Four-Manifolds, Einstein Metrics, & Differential Topology Claude LeBrun Stony Brook University Ohio State University, 10/22/15 Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$. Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $\exp: T_pM \to M$ Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M. $$d\mu_g = d\mu_{\text{Euclidean}},$$ $$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The Ricci curvature $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. The *Ricci curvature* is by definition the function on the unit tangent bundle $$STM = \{v \in TM \mid g(v, v) = 1\}$$ given by $$v \longmapsto r(v,v).$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. "... the greatest blunder of my life!" — A. Einstein, to G. Gamow $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. As punishment ... $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s=r^j_j={\mathcal R}^{ij}{}_{ij}.$$ $$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. n=2,3: Einstein \iff constant sectional $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. n=2,3: Einstein \iff constant sectional $n \geq 4$: Einstein \Leftarrow , \Rightarrow constant sectional $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. Determined system: same number of equations as unknowns. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ## Determined system: same number of equations as unknowns. $$g_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ## Determined system: same number of equations as unknowns. $$g_{jk}$$: $\frac{n(n+1)}{2}$ components. $$r_{jk}$$: $\frac{n(n+1)}{2}$ components. $$\mathcal{R}^{j}_{k\ell m}$$: $\frac{n^{2}(n^{2}-1)}{12}$ components. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. # Determined system: same number of equations as unknowns. Elliptic non-linear PDE after gauge fixing. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. Generalizes constant sectional curvature condition, but weaker. ## Determined system: same number of equations as unknowns. Elliptic non-linear PDE after gauge fixing. $$\Delta x^j = 0 \Longrightarrow r_{jk} = \frac{1}{2} \Delta g_{jk} + \ell ots.$$ What we know: #### What we know: • When n = 2: Yes! (Riemann) #### What we know: - When n = 2: Yes! (Riemann) - When n = 3: \iff Poincaré conjecture. - When n = 2: Yes! (Riemann) - When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes! - When n = 2: Yes! (Riemann) - When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes! - When n = 4: No! (Hitchin) - When n = 2: Yes! (Riemann) - When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes! - When n = 4: No! (Hitchin) - When n = 5: Yes?? (Boyer-Galicki-Kollár) - When n = 2: Yes! (Riemann) - When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes! - When n = 4: No! (Hitchin) - When n = 5: Yes?? (Boyer-Galicki-Kollár) - When $n \geq 6$, wide open. Maybe??? Einstein's equations are "locally trivial:" Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \implies Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \implies Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \implies Existence obstructed for connect sums $M^3 \# N^3$. Ricci flow pinches off S^2 necks. Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Ricci flow pinches off S^2 necks. First step in geometrization: Einstein's equations are "locally trivial:" Einstein metrics have constant sectional curvature. - \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$. - \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$. Ricci flow pinches off S^2 necks. First step in geometrization: Prime Decomposition. There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature. There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature. The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$. (Böhm, Wang, Ziller, et al.) There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature. The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many
connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$. (Böhm, Wang, Ziller, et al.) Same behavior for certain rational homology spheres. Dimension > 5: There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature. The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$. (Böhm, Wang, Ziller, et al.) Same behavior for certain rational homology spheres. Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected. There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature. The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$. (Böhm, Wang, Ziller, et al.) Same behavior for certain rational homology spheres. Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected. Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollár, et al.) **Theorem** (Berger). Any Einstein metric on 4-torus T^4 is flat. **Theorem** (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. (Terminology to be explained later!) Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. ⇒ Moduli space of Einstein metrics is connected. Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. ⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.) **Theorem** (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. ⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.) **Theorem** (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos. Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat. ⇒ Moduli space of Einstein metrics is connected. **Theorem** (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler. ⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.) **Theorem** (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos. **Theorem** (L). There is only one Einstein metric on compact complex-hyperbolic 4-manifold $\mathbb{C}\mathcal{H}_2/\Gamma$, up to scale and diffeos. When n=4, existence for Einstein depends delicately on smooth structure. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. Enough rigidity apparently still holds in dimension four to call this a geometrization. When n = 4, existence for Einstein depends delicately on smooth structure. There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others. But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces. Enough rigidity apparently still holds in dimension four to call this a geometrization. By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization. The Lie group SO(4) is not simple The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented (M^4, g) , The Lie group SO(4) is not simple: $$\mathfrak{so}(4)\cong\mathfrak{so}(3)\oplus\mathfrak{so}(3).$$ On oriented $(M^4,g),\Longrightarrow$ $$\Lambda^2=\Lambda^+\oplus\Lambda^-$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star: \Lambda^2 \to \Lambda^2,$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ Λ^+ self-dual 2-forms. Λ^- anti-self-dual 2-forms. $$\mathcal{R}:\Lambda^2\to\Lambda^2$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ $$\mathcal{R}:\Lambda^2\to\Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature}$ W_{-} = anti-self-dual Weyl curvature $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$ W_{-} = anti-self-dual Weyl curvature $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. $$K(P) = K(P^{\perp})$$ $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + \right) d\mu$$ $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu$$ $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$ $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ for Euler-characteristic $$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M}).$$ 4-dimensional Hirzebruch signature formula $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 \right) d\mu$$ 4-dimensional Hirzebruch signature formula $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ 4-dimensional Hirzebruch signature formula $$\tau(M) = \frac{1}{12\pi^2} \int_{M} \left(|W_{+}|^2 - |W_{-}|^2 \right) d\mu$$ for signature $\tau(M) = b_{+}(M) - b_{-}(M)$. Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge
\psi$$ Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ Diagonalize: Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ ### Diagonalize: $$+1$$ $\cdot \cdot \cdot \cdot \cdot +1$ -1 $\cdot \cdot \cdot \cdot \cdot -1$ Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ #### Diagonalize: $$\begin{array}{c} +1 \\ & \cdots \\ & +1 \\ \hline & b_{+}(M) \end{array}$$ $$\begin{array}{c} -1 \\ & \cdots \\ & -1 \end{array}$$ For (M^4, g) compact oriented Riemannian, #### Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ #### Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ • they have the same Euler characteristic χ ; - they have the same Euler characteristic χ ; - they have the same signature τ ; - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. $$w_2 = 0 w_2 \neq 0$$ - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. $$w_2 = 0 w_2 \neq 0$$ Warning: "Exotic differentiable structures!" - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. $$w_2 = 0 \qquad \qquad w_2 \neq 0$$ Warning: "Exotic differentiable structures!" No diffeomorphism classification currently known! - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. $$w_2 = 0 \qquad \qquad w_2 \neq 0$$ Warning: "Exotic differentiable structures!" No diffeomorphism classification currently known! Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes. - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$ Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$ where $j = b_+(M)$ and $k = b_-(M)$. $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$ where $j = b_+(M)$ and $k = b_-(M)$. What about spin case? What about spin case? Need new building block! What about spin case? Need new building block! K3 manifold... Simply connected complex surface with $c_1 = 0$. Simply connected complex surface with $c_1 = 0$. Only one deformation type. Simply connected complex surface with $c_1 = 0$. Only one diffeomorphism type. Simply connected complex surface with $c_1 = 0$. Only one diffeomorphism type. Spin, $\chi = 24$, $\tau = -16$. Kummer construction: Begin with T^4/\mathbb{Z}_2 : Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2 . Result is a K3 surface. Kummer construction: Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . T^4 = Picard torus of curve of genus 2. Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Generic quartic is then a K3 surface. Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Generic quartic is then a K3 surface. Example: $$0 = x^4 + y^4 + z^4 + w^4$$ Kummer construction: Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 . Generic quartic is then a K3 surface. Example: $$0 = (x^2 + y^2 + z^2 - w^2)^2 - 8[(1 - z^2)^2 - 2x^2][(1 + z^2)^2 - 2y^2]$$ **Theorem** (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if - they have the same Euler characteristic χ ; - they have the same signature τ ; and - both are spin, or both are non-spin. Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$. Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$. Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$. Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$. Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$. Equivalent to asserting that such manifolds satisfy $$b_2 \ge \frac{11}{8} |\tau|.$$ Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$. Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$. Equivalent to asserting that such manifolds satisfy $$b_2 \ge \frac{11}{8} |\tau|.$$ Certainly true of all examples in this lecture! Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics? Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics? Complex geometry is rich source of examples. Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Question. Which smooth compact 4-manifolds M⁴ admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, J) is a compact complex surface, Question. Which smooth compact 4-manifolds M⁴ admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g Question. Which smooth compact 4-manifolds M⁴ admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)? Question. Which smooth compact 4-manifolds M⁴ admit Einstein metrics? Complex geometry is rich source of examples. On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics. Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)? Even Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J) with Einstein constant $\lambda \geq 0$? **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M ``` M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox}
\left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \overline{\mathbb{CP}} ``` ``` M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right. ``` $$integrable\ complex\ structure\ J.\ The admits\ an\ Einstein\ metric\ g\ with\ \lambda \ge only\ if$$ $$\left\{ egin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ S^2 \times S^2, & \end{array} \right.$$ $M \stackrel{diff}{pprox} \left\{ \begin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \end{array} \right.$ $$integrable\ complex\ structure\ J.\ The admits\ an\ Einstein\ metric\ g\ with\ \lambda \geq only\ if$$ $$\left\{ egin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, & \end{array} \right.$$ $$compact$$ oriented 4-manifold which integrable complex structure J . The admits an Einstein metric g with $\lambda \geq 0$ only if $$\left\{ \begin{array}{l} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3/\mathbb{Z}_2, & K3/\mathbb{Z}_2, \end{array} \right.$$ $$compact$$ oriented 4-manifold which integrable complex structure J . The admits an Einstein metric g with $\lambda \geq 0$ only if $CP_2\#k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8,$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $$M \stackrel{diff}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$ only if $$\begin{pmatrix} \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, & 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), or T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). \end{pmatrix}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces. only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces. Similarly when M symplectic instead of complex. only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. only if $$\begin{pmatrix} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \\ K3, & \\ K3/\mathbb{Z}_2, & \\ T^4, & \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{pmatrix}$$ Existence: Yau, Tian, Page, Chen-L-Weber, et al. No others: Hitchin-Thorpe, Seiberg-Witten, ... ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ### Definitive list . . . ``` \mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` ``` \mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}). ``` $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ Below the line: $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Original definition: Original definition: M can be made into a complex manifold, Original definition: *M* can be made into a complex manifold, in such a manner that, locally, Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. ### Kähler metrics: Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Modern definition: #### Kähler metrics: Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Modern definition: (M^{2m}, g) has holonomy $\subset \mathbf{U}(m)$. #### Kähler metrics: Original definition: *M* can be made into a complex manifold, in such a manner that, locally, $$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$ for a locally defined function f. Modern definition: $$(M^{2m}, g)$$ has holonomy $\subset \mathbf{U}(m)$. Ricci-flat Kähler: $$(\widetilde{M}^{2m}, g)$$ has holonomy $\subset \mathbf{SU}(m)$. Theorem (Yau). **Theorem** (Yau). A compact complex manifold Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics, • it admits Kähler metrics, and - it admits Kähler metrics, and - its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero. - it admits Kähler metrics, and - its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero. "Calabi-Yau metrics." Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$ Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$ Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$ Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$ # Corollary. $\exists \lambda = 0 \ Einstein \ metrics \ on \ K3.$ Indeed, \exists sequences of these \longrightarrow flat orbifold T^4/\mathbb{Z}_2 . # Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + 2|W_+|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g$$ # Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$ Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$ # Hitchin-Thorpe Inequality: $$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$ Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$ **Theorem** (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then $$(2\chi + 3\tau)(M) \ge 0,$$ with equality only if (M, g) finitely covered by flat T^4 or Calabi-Yau K3. **Theorem** (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex
structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$ $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M)$ completely understood. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ ### Below the line: Every Einstein metric is Ricci-flat Kähler. $$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$ $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$ $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Know an Einstein metric on each manifold. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected? $$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\ S^{2} \times S^{2}, \\ K3, \\ K3/\mathbb{Z}_{2}, \\ T^{4}, \\ T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\ T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$ #### Below the line: Every Einstein metric is Ricci-flat Kähler. In the remaining cases, $$g = uh$$ $$g = uh$$ for some Kähler metric h and a positive function u. $$g = uh$$ for some Kähler metric h and a positive function u. Derdziński '83: breakthrough paper on this subject. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ everywhere on M. $$g = uh$$ for some Kähler metric h and a positive function u. These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$. As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy $$W_{+}(\omega,\omega) > 0$$ everywhere on M. This scalar condition is a conformally invariant analog of the more familiar condition s > 0. **Theorem** (L '14). **Theorem** (L '14). Let (M, g) be a smooth compact **Theorem** (L '14). Let (M, g) be a smooth compact Einstein 4-manifold $$W_{+}(\omega,\omega) > 0$$ $$W_{+}(\omega,\omega) > 0$$ everywhere on M, $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are • the Kähler-Einstein metrics with $\lambda > 0$; $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are - the Kähler-Einstein metrics with $\lambda > 0$; - the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and $$W_{+}(\omega,\omega) > 0$$ everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties. In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are - the Kähler-Einstein metrics with $\lambda > 0$; - the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and - the CLW metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, in general position, (M^4, J)
for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. If N is a complex surface, If N is a complex surface, may replace $p \in N$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. # Blowing up: If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. # Blowing up: If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, no 8 on nodal cubic. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling. Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber... Uniqueness: Bando-Mabuchi, L'12... (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: Moduli space of such (M^4, J) is connected. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. For each topological type: Moduli space of such (M^4, J) is connected. Just a point if $b_2(M) \leq 5$. $\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$ $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^{+}_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^{+}(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $\mathscr{E}^{+}_{\omega}(M)$ is connected. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ Theorem (L '14). $$\mathscr{E}^+_{\omega}(M)$$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. Corollary. $$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$ $$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$ **Theorem** (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$. Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$. But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$ But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$ We have also learned a huge amount about this **negative case** in recent years. But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$ We have also learned a huge amount about this **negative case** in recent years. In this setting, **Seiberg-Witten theory** plays the starring role. But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$ We have also learned a huge amount about this **negative case** in recent years. In this setting, **Seiberg-Witten theory** plays the starring role. But that would be the subject of an an **entirely different** colloquium!