Four-Manifolds,

Einstein Metrics, &

Differential Topology

Claude LeBrun Stony Brook University

Ohio State University, 10/22/15

Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$.

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

 $\exp: T_pM \to M$

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M.

$$d\mu_g = d\mu_{\text{Euclidean}},$$

$$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The Ricci curvature

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

given by

$$v \longmapsto r(v,v).$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s=r^j_j={\mathcal R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

 $n \geq 4$: Einstein \Leftarrow , \Rightarrow constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$\mathcal{R}^{j}_{k\ell m}$$
: $\frac{n^{2}(n^{2}-1)}{12}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \Longrightarrow r_{jk} = \frac{1}{2} \Delta g_{jk} + \ell ots.$$

What we know:

What we know:

• When n = 2: Yes! (Riemann)

What we know:

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture.

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???

Einstein's equations are "locally trivial:"

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Prime Decomposition.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Dimension > 5:

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollár, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

(Terminology to be explained later!)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (L). There is only one Einstein metric on compact complex-hyperbolic 4-manifold $\mathbb{C}\mathcal{H}_2/\Gamma$, up to scale and diffeos.

When n=4, existence for Einstein depends delicately on smooth structure.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization.

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4)\cong\mathfrak{so}(3)\oplus\mathfrak{so}(3).$$
 On oriented $(M^4,g),\Longrightarrow$
$$\Lambda^2=\Lambda^+\oplus\Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

$$K(P) = K(P^{\perp})$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

for Euler-characteristic
$$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M}).$$

4-dimensional Hirzebruch signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 \right) d\mu$$

4-dimensional Hirzebruch signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

4-dimensional Hirzebruch signature formula

$$\tau(M) = \frac{1}{12\pi^2} \int_{M} \left(|W_{+}|^2 - |W_{-}|^2 \right) d\mu$$
 for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing

Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $\cdot \cdot \cdot \cdot \cdot +1$
 -1
 $\cdot \cdot \cdot \cdot \cdot -1$

Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M)
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

• they have the same Euler characteristic χ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

What about spin case?

What about spin case?

Need new building block!

What about spin case?

Need new building block!

K3 manifold...

Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Spin, $\chi = 24$, $\tau = -16$.

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Kummer construction:

Begin with T^4/\mathbb{Z}_2 :

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 :

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2 .

Result is a K3 surface.

Kummer construction:

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

 T^4 = Picard torus of curve of genus 2.

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Generic quartic is then a K3 surface.

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Generic quartic is then a K3 surface. Example:

$$0 = x^4 + y^4 + z^4 + w^4$$

Kummer construction:

Begin with T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Generic quartic is then a K3 surface. Example:

$$0 = (x^2 + y^2 + z^2 - w^2)^2 - 8[(1 - z^2)^2 - 2x^2][(1 + z^2)^2 - 2y^2]$$

Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Certainly true of all examples in this lecture!

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface,

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Even Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J) with Einstein constant $\lambda \geq 0$?

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J.

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M

```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right.
```

$$integrable\ complex\ structure\ J.\ The admits\ an\ Einstein\ metric\ g\ with\ \lambda \ge only\ if$$

$$\left\{ egin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ S^2 \times S^2, & \end{array} \right.$$
 $M \stackrel{diff}{pprox} \left\{ \begin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \end{array} \right.$

$$integrable\ complex\ structure\ J.\ The admits\ an\ Einstein\ metric\ g\ with\ \lambda \geq only\ if$$

$$\left\{ egin{array}{c} \mathbb{CP}_2\#k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, & \end{array} \right.$$

$$compact$$
 oriented 4-manifold which integrable complex structure J . The admits an Einstein metric g with $\lambda \geq 0$ only if
$$\left\{ \begin{array}{l} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & K3, \\ K3/\mathbb{Z}_2, & K3/\mathbb{Z}_2, \end{array} \right.$$

$$compact$$
 oriented 4-manifold which integrable complex structure J . The admits an Einstein metric g with $\lambda \geq 0$ only if $CP_2\#k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8,$ $S^2 \times S^2,$ $K3,$ $K3/\mathbb{Z}_2,$ $T^4,$

$$M \stackrel{diff}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$

only if
$$\begin{pmatrix}
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, & 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), or T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

Similarly when M symplectic instead of complex.

only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Existence: Yau, Tian, Page, Chen-L-Weber, et al.

No others: Hitchin-Thorpe, Seiberg-Witten, ...

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

Definitive list . . .

```
\mathbb{CP}_{2} \# k \mathbb{\overline{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

```
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
```

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Original definition:

Original definition:

M can be made into a complex manifold,

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.

Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.

Modern definition:

Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.

Modern definition:

 (M^{2m}, g) has holonomy $\subset \mathbf{U}(m)$.

Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.

Modern definition:

$$(M^{2m}, g)$$
 has holonomy $\subset \mathbf{U}(m)$.

Ricci-flat Kähler:

$$(\widetilde{M}^{2m}, g)$$
 has holonomy $\subset \mathbf{SU}(m)$.

Theorem (Yau).

Theorem (Yau). A compact complex manifold

Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics,

• it admits Kähler metrics, and

- it admits Kähler metrics, and
- its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero.

- it admits Kähler metrics, and
- its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero.

"Calabi-Yau metrics."

Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$

Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$

Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$

Corollary. $\exists \lambda = 0 \text{ Einstein metrics on } K3.$

Corollary. $\exists \lambda = 0 \ Einstein \ metrics \ on \ K3.$

Indeed, \exists sequences of these \longrightarrow flat orbifold T^4/\mathbb{Z}_2 .

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + 2|W_+|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g$$

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(M) \ge 0,$$

with equality only if (M, g) finitely covered by flat T^4 or Calabi-Yau K3.

Theorem (L '09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+)$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M)$ completely understood.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$
 $S^2 \times S^2,$
 $K3,$
 $K3/\mathbb{Z}_2,$
 $T^4,$
 $T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
 $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Know an Einstein metric on each manifold.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$.

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathscr{E}(M) \neq \varnothing$. But is it connected?

$$\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, \quad 0 \leq k \leq 8, \\
S^{2} \times S^{2}, \\
K3, \\
K3/\mathbb{Z}_{2}, \\
T^{4}, \\
T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

In the remaining cases,

$$g = uh$$

$$g = uh$$

for some Kähler metric h and a positive function u.

$$g = uh$$

for some Kähler metric h and a positive function u.

Derdziński '83: breakthrough paper on this subject.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces,

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form,

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

everywhere on M.

$$g = uh$$

for some Kähler metric h and a positive function u.

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with $b_{+}=1$.

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if ω is a non-trivial self-dual harmonic 2-form, they satisfy

$$W_{+}(\omega,\omega) > 0$$

everywhere on M. This scalar condition is a conformally invariant analog of the more familiar condition s > 0.

Theorem (L '14).

Theorem (L '14). Let (M, g) be a smooth compact

Theorem (L '14). Let (M, g) be a smooth compact Einstein 4-manifold

$$W_{+}(\omega,\omega) > 0$$

$$W_{+}(\omega,\omega) > 0$$

everywhere on M,

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

• the Kähler-Einstein metrics with $\lambda > 0$;

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and

$$W_{+}(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with $\lambda > 0$;
- the Page metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$; and
- the CLW metric on $\mathbb{CP}_2\#2\mathbb{CP}_2$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber...

Uniqueness: Bando-Mabuchi, L'12...

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

 $\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^{+}_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^{+}(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14).

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^{+}_{\omega}(M)$ is connected.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14).
$$\mathscr{E}^+_{\omega}(M)$$
 is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathscr{E}^+_{\omega}(M) = \{ \text{Einstein } g \text{ with } W^+(\omega, \omega) > 0 \} / \sim$$

Theorem (L '14). $\mathscr{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathscr{E}^+_{\omega}(M) = \{point\}$.

Corollary. $\mathscr{E}^+_{\omega}(M)$ is exactly one connected component of $\mathscr{E}(M)$.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$

But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$

We have also learned a huge amount about this **negative case** in recent years.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$

We have also learned a huge amount about this **negative case** in recent years.

In this setting, **Seiberg-Witten theory** plays the starring role.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0!$

We have also learned a huge amount about this **negative case** in recent years.

In this setting, **Seiberg-Witten theory** plays the starring role.

But that would be the subject of an an **entirely different** colloquium!