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Definition. A Riemannian metric is said to be
Einstein if it has constant Ricci curvature — i.e.

"= Ag

for some constant A € R.

'77

*...the greatest blunder of my life
— A. Einstein, to G. Gamow

“Die Mathematiker sind eine Art Franzosen:
redet man zu ihnen, so ubersetzen sie es in
ihre Sprache, und dann ist es alsobald ganz
etwas anderes.”

— J.W. von Goethe
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Ricel curvature measures
volume distortion by exponential map:

P

\

exp(v)

In “geodesic normal coordinates”
metric volume measure is

d,&g = |1 — % T]k x]xk + O(‘x‘g) d,uEuclideana

where 7 1s the [ticcr tensor 1. = Rijik.
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Question (Yamabe). Does every smooth com-
pact 1-connected n-manaifold admit an Einstein

metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But seems related to geometrizations of 4-manifolds
by decomposition into Einstein and collapsed pieces.

By contrast, high-dimensional Einstein metrics too
common, so have little to do with geometrization.
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Variational Problems

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized total scalar curvature functional

Gy — R

g — VEnl/n / sgdiig
M

where V' = Vol(M, ¢) inserted to make scale-invariant.
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If Ag € Gy with s > 0,
—> any metric mimnimizing

must be Einstein.

If such Einstein minimizer exists, also minimizes
n/2
g / i g dig
M
2

2
2 %9 1012 < g
|T‘g — g"‘ |r|g Z g

with = <= Einstein.

since
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Two soft Invariants:

7.00) = it [ sy "2y
g JM

(M) = inf/ \r\3/2d,ug
g JM

which satisfy

T, (M) > n~ AT (M)

with = <= 4 Einstein minimizer.

Some other goals of this talk:

e compute these invariants for many 4-manifolds;
e describe minimizing sequences for functionals;
e show that above inequality often strict;

e provide context for Anderson’s talk.
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The Lie group SO(4) is not simple:

50(4) = s50(3) @ s0(3).
On oriented (M4, g), —
A=At @ AT
where AF are (£1)-eigenspaces of
x: A% — /\2,
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

S
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

== | I i
X =gz [ e T e RSN

for Euler-characteristic x (M) = Z(—l)j bi(M).
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4-dimensional Hirzebruch signature formula

1
r(M) = —= [ (W42 = W) du
1274 Jag

for signature 7(M) = by (M) — b_(M).

Here b4 (M) = maxdim subspaces C H?(M,R)
on which intersection pairing

H?(M,R) x H¥(M,R) — R
(4. 1) = [ on

is positive (resp. negative) definite.
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H’(M,R) — R

e e R 2]
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Theorem (Freedman/Donaldson). Two smooth com-
pact simply connected oriented 4-manifolds are
orientedly homeomorphic if and only if

e they have the same Euler characteristic y;
e they have the same signature 7; and

e both are spin, or both are non-spin.

Warning: “Exotic differentiable structures!”
No diffeomorphism classification currently known!

Typically, one homeotype «+— oo many diffeotypes.
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) >0
and
(2x — 37)(M) > 0.
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Hitchin-Thorpe Inequality:

1 5° > P
(2x £37)(M) = 57 T 2[W 4] — | iy

Amr2 Mo\ 24
Einstein = 1 S2+2]W 2] g
11NSteln = —

A2 Jas \ 24 + Mg

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) >0
and
(2x — 37)(M) > 0.

Both inequalilies strict unless finitely covered by
flat T*, Calabi-Yau K3, or Calabi-Yau K 3.
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K3 = Kummer-Kahler-Kodaira manifold.
Simply connected complex surface with ¢; = 0.
Only one deformation type.

In particular, only one diffeotype.

Spin manifold, b4 = 3, b = 19.

Theorem (Yau). K3 admits Ricci-flat metrics.
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Kummer construction of K3:

Begin with 7% /Zo;

T2

Replace R4 /75 neighborhood of each singular point
with copy of T*S2.



Approximate Calabi-Yau metric:

Replace flat metric on R*/Z,

X X
T4
T? |
q)
T2

with Eguchi-Hanson metric on 7%S%:

d@2
1 —e€p

JEH,e = _4+92 (9% + 605 + {1 — EQ_ﬂ 9%)

(Page, Kobayashi-Todorov, LeBrun-Singer)
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Richest source: Kahler geometry:.

Theorem (Aubin/Yau). Compact complex man-
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metric with s < 0 <= 4 holomorphic embedding
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such that c1(M) is negative multiple of 77 ¢ (CPy.).
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Richest source: Kahler geometry:.

Theorem (Aubin/Yau). Compact complex man-
ifold (M?™,J) admits compatible Kdhler-Einstein
metric with s < 0 <= 4 holomorphic embedding

j M — (CIP)k
such that c1(M) is negative multiple of 77 ¢ (CPy.).

Remark.  This happens < —ci(M) is a Kéhler
class. Short-hand: ¢{(M) < 0.

Remark.  When m = 2, such M are necessarily
minimal complex surfaces of general type.
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Blowing up:

If NV is a complex surface, may replace p € NV
with CIPy to obtain blow-up

M =~ N#@Q

in which new CIP has self-intersection —1.

A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#k@Q
One says that X is minimal model of M.
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Compact complex surface (M?, J) general type if
dm (M, O(K®Y) ~al?, >0,

where & = A%V is canonical line bundle.

I[f ¢ > 5, then I'(M,O(K ®€)) gives holomorphic
map

fo: M — CPy

which just collapses each CIPy with self-intersection
—1 or —2 to a point. Image X = fy(M) called
pluricanonical model of M.

Pluricanonical model X is a complex orbifold with
¢1 < 0 and singularities C* /G, G C SU(2).
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Aubin-Yau proof =—

Corollary (R. Kobayashi). The pluricanonical model
X of any compact complex surface M of general
type admits and orbifold Kahler-Einstein metric
with s < 0.

Thus, any surface M of general type obtained from
Kahler-Einstein orbifold X in two steps:

1. Replace each orbifold point with (—2)-curves in-
tersecting according to Dynkin diagram deter-

mined by G C SU(2).
.—‘—‘—I—. .—.—I—.—.

Related geometry: gravitational instantons.

2. Replace some non-singular points with (—1)-curves.
Related geometry: scalar-flat Kahler metrics.
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Seiberg-Wittten theory:

generalized Kahler geometry of non-Kahler 4-manifolds.
Can’t hope to generalize O operator to this setting.

But 0 + 0* does generalize:

spin® Dirac operator, preferred connection on L.
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Spin© structures:

wo(TM) € HA(M, Zs)
in image of
H*(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =54+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).
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Every unitary connection A on L induces
spin® Dirac operator

Da:T(Vy) — D(V_)
Weitzenbock formula: VO € I'(Vy),

1 S
(P, DA DpP) = §A|@\2 + V4P + Z!q)lQ
+2(—iF 47, 0(®))

where F' 47 = self-dual part curvature of A, and
oc:Vy —-ATisa natural real-quadratic map,

()] = —=|0[2

2/2
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Witten:

consider both ® and A as unknowns,

subject to Seiberg- Witten equations
Dpd =0
F i = io(®).

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay) =0

imposed to eliminate automorphisms of L — M.
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Weitzenbock formula becomes

0 = 2A|D? + 4|V 4P| + 5|0 + |0

— moduli space compact, finite-dimensional. . .
Seiberg-Witten map of Banach spaces

~ proper map finite-dimensional spaces.

Degree: ‘classical’ Seiberg-Witten invariant.
Stable homotopy class: Bauer-Furuta invariant.

When invariant is non-zero, solutions guaranteed.
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Definition. Let M be a smooth compact ori-
ented 4-manifold with by > 2. Then

a € HX(M,R)

15 called a monopole class of M iff there exists
a spin® structure on M with first Chern class

ci1(L) =a
such that the Seiberg-Witten equations
Dpd =0
Fi = io(D).

have a solution (P, A) for every metric g on M.
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Proposition. Let M be a smooth compact ori-
ented 4-manifold with b+ > 2. The collection
¢ C H*(M,R) of all monopole classes is finite,

and 1s an oriented diffeomorphism invariant of
M.
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Definition. Let
¢ = {monopole classes} C H*(M).
If € £, let
Hull(€) = convex hull of €

and set
B*(M) =max{v-v | ve Hull(¢)}

If¢ =0, set 3>(M)=0.
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Example If X is a minimal complex surface with
b > 1, and it

M = X4CP,

then ‘classical’ Seiberg-Witten invariant allows one
to show that

%

Example It X, Y. Z are minimal complex sur-
faces with b1 = 0 and b = 3 mod 4, and it

M = X#Y #Z4(CP,
Bauer-Furuta invariant allows one to show that
BHM) = c1*(X) + c1*(Y) + c1*(2)
Similarly for 2 or 4. .. &
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Theorem (Curvature Estimates). For any C* Rie-

mannian metric g on any smooth compact ori-
ented 4-manifold M with by > 2, the following
curvature bounds are satisfied:

/ 52d,ug > 3212 3%(M)
M 2
[ (5= VBIWLl) duy = 72?500
M
Moreover, if 32(M) # 0, equality holds in ei-

ther case iff (M, q) is a Kahler-Einstein mani-
fold with s < 0.
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First curvature estimate implies

1V

1 82 9 1 82
— =W P ) dy > — [ =d
4m? M<24 ‘ |> . 47r2/Mz4 Hg

(M)

[V

Hence:

Theorem A. Let M be a smooth compact ori-
ented 4-manifold with b (M) > 2. If M admits
an Einstein metric g, then

(2x — 37)(M) > 25%(M)

with equality only if (M, ¢) is flat T* or complex
hyperbolic CHy /T .

— Einstein metric on CHo/T" unique.. ..
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ented 4-manifold with b (M) > 2. If M admits
an Einstein metric g, then
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Second curvature estimate implies

1 82+2\W 2 dp, > 282(0)
a2 o \ 24 ) =3

Hence:

Theorem B. Let M be a smooth compact ori-

ented 4-manifold with b (M) > 2. If M admits
an Einstein metric g, then

(2 +37)(M) > Z5%(M)

with equality only if both sides vanish, in which

case g must be hyper-Kahler, and M must be dif-
feomorphic to either K3 or T*.



Example Let NV be double branched cover CPs,
ramified at a smooth octic:

m
B/

Aubin/Yau = N carries Einstein metric.

B

CP,
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Now let X be a triple cyclic cover CIPy, ramified at
a smooth sextic

B CP,
and set -
M = X#CPs.
Then
GHM) = cf(X) =3
(2x +37)(M) = A(X)—1=2
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an Einstein metric g, then
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Theorem B. Let M be a smooth compact ori-

ented 4-manifold with b (M) > 2. If M admits
an Einstein metric g, then

(2 +37)(M) > Z5%(M)

& equality only if M diffeomorphic to K3 or T,
In example:



X 1s triple cover CIP9 ramified at sextic

neEes

CP,

M = X#CPs.

Theorem B =— no Einstein metric on M.
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But M and N are both
simply connected & non-spin,
and both have ¢12 = 2. h*V = 3, so

X = 46
T = —30
Hence Freedman = M homeomorphic to N! ¢

Moral: Existence depends on diffeotype!

Same ideas lead to infinitely many other examples.

Typically get non-existence for infinitely many smooth
structures on fixed topological manifold.

Existence: look in Kahler-Einstein catalog.



Until now, discussed arbitrary Einstein metrics.

Instead, focus on Einstein metrics which minimize

9'—>/ Sgdﬂg
M

Related to soft invariants

g JM
(M) = inf/ \T@d,ug
g JM

which satisty

T,(M) > 3Ls(M)

with = <= - Einstein minimizer.
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Theorem (Curvature Estimates). For any C* Rie-

mannian metric g on any smooth compact ori-
ented 4-manifold M with by > 2, the following
curvature bounds are satisfied:

/ 52d,ug > 3212 3%(M)
M

/ ]r!éd,ug > 812 |20° — (2x + 37)| (M)
M

/M 1 2dpiy = —87%2x + 37)(M)

82 1 9
—|—8 Iy ﬂ+§|W+‘ d,LLg



Theorem. Suppose M* diffeo to non-minimal
compact complex surface with by > 1. Then M
does not admit a metric which minimaizes either

2 2
g|—>/ sgdpg  or / 7gd g
M M



Theorem. Suppose M* diffeo to non-minimal
compact complex surface with by > 1. Then M
does not admit a metric which minimaizes either

2 2
g|—>/ sgdpg  or / 7gd g
M M

By hypothesis

M = X#kCPs

where X minimal and k& > 0.
One shows

To(M) = 321°¢;%(X)
T(M) = 87°[c12(X) + K]

so that
T.(M) > $T4(M)



Theorem. Let X, Y and Z be simply connected

minimal complex surfaces with by = 3 mod 4.
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Theorem. Let X, Y and Z be simply connected

minimal complex surfaces with by = 3 mod 4.
Then

M = X#Y #Z#kCPs

does not admit a metric which minimizes either
) 2
g / Sgditg — or / 7gd g
M M

In fact,
To(M) = 3217 [cr*(X) + (V) + 1 7(Z)]
(M) = 81°[c12(X) + . 2(Y) + c1°(Z) + 8 + K]

Similarly for # of 2 or 4 complex surfaces.

Mystery: More summands? b4 = 1 mod 47



e X

When X, Y and Z general type, however,
J minimizing {g;} with Gromov-Hausdorff limit

3 Kahler-Einstein orbifolds touching at points.



o K_E

4 points where curvature has accumulated.



Predictable amount of 7 accumulates on necks.



SFASD

e X >

Rescaled limit of neck carries AE metric with

s =0
Wiy =20

-

Example:

1
g = (1 + ?) GEuclidean



RFALE 3

-

RN N

e X e

Orbifold singularities:
rescaled metric tends to gravitational istanton:

Asymptotically Locally Euclidean metric with

r =20
Wi =20



< SFASD

Bubbling off CPPy’s:

)C

Asymptotically Euclidean metric with




Basic example:

Burns metric on CPy — {oo}:

d@2
9B = 1

— + 07 (9% + 03+ [1 - eQ—Q] 9%)

Conformal Greens rescaling of Fubini-Study:.



GO

If one of X, Y and Z is elliptic,
collapses in limit to orbifold Riemann surface.



Typical example:

Y X E

0



