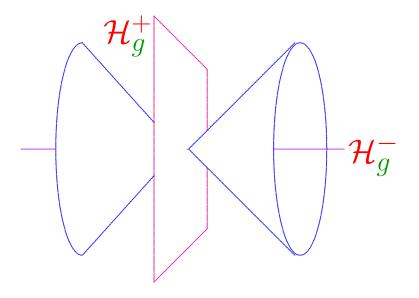
$$H^2(M,\mathbb{R})$$



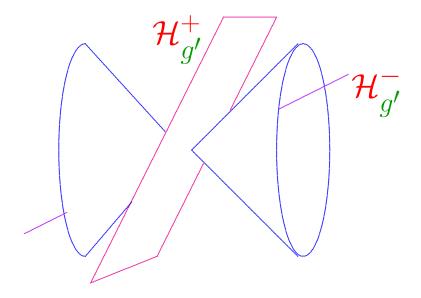
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



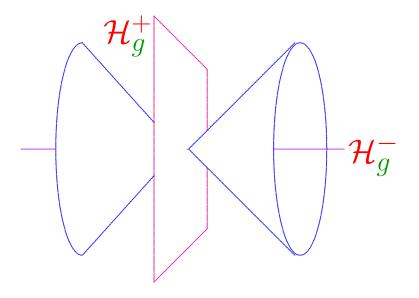
$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



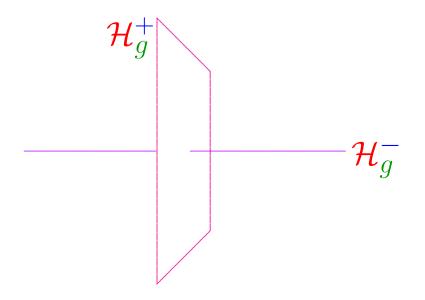
$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$



$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

 $\forall h$, \exists ! self-dual harmonic 2-form ω :

 $\forall h$, \exists ! self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

Up to scale, $\forall h$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

Up to scale, $\forall h$, $\exists !$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

Up to scale, $\forall h$, \exists ! self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

Up to scale, $\forall h$, \exists ! self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric h on such a manifold.

Up to scale, $\forall h$, $\exists!$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric h on such a manifold.

Our focus will be on metrics h

Up to scale, $\forall h$, $\exists!$ self-dual harmonic 2-form ω :

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric h on such a manifold.

Our focus will be on metrics h for which

$$W_{+}(\omega,\omega) > 0$$

Up to scale, $\forall h$, $\exists!$ self-dual harmonic 2-form ω :

$$d\omega = 0, \qquad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_{+}(\omega,\omega)$$

with any metric h on such a manifold.

Our focus will be on metrics h for which

$$W_{+}(\omega,\omega) > 0$$

everywhere on M.

 $W_{+}(\omega,\omega)$ is non-trivially related

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

 $W_{+}(\omega,\omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average.

 $W_{+}(\omega, \omega)$ is non-trivially related to scalar curv s,

via Weitzenböck for harmonic self-dual 2-form ω :

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:

$$\int_{M} W_{+}(\omega, \omega) d\mu \ge \int_{M} \frac{s}{6} |\omega|^{2} d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_{+}(\omega,\omega) > 0$$

on average. But we will need this everywhere.

However, $W_{+}(\omega, \omega)$ conformally invariant, with weight:

If
$$h \rightsquigarrow u^2 h$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

If
$$h \rightsquigarrow u^2 h$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

If
$$h \rightsquigarrow u^2 h$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if h satisfies

If
$$h \rightsquigarrow u^2 h$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if h satisfies

$$W_{+}(\omega,\omega) > 0$$

If
$$h \rightsquigarrow u^2 h$$
, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if *h* satisfies

$$W_{+}(\omega,\omega) > 0$$

so does every other metric \tilde{h} in conformal class [h].

Theorem A.

Theorem A. Let (M, h) be a smooth compact

Theorem A. Let (M, h) be a smooth compact 4-dimensional Einstein manifold

$$W_{+}(\omega,\omega) > 0$$

$$W_{+}(\omega,\omega) > 0$$

everywhere on M,

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

• the Kähler-Einstein metrics with $\lambda > 0$;

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$; and
- the CLW metric on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

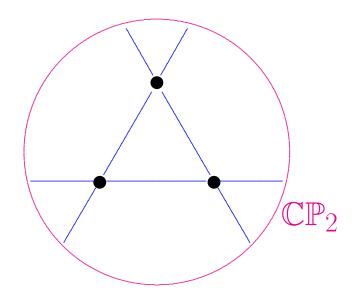
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

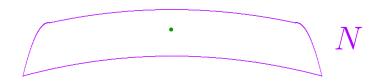
 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

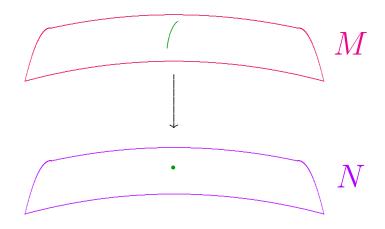


If N is a complex surface,

If N is a complex surface, may replace $p \in N$



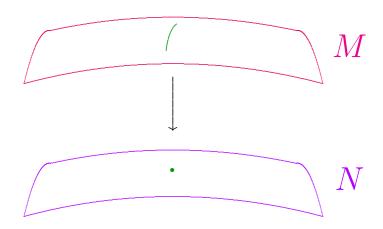
If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

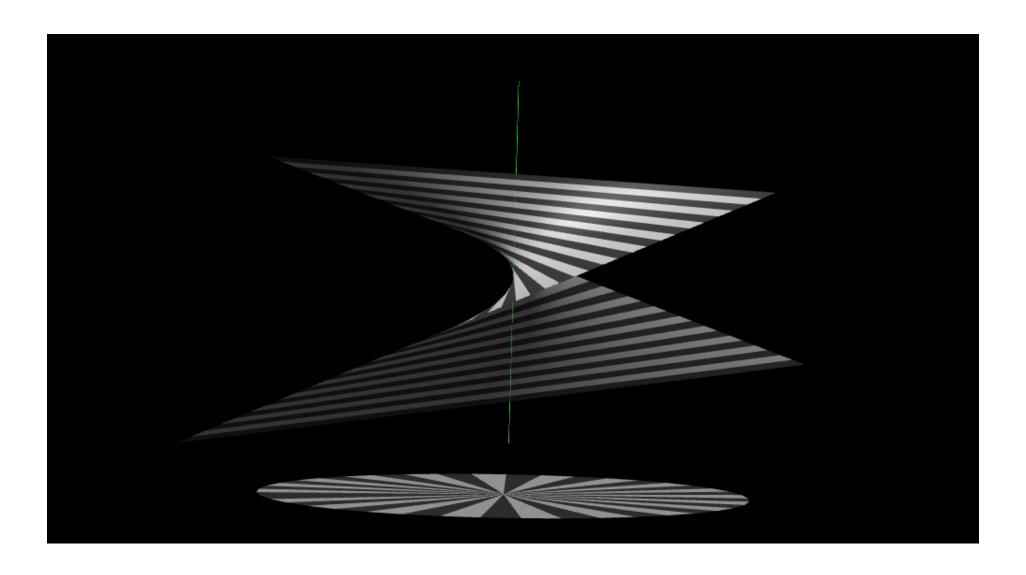


If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

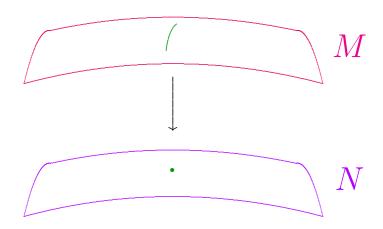


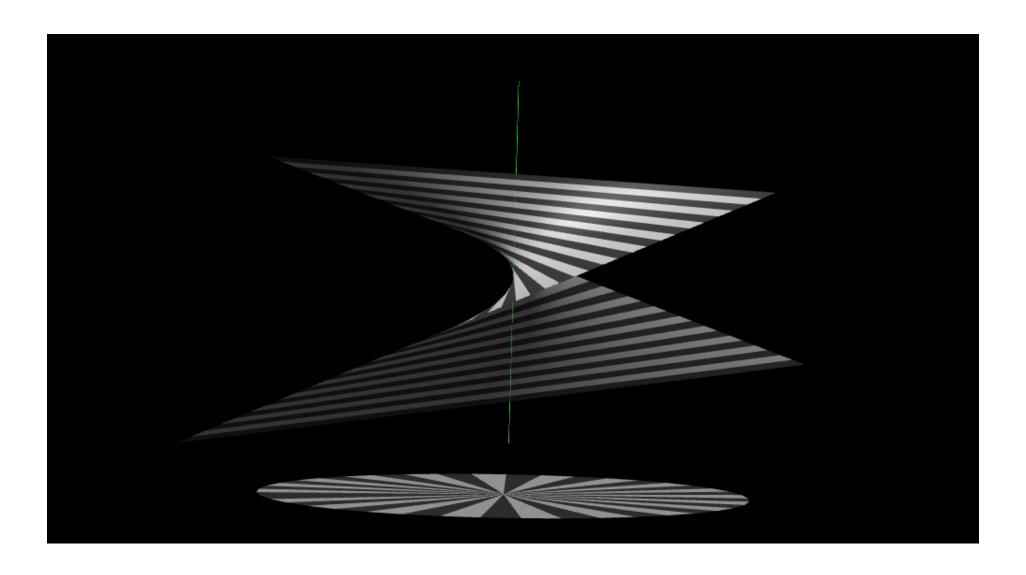


If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

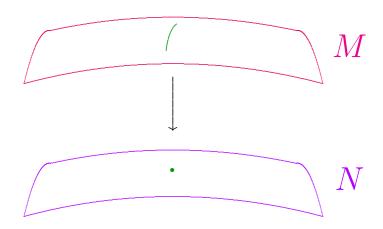


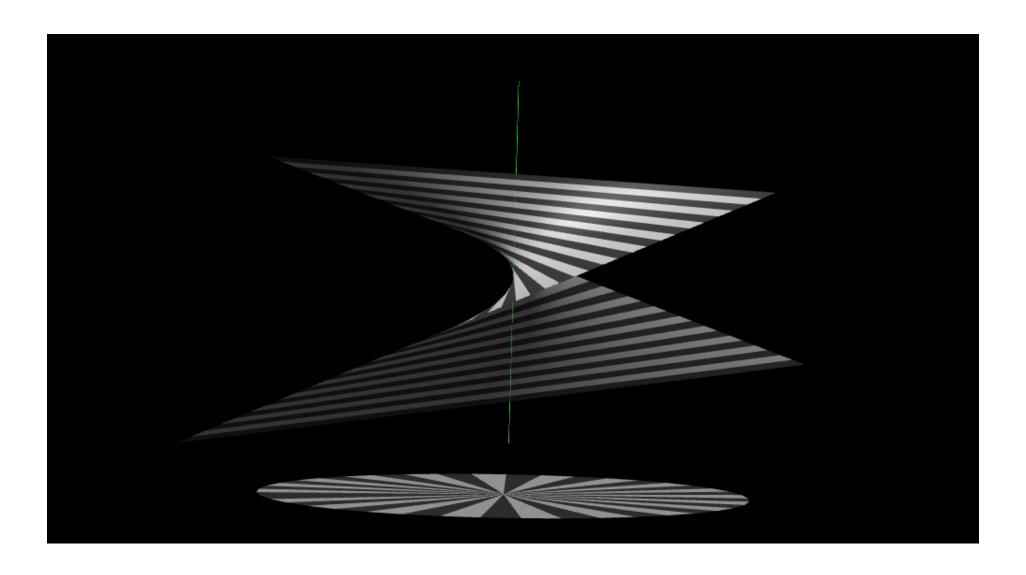


If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.



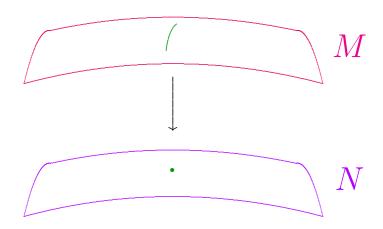


Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

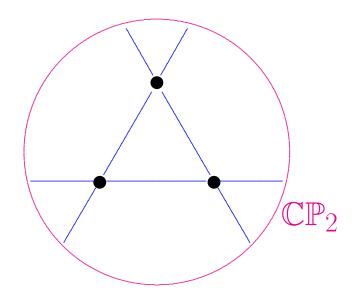
$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.



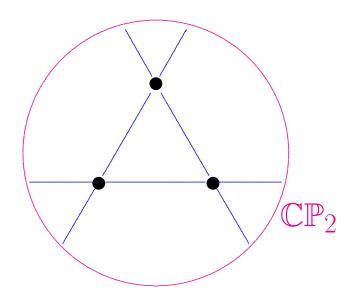
 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

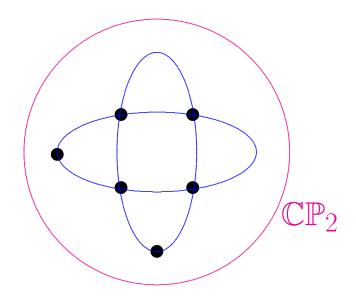
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

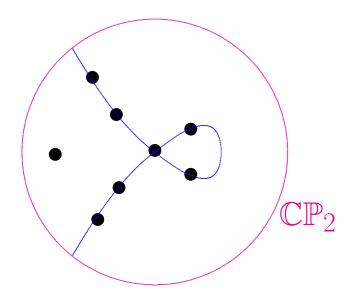
Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.



No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber...

Uniqueness: Bando-Mabuchi, L 2012...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

 $\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathscr{E}^+_{\omega}(M)$ is connected.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_{\omega}^{+}(M) = \{point\}$.

Corollary.

$$\mathscr{E}(M) = \{ \text{Einstein } h \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem B. $\mathcal{E}_{\omega}^{+}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_{\omega}^{+}(M) = \{point\}$.

Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$.

Method of Proof.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}} |\omega| h.$$

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}} |\omega| h.$$

This g is almost-Kähler: related to ω by

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}} |\omega| h.$$

This g is almost-Kähler: related to ω by

$$g = \omega(\cdot, J \cdot)$$

If $W_{+}(\omega, \omega) > 0$, then $\omega \neq 0$ everywhere.

Moreover, $d\omega = 0$ and $\omega \wedge \omega = |\omega|^2 d\mu \neq 0$.

So ω is a symplectic form.

Rescale h to obtain g with $|\omega| \equiv \sqrt{2}$:

$$g = \frac{1}{\sqrt{2}} |\omega| h.$$

This g is almost-Kähler: related to ω by

$$g = \omega(\cdot, J \cdot)$$

for some g-preserving almost-complex structure J.

By second Bianchi identity,

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

By second Bianchi identity,

$$h \text{ Einstein} \Longrightarrow \delta W^+ = (\delta W)^+ = 0.$$

$$(\delta W)_{bcd} := -\nabla_a W^a_{bcd} = -\nabla_{[c} r_{d]b} + \frac{1}{6} h_{b[c} \nabla_{d]} s$$

Our strategy:

study weaker equation

$$\delta W^+ = 0$$

as proxy for Einstein equation.

Equation $\delta W^+ = 0$?

If $h = f^2g$ satisfies

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

If $h = f^2 g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

If $h = f^2g$ satisfies

$$\delta W^+ = 0$$

then g instead satisfies

$$\delta(fW^+) = 0$$

which in turn implies the Weitzenböck formula

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

for
$$fW^+ \in \operatorname{End}(\Lambda^+)$$
.

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts,

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

This yields

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu,$$

where $W^{+}(\omega)^{\perp}$ = projection of $W^{+}(\omega, \cdot)$ to ω^{\perp} .

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 = \int_{M} \left(-sW^{+}(\omega, \omega) + 8|W^{+}|^{2} - 4|W^{+}(\omega)^{\perp}|^{2} \right) f d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 \ge \int_{M} \left(-sW^{+}(\omega, \omega) + 3 \left[W^{+}(\omega, \omega) \right]^{2} \right) f d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla(\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 \ge 3 \int_{M} W^{+}(\omega, \omega) \left(W^{+}(\omega, \omega) - \frac{s}{3} \right) f d\mu$$

$$0 = \nabla^* \nabla (fW^+) + \frac{s}{2} fW^+ - 6fW^+ \circ W^+ + 2f|W^+|^2 I$$

with $2\omega \otimes \omega$ and integrate by parts, using identity

$$\langle W^+, \nabla^* \nabla (\omega \otimes \omega) \rangle = [W^+(\omega, \omega)]^2 + 4|W^+(\omega)|^2 - sW^+(\omega, \omega).$$

$$0 \ge 3 \int_{M} W^{+}(\omega, \omega) \left(\frac{1}{2} |\nabla \omega|^{2} \right) f d\mu$$

Proposition.

Proposition. If compact almost-Kähler (M^4, g, ω)

Proposition. If compact almost-Kähler (M^4, g, ω) satisfies $\delta(fW^+) = 0$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary.

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$.

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If $\delta(fW^+) = 0$

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some f > 0,

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some f > 0, then g is a Kähler metric

Proposition. If compact almost-Kähler (M^4, g, ω) satisfies $\delta(fW^+) = 0$ for some f > 0, then

$$0 \ge \int_M W^+(\omega, \omega) |\nabla \omega|^2 f \ d\mu$$

Corollary. Let (M^4, g, ω) be a compact almost-Kähler manifold with $W^+(\omega, \omega) > 0$. If

$$\delta(fW^+) = 0$$

for some f > 0, then g is a Kähler metric with scalar curvature s > 0.

Theorem.

Theorem. Let (M, h)

Theorem. Let (M, h) be a compact oriented

Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold

Theorem. Let (M, h) be a compact oriented Riemannian 4-manifold with $\delta W^+ = 0$. If $W^+(\omega, \omega) > 0$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω ,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature,

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

Remark. If such metrics exist, $b_{+}(M) = 1$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

$$W^+(\omega,\omega) > 0$$

for some self-dual harmonic 2-form ω , then

$$h = s^{-2}g$$

for a unique Kähler metric g of scalar curvature s > 0.

Conversely, for any Kähler metric g of positive scalar curvature, the conformally related metric $h = s^{-2}g$ satisfies $\delta W^+ = 0$ and $W^+(\omega, \omega) > 0$.

Theorems A & B follow by restricting to the

Einstein case and using previous results (L 2012).