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r=Ag

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Recall:

CP5y = reverse oriented CPs.

Connected sum #:

Blowing up:

If NV is a complex surface, may replace p € NV
with CPPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.
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Theorem. Suppose that M 1is a smooth com-
pact oriented 4-manzifold which admats a complex
structure J. Then M also admits a (possibly un-
related) Finstein metric g with A > 0
CPy#kCP>, 0<k <S8,
— M= or
5% x §?

Diffeotypes: Del Pezzo surfaces. (4. with ¢; > 0.)
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Proots of stated result involve two parts:

e obstructions to Einstein metrics with A > 0:
— Hitchin-Thorpe Inequality: 012 > ().
— Seiberg-Witten Theory: invariant must vanish.

— Enriques-Kodaira Classification.

e cxistence of Einstein metrics with A > 0:

— Kahler geometry:

x Kahler-Einstein metrics.
x Conformally Kahler metrics.
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Kahler metrics:
(M*, g) Kéhler <= holonomy C U(2)

<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

= (M*, J) is a complex surface and 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

The 2-form

ir(J-, )

is curvature of canonical line bundle & = A%V,
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Two Riemannian metrics ¢ and h are said to be
conformally related if

h=1rg
for some smooth function f : M — RT.

If ¢ is Kahler, we will then say that
h is conformally Kahler.

When complex dimension m > 2.
f # const = h never Kahler for same .J.

Conformally Kahler = Hermitian.
o
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Kihler-Einstein metrics on (M#, J):

Hardest case: A > 0.

(Siu, Tian-Yau): 3 K-E metric ¢ with A > 0 on

CPo# CPo#t - - - #CP5 .
3<k<8

Full K-E moduli space: Tian, Chen-Wang.

Of course, CP5 and S? x S? also admit K-E metrics
with A > 0 — namely, obvious homogeneous ones!
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But CPo#CP5 or CPy#2CPy cannot admit

Kahler-Einstein metrics.

(Matsushima):
(M, J, g) compact K-E = Aut(M, .J) reductive.

(Isom(M, g) is compact real form.)

Since CPo#CP5 and CP>#2CP5 have non-reductive

automorphism groups, no K-E metrics.
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However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a

A > 0, conformally Kahler, Einstein metric h
on CPQ#QCPQ.

Note both of above Einstein metrics are Hermitian.
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surface, and suppose that h is an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then either

o (M, .J,h) is Kahler-Finstein; or

o V[ ~ CP>#CPy, and h is a constant times the
Page metric; or

o\ ~ CP>#2CP> and h is a constant times
the CLW metric.



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-
spect to J:

h(J-, J-) = h.



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;
o V| ~ Cpg#k@Q, k = 1,2,3;



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;
o V| ~ Cpg#k@Q, k = 1,2,3;

e 1 has positive Einstein constant,



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;

o V| ~ CPy#kCPy, k=1,2,3;

e 1 has positive Einstein constant,

e g 1s an extremal Kahler metric,



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;

o V| ~ CPy#kCPy, k=1,2,3;

e 1 has positive Einstein constant,

e g 1s an extremal Kahler metric,

® g has scalar curvature s > 0; and



Proposition (L 96). Let (M*,.]) be a compact
complex surface, and suppose that h s an Ein-
stein metric on M which s Hermitian with re-

spect to .J. Then h is conformal to a .J-compatible
Kahler metric g.

Moreover, if h is not itself Kahler, then
o (M,J) has ¢; > 0;

o V| ~ CPy#kCPy, k=1,2,3;

e 1 has positive Einstein constant,

e g 1s an extremal Kahler metric,

® g has scalar curvature s > 0; and

e after normalization, h = 3_29.
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Ingredients:

e Goldberg-Sachs Theorem
— T isotropic, integrable, VYW ybea = 0

e Derdzinski’s Theorem

— h Einstein, W special = conformally Kahler

ecy > ()
— because p + 2i00logs positive (1, 1)-form.

e Automorphism group non-trivial, non-semi-simple.

— ¢ 1s extremal, s non-constant.
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Proposition. Up to automorphisms and rescal-
ing, there is exactly one conformally Kahler, Ein-

stein metric h on M = CPy#CPy, namely the
Page metric.

But need new ideas to prove the following. . .
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Theorem 1. Up to automorphisms and rescal-
ing, there is exactly one conformally Kahler, Ein-

stein metric h on M = CPy#2CPs. This is the
CLW metric.

Theorem 2. Up to automorphisms and rescal-

ing, there 1s exactly one conformally Kahler, Ein-

stein metric h on M = CPy#3CP>. However,
this metric is Kahler-Einstein.
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Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Donaldson /Mabuchi/Chen-Tian:
unique in Kahler class, modulo bihomorphisms.
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Explicit lower bound:

Any Kahler (M?, g, J) satisfies

1
392 SQdMg > A(|w))

with = <= ¢ extremal, where

Cl1 - |W 3
A([W]) ::(1 [D

2
S+ el Fl

where F 1s Futaki invariant.
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(M, .J) Del Pezzo. % C H*(M,R) Kihler cone.

Proposition. Suppose that h is an Finstein met-
ric on M which is conformally related to a .J-
compatible Kahler metric g with Kahler class
w| =Q € K. Then ) is a critical point of

AKX = R.

Moreover, g is an extremal Kahler metric.

Conversely, if () € K is a critical point of A,
and if w € () is the Kahler form of an extremal
Kahler metric g,

then h = s™2¢g is an Einstein metric on M.

Lemma. For any extremal Kahler g on any Del
Pezzo M, scalar curvature s > 0 everywhere.
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Special character of dimension 4:

On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
%A% — A2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.



Riemann curvature of ¢

R A% 5 A?



Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r




Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature



Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

g2

Wol? ==
W4 o
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The Bach Tensor

Conformally invariant Riemannian functional:

2
W(g) = / (W gdpyg.
M
I-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d .
Wilar)| = / G By, dyig
t=0
where
1.
By = <vcvd T §TCd)Wacbd :

is the Bach tensor of ¢.

Conformally Einstein =— B =0
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Restriction of VW to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Now for an extremal Kahler metric

1
B = o {570“ + 2Hesso(5)}

and corresponds to harmonic primitive (1, 1)-form

1

{sp + 2@@@3} ;
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Restriction of VW to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g9g+1itB

is a family of Kahler metrics, corresponding to

Wt = w + tY
and first variation is
d .
—W(gt)| = / §"" By dpig
dt t=0

- _/‘B|2 dfig

So the critical points of restriction of W to
{Kéhler metrics} also have B = 0!
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Bach-flat Kahler metrics?

If (M*, ], g) Kéhler, s~ parallel. Hence
va(5_1W+>abcd = 0.

Conformally invariant, with appropriate weight!

Hence h = s™2¢ satisfies
VAW ) abed =0
where defined.
Bay = 2AVV? + %7” DV 1 )achd -
If ¢ Bach-flat, h = s~2¢ Einstein satisfies
0 = F“W 1) acb

and so Einstein when s # 0.

Del Pezzo case: s # 0 everywhere!
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To prove uniqueness results, show that

A X =R

has unique critical point for relevant M .

A is explicit rational function —
but quite complicated!

Proot proceeds by showing critical point invariant
under full automorphism group of M.

Done by showing A convex on certain lines.

Necessary calculations also led to new existence proof. . .
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[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-Einstein, and such that

® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.
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Theorem 3. Let M = CPy#3CP be the blow-
up of CIPo at three non-collinear points, and let
w]| be a Kahler class on M for which

Cl1 - (W 2
T(w) = 1[w52]> <plocrian

Then there is an extremal Kahler metric g on
M with Kahler form w € |w].



K c H"Y (M, R) = H*(M,R)
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Theorem 4. Let C) be any Kdhler class on CPy#2CPs
for which

T(Q) <875 =c¢t+1.75 .

Then there 1s an extremal Kahler metric g in (),
and a 1-parameter family

[07 1) D1 gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-EFinstein, and such that

® gt,—g in the Gromov-Hausdorff sense
for some t; /1.

Theorem B follows.
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Ingredients:

e Continuity method
Oy = (1 —t)cy + tL)
e LeBrun-Simanca

— Inverse tunction theorem = openness.

e Chen-Weber

— Gromov-Hausdorfl convergence. . .

e Sobolev Control

— Yamabe trick + Gauss-Bonnet. . .

e Control bubbling

— Toric geometry
— Symplectic 2-spheres ~~ Lagrangian 2-spheres



