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s = scalar curvature
= trace-free Ricci curvature
W = Weyl curvature (conformally invariant)

Proposition. Assume n > 4. Then
(M™, g) locally conformally flat <—= W = 0.
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Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M.
e What is inf 77

e Do there exist minimizers?
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Dimension Four is Exceptional
Einstein metrics are critical points of 7.

In certain cases, they are known to be minima:
T, K3, HYD,  CHyT.

Used to show Einstein moduli space is connected.

Berger, Hitchin, Besson-Courtois-Gallot, L.

Warning: Proofs also require control of [ s2dp!
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For M*,

) = [ WP

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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By contrast:

For M™
7 (g]) = / W[ 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬂr)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
Ricci-flat product K3 x T" not critical,

even among Ricci-flat product metrics. . .
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On oriented (M4, g),

A=At @A~
where AT are (41)-eigenspaces of
x 1 A% = A2
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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However, these are not independent!
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M M

Einstein metrics are critical for both.
.. Einstein metrics critical V quadratic functionals!

e.g. critical for Weyl functional

g — / \W@dug
M
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For example,
W ([g)) = — 1202 (M) + 2 /M\W+\2dug

So [ W 4 |2dp equivalent to Weyl functional.
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But any quadratic curvature functional also express-
ible in terms of

/SQd/Lg and /\W+|2d,ug.
M M

This is the pair of functionals we’ll use henceforth.



For (M*, g) compact oriented Riemannian,

Signature
1
(M)

= o5z . (WP = 1) d



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

) = [ Wl



For (M*, g) compact oriented Riemannian,

Signature
1
(M)

= o5z . (WP = 1) d



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

) = [ WPy
= [ (W W) dg

> | [ (1l = 1) di
M




For (M*, g) compact oriented Riemannian,

Signature
1
(M)

= o5z . (WP = 1) d

= 127?|7(M)



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

7 (l9)) = 1207 (M)



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

# (lg]) > 12n*7(M)
with = <— W _ = 0.



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

# ([g]) > 12m7(M)
with = <= W _ = 0. “self-dual”



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

# ([g]) > 12m7(M)
with = <= W _ = 0. “self-dual”

*W =W



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

7 (l9) = —12n*7(M)



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

7 ([9]) > —12m*7(M)
with = <— W4 = 0.



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

7 ([g]) > —127°7(M)
with = <= W, = 0. “anti-self-dual”



For (M*, g) compact oriented Riemannian,

Signature

(M) = —

= o5z . (WP = 1) d

7 ([g]) > —127°7(M)
with = <= W, = 0. “anti-self-dual”

*W =-W



For (M*, g) compact oriented Riemannian,

Signature
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7 ([g]) > —127°7(M)
with = <= W, = 0. “anti-self-dual”

Reversing orientation ~~

self-duality <— anti-self-duality
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Twistor picture of anti-selt-duality condition:

Oriented (M?, g) e~ (Z,J).
7 =S\, J:TZ =TZ,J*>=—1.

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a com-
plex 3-manafold iff W = 0.
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o If (M) finite and
T(M) =0,

obstructed if M # S%.
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Existence of Anti-Self-Dual Metrics?

e mCP>, m > 0. L, Donaldson-Friedman, et al
o CPo#mCPy, m > 10. L-Singer, Rollin-Singer
o (CPy#mCPy, m > 10¢.

o M##LCPy#mCPy, m > € > 0, m (M) = 0.

o M#mCPy, m > 0, any M. Taubes

By contrast:
M#mCP5 never Einstein for m > 0!

Violate Hitchin-Thorpe inequality 2y + 37 > 0.
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e Obstruction it m < 1.

e What about 2 <m < 97

e What is inf# when m < 97

e Do minimizers exist?
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admits an Einstein metric g which is Hermitian
with respect to J <= c¢{(M*,.J) “has a sign.”

More precisely, 3 such g with Einstein constant
A <= there i1s a Kahler form w such that

el (M*,J) = Aw.

Moreover, this metric 1s unique, up to isometry,

if A =£ 0.
Aubin, Yau, Siu, Tian ... Kahler case.

Chen-L-Weber (2008), L (2013): non-IKahler case.

Only two metrics arise in non-Kahler case!
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Proposition. Let (M*,.]) be a compact complex

surface, and suppose that g is an Einstein metric
on M which 1s Hermitian with respect to J:

g(J-,J:) = g.
Then (M*,g,.J) is conformally Kihler!

Strictly four-dimensional phenomenon.
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M M

Einstein metrics are critical for both.

Natural Question. When does Einstein metric
g on 4-manaifold M minimize one or both of these
functionals?
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Proof depends on Seiberg-Witten equations
Da® =0

1 .
+

Non-linear version of Dirac equation,

only defined in dimension 4.
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e What about Hermitian Einstein metrics?
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Every del Pezzo surface has b4 = 1.

< Up to scale, V|g] F! self-dual harmonic 2-form w:

dw = 0, *W = W.

Such a form defines a symplectic structure except
at points where w = 0.

Definition. Let M be smooth 4-manifold with
by (M) =1, and let |g] be conformal class. We
will say that |g| is of symplectic type if associated
SD harmonic w 1S nowhere zero.

e open condition;
e holds in Kahler case;

e most such classes have Y ([g]) < 0.
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satisfies
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M

with equality iff |g] contains a Kdhler-Finstein
metric q.

e

o (2x 4 37)(M),

This recovers Gursky’s inequality — but for a dif-
ferent open set of conformal classes!

This follows from a stronger inequality. . .
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Conformally Kahler, Einstein Metrics?
Two cases where equality forbidden in Theorem A:
CPy#CPy, CP>#2CP5 not Kihler-Einstein.

But carry conformally Kahler, Einstein metrics.
These metrics are toric: invariant under T action.
Can improve if we restrict to T2-invariant metrics.

Proof uses ideas of Abreu. Donaldson, Lejmi.

Objective: replace <Cl[c£(jé]> with “virtual action”
(c1 - [w]) >
= .7:
A(lw]) = BT QH %l

where F 1s Futaki invariant.
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The interesting cases are toric, and the action A
can be directly computed from moment polygon.
Formula involves barycenters, moments of inertia.

L2

L1
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Theorem C. Let M be the underlying 4-manaifold
of a toric del Pezzo surface, and let g be Ein-
stein, Hermaitian metric on M which is invari-
ant under fized torus action. Then the confor-
mal class [g] minimizes [, W |%d)e among sym-
plectic conformal classes which are invariant
under the torus action. Moreover, up to diffeo-
morphism, |g] is the unique such minimizer.

Key inequality:

71.2
[ > A
M

with equality only if [§] contains extremal Kahler
metric.
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Conjecture. If M* admits an Einstein, Her-
mitian metric g with A > 0, then [g] minimizes
I W |2dp among all conformal classes on M.

Even Kahler-Einstein cases would require new ideas.

Nearly symplectic structures?

Non-Kahler cases: eliminate toric condition?
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Boader Context

Theorem. Suppose that M is a smooth compact
oriented 4-manifold which admaits a symplectic
structure. Then M also admits an Einstein met-

ric g with A > 0 if and only if
(CP.#KCP,, 0<k<S8,
52 x S?,
K3,
M=~ < K3/Zo,
T
T4/ 2o, T )23, T Zs, T* | Zs,
T (Lo @ L), T /(L3 ® L3), or T" (Lo & Ly).




