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l.€.

r=Ah

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Given a smooth compact manifold M™, can one
decompose M in Einstein and collapsed pieces?

When n = 3, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n > 4, situation is more encouraging. . .
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& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-
trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions
to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension four
to make this a genuine geometrization?
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an

FEinstein metric h (unrelated to w)? What if we
also require A > 07
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Del Pezzo surfaces,
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Abelian surface, Hyper-elliptic surfaces.
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Objective of this lecture:

Describe modest recent progress on this issue.

For M a Del Pezzo surface, will define explicit open
7 C {Riemannian metrics on M }
such that
e Every known Einstein metric belongs to %/ ;

e These form a connected family, mod diffeos; and

e No other Einstein metrics belong to %/
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Special character of dimension 4:

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At oA~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dimH.
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Every del Pezzo surface has by =1. <

Up to scale, V h, d! self-dual harmonic 2-form w:

dw = 0, *W = W.
This allows us to associate the scalar quantity
Wi (w,w)
with any metric /4 on such a manifold.
Our focus will be on metrics h for which
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everywhere on M.
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via Weitzenbock for harmonic self-dual 2-form w:

0=V*Vw —2W " (w, ) + gw

Taking inner product with w and integrating:

/ W (e, w)dpt > / ol dp
M M6

In particular, an Einstein metric with A > 0 has

Wi(w,w) >0

on average. But we will need this everywhere.
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However, W (w, w) conformally invariant, with weight:

If b~ u’h, then Wi(w,w) ~> u "W (w,w)

Much simpler than scalar curvature!

In particular, if h satisfies

Wi(w,w) >0

so does every other metric 4 in conformal class [A].
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Theorem A. Let (M,h) be a smooth compact
4-dimensional Einstein manifold with by = 1. If
h satisfies
Wi(w,w) >0

everywhere on M, then h is conformally Kahler
and has Einstein constant A > 0. Moreover, M
i1s diffeomorphic to a Del Pezzo surface. Con-
versely, every Del Pezzo surface admits Einstein
metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo
surfaces have these properties. They are

e the Kahler-Einstein metrics with A > 0:
e the Page metric on CPy#CPy: and

e the CLW metric on CPy#2CP».
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Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and
this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .

Uniqueness: Bando-Mabuchi, L 2012. ..
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

For each topological type:
Moduli space of such (M4, .J) is connected.

Just a point if by( M) < 5.
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For M*? a Del Pezzo surface, set
&(M) = {Einstein h on M }/(Diffeos x RT)

&7 (M) = {Einstein h with W (w,w) > 0} /~

Theorem B. &/ (M) is connected. Moreover, if
bo(M) < 5, then &L (M) = {point}.

Corollary. &%(M) is exactly one connected com-
ponent of &(M).
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First Key Observation:
If Wi(w,w) >0, then w # 0 everywhere.

Moreover, dw = 0 and w A w = |w|?du # 0.
So w is a symplectic form.

Rescale h to obtain g with |w| = v/2:
1
RE

This g is almost-Kahler: related to w by

w)h.

g = w('v J)

for some g-preserving almost-complex structure .J.
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Second Key Observation:

By second Bianchi identity;,

h Einstein = W™ = (6IW)" = 0.

|
(OW)pea = =VaWhea = =Vierap + o Vas

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.
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Equation dW ™ = 0 not conformally invariant!

If h = f2¢ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(A™).
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0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields
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where W (w)+ = projection of W (w, ) to w.
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Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields
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Now take inner product of Weitzenbock formula

0= V*V(FIWT) + gfvw 6T o W 2f W T

with 2w ® w and integrate by parts, using identity
(W, V*V(wew)) = [WH(w, ) +4 W (w)[>=sW T (w,w).

This yields

1
0> S/M W (w,w) ( §|Vw\2 ) f du
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Proposition. If compact almost-Kahler (M*, g, w)
satisfies O(fW ™) =0 for some f > 0, then

0> / W (w, )| Vl2f du
M

Corollary. Let (M*, g,w) be a compact almost-
Kdhler manifold with W™ (w,w) > 0. If

S(fWH) =0

for some f > 0, then g s a Kahler metric with
scalar curvature s > 0.



Theorem.



Theorem. Let (M, h)



Theorem. Let (M, h) be a compact oriented



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manaifold



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with SW ™ = 0.



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W™ = 0. If

W (w,w) >0



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0

for some self-dual harmonic 2-form w,



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature
s > 0.



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature

s > 0.
Conversely,



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature

s > 0.
Conversely, for any Kahler metric g



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature
s > 0.

Conversely, for any Kahler metric g of positive
scalar curvature,



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature
s > 0.

Conversely, for any Kahler metric g of positive
scalar curvature, the conformally related metric



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If
W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29
for a unique Kahler metric g of scalar curvature

s > 0.

Conversely, for any Kahler metric g of positive

scalar curvature, the conformally related metric
h=s"%g



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If
W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29
for a unique Kahler metric g of scalar curvature

s > 0.

Conversely, for any Kahler metric g of positive

scalar curvature, the conformally related metric
h = s 2g satisfies SWT =0



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If
W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29
for a unique Kahler metric g of scalar curvature

s > 0.

Conversely, for any Kahler metric g of positive
scalar curvature, the conformally related metric
h = s 2g satisfies SW ' =0 and W (w,w) > 0.



Theorem. Let (M, h) be a compact oriented Rie-
mannian 4-manifold with W = 0. If

W (w,w) >0
for some self-dual harmonic 2-form w, then
h = 5_29

for a unique Kahler metric g of scalar curvature
s > 0.

Conversely, for any Kahler metric g of positive
scalar curvature, the conformally related metric
h = s 2g satisfies SW ' =0 and W (w,w) > 0.
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h = 5_29

for a unique Kahler metric g of scalar curvature
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Conversely, for any Kahler metric g of positive
scalar curvature, the conformally related metric
h = s 2g satisfies SW ' =0 and W (w,w) > 0.

Theorems A & B follow by restricting to the

Einstein case and using previous results (L 2012).



