Einstein Manifolds

and

Extremal Kähler Metrics

Claude LeBrun Stony Brook University

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

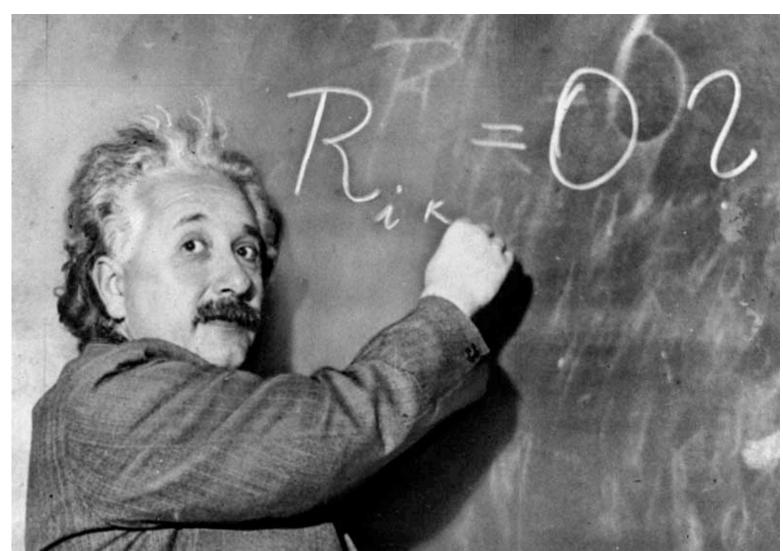
for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.



$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J.

$$\iff M \approx \left\{ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \right.$$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ \end{pmatrix}$$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

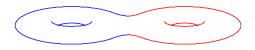
 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .



 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

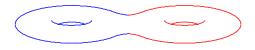
Connected sum #:



Blowing up:

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:



Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: Del Pezzo surfaces.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: Del Pezzo surfaces. $(\exists J \text{ with } c_1 > 0.)$

• obstructions to Einstein metrics with $\lambda > 0$:

- obstructions to Einstein metrics with $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.

- obstructions to Einstein metrics with $\lambda > 0$:
 - -Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - -Seiberg-Witten Theory: invariant must vanish.

- obstructions to Einstein metrics with $\lambda > 0$:
 - -Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.

- obstructions to Einstein metrics with $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.
- existence of Einstein metrics with $\lambda > 0$:

- obstructions to Einstein metrics with $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.
- existence of Einstein metrics with $\lambda > 0$:
 - Kähler geometry:

- obstructions to Einstein metrics with $\lambda > 0$:
 - -Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.
- existence of Einstein metrics with $\lambda > 0$:
 - Kähler geometry:
 - * Kähler-Einstein metrics.

Proofs of stated result involve two parts:

- obstructions to Einstein metrics with $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.
- existence of Einstein metrics with $\lambda > 0$:
 - Kähler geometry:
 - * Kähler-Einstein metrics.
 - * Conformally Kähler metrics.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset U(m)$

$$(M^4, g)$$
 Kähler \iff holonomy $\subset U(2)$

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

If we merely assume that

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

If we merely assume that

 \bullet J is integrable, and

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

If we merely assume that

- \bullet J is integrable, and
- $\bullet \ g(J\cdot, J\cdot) = g$

$$(M^4, g)$$
 Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

If we merely assume that

- \bullet J is integrable, and
- $\bullet \ g(J\cdot, J\cdot) = g$

then (M, J, g) is called Hermitian.

$$(M^4, g)$$
 Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

If we merely assume that

- \bullet J is integrable, and
- $\bullet \ g(J\cdot, J\cdot) = g$

then (M, J, g) is called Hermitian.

Much weaker!

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

The 2-form

$$ir(J\cdot,\cdot)$$

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 \iff \exists almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

The 2-form

$$ir(J\cdot,\cdot)$$

is curvature of canonical line bundle $K = \Lambda^{m,0}$.

 (M^4, g) Kähler \iff holonomy $\subset U(2)$

 \iff \exists almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^4, J) is a complex surface and $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

The 2-form

$$ir(J\cdot,\cdot)$$

is curvature of canonical line bundle $K = \Lambda^{2,0}$.

Two Riemannian metrics g and h are said to be conformally related if

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f: M \to \mathbb{R}^+$.

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f: M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f: M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$, $f \neq \text{const} \Longrightarrow h$ never Kähler for same J.

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f: M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$, $f \neq \text{const} \Longrightarrow h$ never Kähler for same J.

Conformally Kähler \Rightarrow Hermitian.

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f: M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$, $f \neq \text{const} \Longrightarrow h$ never Kähler for same J.

Conformally Kähler \Rightarrow Hermitian.

Einstein metrics which are Kähler

Kähler-Einstein metrics

Hardest case: $\lambda > 0$.

Hardest case: $\lambda > 0$.

(Siu, Tian-Yau): \exists K-E metric g with $\lambda > 0$ on

$$\mathbb{CP}_2 \# \overline{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}.$$

$$3 \leq k \leq 8$$

Hardest case: $\lambda > 0$.

(Siu, Tian-Yau): \exists K-E metric g with $\lambda > 0$ on

$$\mathbb{CP}_2 \# \overline{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}.$$

$$3 \leq k \leq 8$$

Full K-E moduli space: Tian, Chen-Wang.

Hardest case: $\lambda > 0$.

(Siu, Tian-Yau): \exists K-E metric g with $\lambda > 0$ on

$$\mathbb{CP}_2 \# \overline{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}.$$

$$3 \leq k \leq 8$$

Full K-E moduli space: Tian, Chen-Wang.

Of course, \mathbb{CP}_2 and $S^2 \times S^2$ also admit K-E metrics with $\lambda > 0$ — namely, obvious homogeneous ones!

(Matsushima):

(M, J, g) compact K-E \Longrightarrow Aut(M, J) reductive.

```
(Matsushima): (M,J,g) \text{ compact K-E} \Longrightarrow \operatorname{Aut}(M,J) \text{ reductive.} (Isom(M,g) is compact real form.)
```

```
(Matsushima):
```

(M, J, g) compact K-E \Longrightarrow Aut(M, J) reductive. (Isom(M, g) is compact real form.)

Since $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$ and $\mathbb{CP}_2 \# 2 \overline{\mathbb{CP}_2}$ have non-reductive automorphism groups, no K-E metrics.

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.

Toric (cohomogeneity two).

However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.

Toric (cohomogeneity two). But not constructed explicitly. However, Page ('79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$.

Derdziński ('83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2\#2\overline{\mathbb{CP}}_2$.

Note both of above Einstein metrics are Hermitian.

Theorem A.

Theorem A. Let (M^4, J) be a compact complex surface,

Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M

$$h(J\cdot, J\cdot) = h.$$

$$h(J\cdot, J\cdot) = h.$$

Then either

$$h(J\cdot, J\cdot) = h.$$

Then either

 \bullet (M, J, h) is Kähler-Einstein; or

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or

$$h(J\cdot, J\cdot) = h.$$

Then either

- \bullet (M, J, h) is Kähler-Einstein; or
- $M \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, and h is a constant times the Page metric; or
- $M \approx \mathbb{CP}_2 \# 2\mathbb{CP}_2$ and h is a constant times the CLW metric.

$$h(J\cdot, J\cdot) = h.$$

Moreover, if h is not itself Kähler, then

• (M, J) has $c_1 > 0$;

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \ k = 1, 2, 3;$

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \ k = 1, 2, 3;$
- h has positive Einstein constant;

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \ k = 1, 2, 3;$
- h has positive Einstein constant;
- g is an extremal Kähler metric;

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \ k = 1, 2, 3;$
- h has positive Einstein constant;
- g is an extremal Kähler metric;
- g has scalar curvature s > 0; and

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \ k = 1, 2, 3;$
- h has positive Einstein constant;
- g is an extremal Kähler metric;
- g has scalar curvature s > 0; and
- after normalization, $h = s^{-2}g$.

• Goldberg-Sachs Theorem

• Goldberg-Sachs Theorem

$$-T^{1,0}M$$
 isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$

- \bullet Goldberg-Sachs Theorem $-T^{1,0} \pmb{M} \text{ isotropic, integrable, } \nabla^a (W_+)_{abcd} = 0$
- Derdzinski's Theorem

- Goldberg-Sachs Theorem
 - $-T^{1,0}M$ isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$
- Derdzinski's Theorem
 - -h Einstein, W_+ special \Rightarrow conformally Kähler

- Goldberg-Sachs Theorem
 - $-T^{1,0}M$ isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$
- Derdzinski's Theorem
 - -h Einstein, W_+ special \Rightarrow conformally Kähler
- $c_1 > 0$

- Goldberg-Sachs Theorem
 - $-T^{1,0}M$ isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$
- Derdzinski's Theorem
 - -h Einstein, W_+ special \Rightarrow conformally Kähler
- $c_1 > 0$
 - -because $\rho + 2i\partial\bar{\partial}\log s$ positive (1,1)-form.

- Goldberg-Sachs Theorem
 - $-T^{1,0}M$ isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$
- Derdzinski's Theorem
 - -h Einstein, W_+ special \Rightarrow conformally Kähler
- $c_1 > 0$
 - -because $\rho + 2i\partial \bar{\partial} \log s$ positive (1, 1)-form.
- Automorphism group non-trivial, non-semi-simple.

- Goldberg-Sachs Theorem
 - $-T^{1,0}M$ isotropic, integrable, $\nabla^a(W_+)_{abcd}=0$
- Derdzinski's Theorem
 - -h Einstein, W_+ special \Rightarrow conformally Kähler
- $c_1 > 0$
 - -because $\rho + 2i\partial \bar{\partial} \log s$ positive (1, 1)-form.
- Automorphism group non-trivial, non-semi-simple.
 - -g is extremal, s non-constant.

Calabi: $\text{Iso}(g) \subset \text{Aut}(M)$ maximal compact.

Calabi: $\text{Iso}(g) \subset \text{Aut}(M)$ maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class'n.

Calabi: $Iso(g) \subset Aut(M)$ maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class'n.

Proposition. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, namely the Page metric.

Calabi: $Iso(g) \subset Aut(M)$ maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class'n.

Proposition. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, namely the Page metric.

But need new ideas to prove the following...

Theorem 1. Up to automorphisms and rescaling,

Theorem 1. Up to automorphisms and rescaling, there is exactly one

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler,

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2 \overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling,

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler,

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 3 \overline{\mathbb{CP}}_2$.

Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$. However, this metric is Kähler-Einstein.

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $\nabla^{1,0}s$ is a holomorphic vector field.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $J\nabla s$ is a Killing field.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $J\nabla s$ is a Killing field.

X.X. Chen: always minimizers.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $J\nabla s$ is a Killing field.

Donaldson/Mabuchi/Chen-Tian: unique in Kähler class, modulo bihomorphisms.

Explicit lower bound:

Any Kähler (M^4, g, J) satisfies

$$\frac{1}{32\pi^2} \int s^2 d\mu_g \ge \mathcal{A}([\omega])$$

Explicit lower bound:

Any Kähler (M^4, g, J) satisfies

$$\frac{1}{32\pi^2} \int s^2 d\mu_g \ge \mathcal{A}([\omega])$$

with $= \iff g$ extremal

Explicit lower bound:

Any Kähler (M^4, g, J) satisfies

$$\frac{1}{32\pi^2} \int s^2 d\mu_g \ge \mathcal{A}([\omega])$$

with $= \iff g$ extremal, where

$$\mathcal{A}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$

where \mathcal{F} is Futaki invariant.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a Jcompatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}.$ Then Ω is a critical point of

 $\mathcal{A}: \mathcal{K} \to \mathbb{R}$.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of

$$\mathcal{A}: \mathcal{K} \to \mathbb{R}$$
.

Moreover, g is an extremal Kähler metric, and the scalar curvature s of g is everywhere positive.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of

$$\mathcal{A}:\mathcal{K}\to\mathbb{R}.$$

Moreover, g is an extremal Kähler metric, and the scalar curvature s of g is everywhere positive.

Conversely, if $\Omega \in \mathcal{K}$ is a critical point of \mathcal{A} , and if $\omega \in \Omega$ is the Kähler form of an extremal Kähler metric g with scalar curvature s > 0, then $h = s^{-2}g$ is an Einstein metric on M.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of

$$\mathcal{A}:\mathcal{K}\to\mathbb{R}.$$

Moreover, g is an extremal Kähler metric, and the scalar curvature s of g is everywhere positive.

Conversely, if $\Omega \in \mathcal{K}$ is a critical point of \mathcal{A} , and if $\omega \in \Omega$ is the Kähler form of an extremal Kähler metric g with scalar curvature s > 0, then $h = s^{-2}g$ is an Einstein metric on M.

Lemma. For any extremal Kähler g on any Del Pezzo M, scalar curvature s > 0 everywhere.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of

$$\mathcal{A}:\mathcal{K}\to\mathbb{R}.$$

Moreover, g is an extremal Kähler metric.

Conversely, if $\Omega \in \mathcal{K}$ is a critical point of \mathcal{A} , and if $\omega \in \Omega$ is the Kähler form of an extremal Kähler metric g,

then $h = s^{-2}g$ is an Einstein metric on M.

Lemma. For any extremal Kähler g on any Del Pezzo M, scalar curvature s > 0 everywhere.

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
 where Λ^{\pm} are (± 1) -eigenspaces of
$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
 where Λ^{\pm} are (± 1) -eigenspaces of
$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^+ = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$|W_+|^2 = \frac{s^2}{24}$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = 2 \int_{M} |W_{+}|^{2} d\mu_{g} - 12\pi^{2} \tau(M)$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|_g^2 d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd} .$$

is the Bach tensor of g.

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|_g^2 d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(\mathbf{W}_+)_{acbd}.$$

is the Bach tensor of g.

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|_g^2 d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd} .$$

is the Bach tensor of g. Symmetric, trace-free.

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd} .$$

is the Bach tensor of g. Symmetric, trace-free.

$$\nabla^a B_{ab} = 0$$

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g$$

where

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd} .$$

is the Bach tensor of g.

Conformally Einstein $\implies B = 0$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

On Kähler metrics,

$$\int |W_{+}|^{2} d\mu = \int \frac{s^{2}}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Now for an extremal Kähler metric

$$B = \frac{1}{12} \left[s\mathring{r} + 2 \text{Hess}_0(s) \right]$$

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Now for an extremal Kähler metric

$$B = \frac{1}{12} \left[s\mathring{r} + 2 \text{Hess}_0(s) \right]$$

and corresponds to harmonic primitive (1, 1)-form

$$\psi := B(J \cdot, \cdot) = \frac{1}{12} \left[s\rho + 2i\partial \bar{\partial} s \right]_0$$

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics,

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\frac{d}{dt} \mathcal{W}(g_t) \Big|_{t=0} = \int \dot{g}^{ab} B_{ab} \, d\mu_g$$
$$= - \int |B|^2 \, d\mu_g$$

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\frac{d}{dt} \mathcal{W}(g_t) \Big|_{t=0} = \int \dot{g}^{ab} B_{ab} \, d\mu_g$$
$$= - \int |B|^2 \, d\mu_g$$

So the critical points of restriction of \mathcal{W} to {Kähler metrics} also have B = 0!

If (M^4, J, g) Kähler, $s^{-1}W_+$ parallel.

If
$$(M^4, J, g)$$
 Kähler, $s^{-1}W_+$ parallel. Hence
$$\nabla^a(s^{-1}W_+)_{abcd} = 0.$$

If
$$(M^4, J, g)$$
 Kähler, $s^{-1}W_+$ parallel. Hence
$$\nabla^a(s^{-1}W_+)_{abcd} = 0.$$

Conformally invariant, with appropriate weight!

If
$$(M^4, J, g)$$
 Kähler, $s^{-1}W_+$ parallel. Hence
$$\nabla^a(s^{-1}W_+)_{abcd} = 0.$$

Conformally invariant, with appropriate weight!

Hence
$$h = s^{-2}g$$
 satisfies

$$\nabla^a(W_+)_{abcd} = 0$$

where defined.

If (M^4, J, g) Kähler, $s^{-1}W_+$ parallel. Hence $\nabla^a(s^{-1}W_+)_{abcd} = 0.$

Conformally invariant, with appropriate weight!

Hence $h = s^{-2}g$ satisfies

$$\nabla^a(W_+)_{abcd} = 0$$

where defined.

$$B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(\mathbf{W}_+)_{acbd}.$$

If
$$(M^4, J, g)$$
 Kähler, $s^{-1}W_+$ parallel. Hence
$$\nabla^a(s^{-1}W_+)_{abcd} = 0.$$

Conformally invariant, with appropriate weight!

Hence
$$h = s^{-2}g$$
 satisfies

$$\nabla^a(W_+)_{abcd} = 0$$

where defined.

$$B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(\mathbf{W}_+)_{acbd}.$$

If g Bach-flat, $h = s^{-2}g$ Einstein satisfies

$$0 = \mathring{r}^{cd}(W_+)_{acbd}$$

If (M^4, J, g) Kähler, $s^{-1}W_+$ parallel. Hence $\nabla^a(s^{-1}W_+)_{abcd} = 0.$

Conformally invariant, with appropriate weight!

Hence $h = s^{-2}g$ satisfies

$$\nabla^a(W_+)_{abcd} = 0$$

where defined.

$$B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(\mathbf{W}_+)_{acbd}.$$

If g Bach-flat, $h = s^{-2}g$ Einstein satisfies

$$0 = \mathring{r}^{cd}(W_+)_{acbd}$$

and so Einstein when $s \neq 0$.

If
$$(M^4, J, g)$$
 Kähler, $s^{-1}W_+$ parallel. Hence
$$\nabla^a(s^{-1}W_+)_{abcd} = 0.$$

Conformally invariant, with appropriate weight!

Hence $h = s^{-2}g$ satisfies

$$\nabla^a(W_+)_{abcd} = 0$$

where defined.

$$B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd})(\mathbf{W}_+)_{acbd}.$$

If g Bach-flat, $h = s^{-2}g$ Einstein satisfies

$$0 = \mathring{r}^{cd}(W_+)_{acbd}$$

and so Einstein when $s \neq 0$.

Del Pezzo case: $s \neq 0$ everywhere!

$$\mathcal{A}:\mathcal{K} o\mathbb{R}$$

has unique critical point for relevant M.

$$\mathcal{A}:\mathcal{K} o\mathbb{R}$$

has unique critical point for relevant M.

 ${\cal A}$ is explicit rational function —

$$\mathcal{A}:\mathcal{K} o\mathbb{R}$$

has unique critical point for relevant M.

 \mathcal{A} is explicit rational function — but quite complicated!

$$\mathcal{A}:\mathcal{K}
ightarrow\mathbb{R}$$

has unique critical point for relevant M.

 \mathcal{A} is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of M.

$$\mathcal{A}:\mathcal{K} o\mathbb{R}$$

has unique critical point for relevant M.

 \mathcal{A} is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of M.

Done by showing \mathcal{A} convex on certain lines.

$$\mathcal{A}:\mathcal{K} o\mathbb{R}$$

has unique critical point for relevant M.

 \mathcal{A} is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of M.

Done by showing \mathcal{A} convex on certain lines.

Necessary calculations also led to new existence proof. . .

Theorem B. There is a Kähler metric g on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ which is conformal to an Einstein metric.

$$[0,1)\ni t\longmapsto g_t$$

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}}_2$ s.t.

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\mathbb{CP}_2$ s.t.

• g_0 is Kähler-Einstein, and such that

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

Theorem 3. Let $M = \mathbb{CP}_2 \# 3\overline{\mathbb{CP}_2}$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let

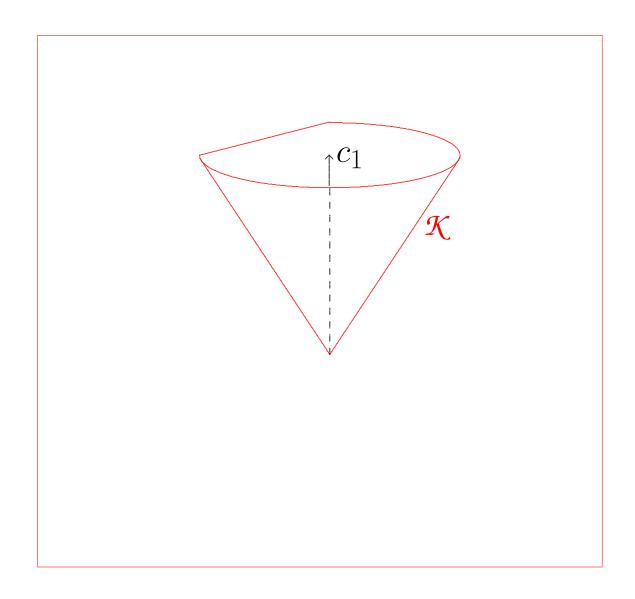
Theorem 3. Let $M = \mathbb{CP}_2 \# 3\mathbb{CP}_2$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let $[\omega]$ be a Kähler class on M for which

$$\mathcal{T}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le \frac{3}{2}c_1^2 - \frac{1}{4} = c_1^2 + 2.75.$$

Theorem 3. Let $M = \mathbb{CP}_2 \# 3\mathbb{CP}_2$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let $[\omega]$ be a Kähler class on M for which

$$\mathcal{T}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le \frac{3}{2}c_1^2 - \frac{1}{4} = c_1^2 + 2.75.$$

Then there is an extremal Kähler metric g on M with Kähler form $\omega \in [\omega]$.



$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) = H^2(M,\mathbb{R})$$

$$\uparrow c_1$$

$$\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le const$$

$$\uparrow c_1$$

$$\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le const$$

$$\uparrow c_1$$

$$\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le const$$

$$\uparrow c_1$$

$$\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \le const$$

Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75 .$$

Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75 .$$

Then there is an extremal Kähler metric g in Ω ,

Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2\#2\mathbb{CP}_2$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75 .$$

Then there is an extremal Kähler metric g in Ω , and a 1-parameter family

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}}_2$

Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75$$
.

Then there is an extremal Kähler metric g in Ω , and a 1-parameter family

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2\#2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75$$
.

Then there is an extremal Kähler metric g in Ω , and a 1-parameter family

$$[0,1)\ni t\longmapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}_2}$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \nearrow 1$.

Theorem B follows.

$$\Omega_t = (1 - t)c_1 + t\Omega$$

• Continuity method

$$\Omega_t = (1 - t)c_1 + t\Omega$$

• LeBrun-Simanca

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence. . .
- Sobolev Control

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling
 - Toric geometry

$$\Omega_t = (1 - t)c_1 + t\Omega$$

- LeBrun-Simanca
 - -Inverse function theorem \Rightarrow openness.
- Chen-Weber
 - Gromov-Hausdorff convergence...
- Sobolev Control
 - Yamabe trick + Gauss-Bonnet...
- Control bubbling
 - Toric geometry
 - Symplectic 2-spheres → Lagrangian 2-spheres