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= Ag

for some constant A € R.

Dimension 4 exceptional for Einstein metrics.
Problem extremely rigid in lower dimensions.

Much more flexible in higher dimensions.



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is a rich source of examples.



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is a rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is a rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Natural Question. If (M*,.J) is a compact com-
plex surface, when does M * admit an Einstein
metric g (unrelated to J)?



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Complex geometry is a rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Natural Question. If (M*,.J) is a compact com-
plex surface, when does M * admit an Einstein
metric g (unrelated to J)?

Complete answer now available for A > 0 cases.
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Narrower Question. When does a compact com-
plex surface (M*,.J) admit an Einstein metric h
which 1s Hermitian, in the sense that

h(-,-) = h(J-, J-)?
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Theorem A. A compact complex surface (M*,.J)
admits an Einstein metric h which is Hermitian
with respect to J <= c¢{(M*,.J) “has a sign.”

More precisely, 3 such h with Einstein constant
A <= there is a Kahler form w such that

el (M*, ) = Aw.

Moreover, this metric 1s unique, up to isometry,

if A =£ 0.
Aubin, Yau, Siu, Tian ... Kahler case.

Chen-L-Weber (2008), L (2012): non-IKahler case.

Only two metrics arise in non-Kahler case!
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Theorem B. Let (M*,.]) be a compact complex
surface, and suppose that h is an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then either

o (M, .J,h) is Kahler-Finstein; or

o V[ ~ CP>#CPy, and h is a constant times the
Page metric; or

o\ ~ CP>#2CP> and h is a constant times
the Chen-LeBrun-Weber metric.

Exceptional cases: CIPo blown up at 1 or 2 points.
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Theorem C. Suppose that M 1is a smooth com-
pact oriented 4-manzifold which admats a complex
structure J. Then M also admits an (unrelated)
Einstein metric g with A > 0

(CP#kCPy, 0< k<8
diff
— M = < or

kSQXSQ

—: Hitchin-Thorpe inequality, easy Seiberg-Witten.

Similarly when M symplectic instead of complex.
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CIP9 at k£ distinct points, 0 < k < &,
in general position, or CIP; x CPy.

CPQ#k@% 0 < k<S8,
M= or
5% x S?
k # 1,2 —> admit Kahler-Einstein metrics.

Siu, Tian-Yau, Tian, et al. ..

Exceptions: CIPo blown up at 1 or 2 points.
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Theorem. Any Del Pezzo surface (M*,J) ad-
mits an Einstein metric h which is a conformal
rescaling of a J-compatible Kahler metric g. In
particular, this Einstein metric h is Hermaitian
with respect to J.

Will describe a second proof (I "12) which contains
much more information.
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Rough strategy of proof:

Find Kahler metric which minimizes

2
gr—>/3d,ug
M

among all Kahler metrics g.
Here s = scalar curvature.
Note that Kéahler class |w] of ¢ allowed to vary!

Corresponding problem with |w] fixed:
Calabi’s extremal Kahler metrics.
So minimize among extremal Kahler metrics.

Minimizer g has s > 0.

Einstein metric is h = s~2g.
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Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Donaldson /Mabuchi/Chen-Tian:
unique modulo bihomorphisms.



Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:
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s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d

%W—l—(gt)

where
Bay = VNV + 7YV ) g -

is the Bach tensor of g. Symmetric, trace-free.

— _/gabBab d:ug
t=0

Conformally Einstein =— B =0
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s = scalar curvature
1 = trace-free Ricci curvature
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Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

g2

Wol? ==
W4 o
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In fact, for Kahler metrics,

1
B = 5 257"+ Hessg(s) + BJ*HeSSO(S)}

where Hessy denotes trace-free part of VV.
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Restriction of W} to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Lemma. If g 1s a Kahler metric on a complex
surface (M*,.]), the following are equivalent:

® g 1s an extremal Kahler metric,

e B=B(J-.J);

)= B(J--) is a closed 2-form,;

® g = g+ 1B is Kahler metric for small t.
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Restriction of W, to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g+1itB

is a family of Kahler metrics, corresponding to

Wi = w + tY
and first variation is
d .
—Wil(g)| = / g™ By, dyig
dt =0

— _/|B‘2 dfig

So the critical metrics of restriction of Wy to
{Kéhler metrics} are Bach-flat Kéhler metrics.
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So any critical point of restriction has

0 =68 = si" 4+ 2Hessq(s)

— the conformal rescaling h = s~2¢ is
Einstein courtesy of transformation rule

f(u%q) =1(g)+ (n— 2)uHessO(u_1) .
This conformal rescaling trick due to Derdzinski.

WARNING. h undefined where s = 0!

Lemma. For any extremal Kahler g on any Del
Pezzo M, scalar curvature s > 0 everywhere.
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Proposition 1. There is a conformally Kahler,
Einstein metric h on M = CIPo#2CPy for which
the conformally related Kahler g minimizes the

functional
2
g lﬁ/ S d,LLg
M

among all Kahler metrics on M. Consequently,
h 1s an absolute minimazer of the functional

hH/ W5 dpuy,.
M

among all conformally Kahler metrics on M.
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Proposition 2. This minimizing Kdhler met-
ric g on CPPo#2CPy is conformal to an Einstein
metric. Moreover, there is a 1-parameter famaily

[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-Einstein, and such that

® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.

Similarly for CIPo#CPs5, though less interesting. . .
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1
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with = <= ¢ extremal, where

Cl1 - |W 3
A([W]) ::(1 [D

2
S+ el Fl

where F 1s Futaki invariant.
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Explicit lower bound:

Any Kahler (M?, g, J) satisfies

1

3272
with = <= ¢ extremal, where

s°djg > A([w])

A(lw]) = T(lw]) + B([w])

Lemma. For all |w] on any Del Pezzo M,

B(lw]) <
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Proposition 4. Let M = CP#3CP5 be the blow-
up of CIPo at three non-collinear points, and let
w]| be a Kahler class on M for which

Cl1 - (W 2
T(w) = ngb <plocrian

Then there is an extremal Kahler metric g on
M with Kahler form w € |w].



oYY (M, R) = H*(M,R)
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Theorem (Chen-Weber). Let g; be an arbitrary
sequence of unit-volume extremal Kahler met-
rics on M* with uniformly bounded energies A
and Sobolev constants Cg. Then 3 subsequence
which Gromov-Hausdorff converges to an extremal
Kahler metric on a compact complex orbifold.

Smallest constant such that
2 2 —1/2 2
Jull3s < Cs (I1VullFo + V1 2ul3,)

max (6, smaxvl/Q)
Cao <
S > Y[

9]



Theorem (Chen-Weber). Let g; be an arbitrary
sequence of unit-volume extremal Kahler met-
rics on M* with uniformly bounded energies A
and Sobolev constants Cg. Then 3 subsequence
which Gromov-Hausdorff converges to an extremal
Kahler metric on a compact complex orbifold.

Generalizes work of
Anderson, Bando-Kasue-Nakajima, Tian-Viaclovsky. . .
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Definition. On a compact complex surface (M, .J),
the controlled cone is the set of Kahler classes
(w| which satisfy

3 9

A(]) < Ser2().

Gauss-Bonnet =—

Y[Qg] > G4’ Gq? - A([@))

Since

A(lwl) = T(w)) +113<[w])
< T(l]) +7

have Sobolev bound on convex cone
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e 1 pointed G-H limit of rescalings which is a
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Theorem. Let g; be an arbitrary sequence of
unit-volume extremal Kahler metrics on Del Pezzo
M which satisfy

T(le)) < 5ei® 5
Then 3 subsequence which Gromov-Hausdorff con-
verges to an extremal Kahler metric on a com-

pact complex 2-orbifold.

Theorem (LeBrun-Simanca). Set of [w| € K con-
taining extremal Kahler metric is open.

Suggests continuity method. ..



Theorem. Let g; be an arbitrary sequence of
unit-volume extremal Kahler metrics on Del Pezzo

M which satisfy

3 o 1

< ot Z

T(l)) < 5’ -

Then 3 subsequence which Gromov-Hausdorff con-
verges to an extremal Kahler metric on a com-

pact complex 2-orbifold.

Difficulty: rule out deepest bubbles.
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must be toric, too, with Ho(X,R) #£ 0 generated
by holomorphic CPy’s.

Moment map profile:
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e Bubble arises by rescaling region of manifold by
scales 7 00.

e Limit X has negative intersection form.

e Limit holomorphic CIP; arises from symplectic
S%c M.
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e Bubble arises by rescaling region of manifold by
scales 7 00.

e Limit X has negative intersection form.

e Limit holomorphic CIP; arises from symplectic
S%c M.

Lemma. For toric Del Pezzo M, if bubbling oc-
curs as |w;| — ) in controlled cone, then there

exists [S| € Ho(M,7Z) with
S]-[1S] = =k <0
c1- 1S =2—-k
()-[S] =0
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Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

612 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
with
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Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

612 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
with

wicy - [S] >0, Ju; >0
S]-1S] = —k<0
c1-1S]=2—-k
(-15] =0




Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

612 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
with

cp - [S] >0,
S]-[S] = -k <0
c-1S]=2—-k
0-[9] = 0




Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

612 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
with
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c1-[S] =1
0[] = 0




Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

012 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
represented by holomorphic (—1)-curve with

Q- [S] = 0



Now suppose that ¢; € K on toric Del Pezzo M
represented by extremal Kahler metric. Suppose
that |w]| satisfies

T(w]) <

Consider line segment

012 —

MO | Qo
T

wi] = (1 —t)cr + tlw]
of Kahler classes, and suppose extremal metric ex-
ists for ¢ € [0, t). If bubbling occurred for t; " t,
then, setting (2 = [w¢], would have [S] € Ho(M, Z)
represented by holomorphic (—1)-curve with

Q- [S] = 0

It follows that bubbling off cannot occur!
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Proposition 4. Let M = CP#3CP5 be the blow-
up of CIPo at three non-collinear points, and let
w]| be a Kahler class on M for which

(cr-W)? 3 5 1
= < —cif — - = 2.75.
T(l) = < Ge? - g =i
Then there is an extremal Kahler metric g on
M with Kahler form w € |w].

Also works when approaching boundary of
Kéhler cone, but can bubble off (—1)-curves.
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Proposition 5. Let {) be any Kahler class on
CIPo#2CIPy for which

T(Q) <875 =ct+1.75 .

Then there 1s an extremal Kahler metric g in (),
and a 1-parameter famaly

[07 1) Sl gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-EFinstein, and such that

® gt,—g in the Gromov-Hausdorff sense
Jor some t; /1.

Uniform bound B(|w]) < 1/4 now implies that
A=T+5B

has minimizer |w| represented by conformally Ein-
stein Kahler metric. Uniqueness?
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In other words,

h=1rg
3 Kahler metric ¢, smooth function f : M — R™.
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Lemma. Let (M*,.J) be a compact complex sur-
face, and suppose that h 1s an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then (M*, h, J) is conformally Kdhler!

Strictly four-dimensional phenomenon: must have

h=/Jg

for some Kahler metric ¢, smooth function f.
Actually, g must be an extremal Kahler metric.

May normalize so that either f = s 2 or f = 1.
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Lemma. Let (M*,.J) be a compact complex sur-
face, and suppose that h 1s an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then (M*, h, J) is conformally Kdhler!

Key step: show W 4 has a repeated eigenvalue.



Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

S
12 .
W_|_ — _E

@) [V
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Lemma. Let (M*,.J) be a compact complex sur-
face, and suppose that h 1s an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then (M*, h, J) is conformally Kdhler!

Key step: show W 4 has a repeated eigenvalue.
Riemannian analog of Goldberg-Sachs theorem:.

V- -Wi =0, while T LUNT isotropic & involutive.

0=V
so g = u?/3h is Kahler. (Derdzinski, Boyer)
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Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1

BN (¢ - [wp? | 1 y
3272 H

w]?
A(lw])

where JF 1s Futaki invariant.

2
sdpg =

A is function on Kahler cone KK ¢ H?(M,R).

Lemma. If g is a Kahler metric on a compact

complex surface (M*,.]), with Kdihler class [w),
then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and

e (W] is a critical point of A: I — R.



Lemma. Suppose compact complex surface (M4, J)

admits a Hermitian h which s Einstein, but not
Kdhler. Then (M*,.J) is a Del Pezzo surface.



Lemma. Suppose compact complex surface (M4, J)
admits a Hermitian h which s Einstein, but not
Kdhler. Then (M*,.J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, any
extremal Kahler metric g on M has scalar cur-
vature s > 0.



Lemma. Suppose compact complex surface (M4, J)
admits a Hermitian h which s Einstein, but not

Kdhler. Then (M*,.J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, any
extremal Kahler metric g on M has scalar cur-
vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahler
metric on a Del Pezzo surface (M*,.J). Then
the Hermitian metric h = s~ 2¢ is Einstein, with
positive Einstein constant.



Lemma. Suppose compact complex surface (M4, J)
admits a Hermitian h which s Einstein, but not

Kdhler. Then (M*,.J) is a Del Pezzo surface.

Lemma. If (M4, J) is a Del Pezzo surface, any
extremal Kahler metric g on M has scalar cur-
vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahler
metric on a Del Pezzo surface (M*,.J). Then
the Hermitian metric h = s~ 2¢ is Einstein, with
positive Einstein constant.

Lemma. Conversely, any Hermitian, [Einstein
metric on a Del Pezzo surface arises in this way.



Lemma. Suppose compact complex surface (M4, J)
admits a Hermitian h which s Einstein, but not

Kdhler. Then (M*,.J) is a Del Pezzo surface.
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extremal Kahler metric g on M has scalar cur-
vature s > 0.

Lemma. Suppose that g is a Bach-flat Kahler
metric on a Del Pezzo surface (M*,.J). Then
the Hermitian metric h = s~ 2¢ is Einstein, with
positive Einstein constant.
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Hermitian, Einstein metric then given by
h = 3_29

and uniqueness Theorem B follows.



Theorem. Let (M*,.J) be a Del Pezzo surface.
Then, up to automorphisms and rescaling, there
s a unique Bach-flat Kahler metric g on M.
This metric 1s characterized by the fact that it
minimizes the Calabi functional

C—/ SQdu
M

among all Kdihler metrics on (M?,.J).

Only three cases are non-trivial:

CPy#kCPy, k=1,2,3.
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The non-trivial cases are toric, and the action A
can be directly computed from moment polygon.
Formula involves barycenters, moments of inertia.

L2

L1




To prove Theorem, show that

AKX =R

has unique critical point for relevant M .



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = X/R™.



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —



3[3+28v+967% +1687% + 1647* + 8075 +167% +168% (1 + 1) +1608 (14 8+ )% +168% 5+ 247 + 4347 +377% + 15+ +29%) + 45% (41 + 2287 + 478+ +496+% + 2634 +

60~° 4+ 4~9) + 883 (21 + 135~ + 32672 + 392~° + 2487% + 7445 + 8~8) 1 48(7 + 58~ + 17672 + 27073 + 228~ + 96~° + 16~0) + 452 (24 + 176~ + 479~2 + 65245 + 47874 +

172+ 4 244%) 4 160° (5 + 28° + 24+ + 432 4+ 3742 4+ 157 4247 4 82 (15 + 144) + B3 (37 + 70 + 3042) + B2 (48 + 123+ + 10872 + 30+3) + B(24 + 92+ + 12372 + 70+ 4

147%)) + a0 (41 4+ 488 + 228~ + 47842 +496~> +2637? + 6077 + 446 + 85 (60 +56~) + B4 (263 + 476~ + 196~72) + 883 (624 169~ + 139~2 + 35~°) + 282 (239 4+ 876~ + 1089~ +

556~° + 98+%) 4 48(57 + 263~ + 43872 + 33843 + 11972 + 14~5)) 483 (21 + 135+ + 32642 +392~3 + 248+% + 74+% 4840 £ 880 (1 + +) + 285 (37 + 70y +30~2) +45% (62 +

169~ + 139~2 +35~73) 4+ 48° (98 + 353~ + 428~2 + 210~° +357%) + 282 (163 + 735+ + 1179~2 + 856~° + 278~v% +307°) + B(135 + 736~ + 147072 + 1412~2 4+ 676~7% + 140~° +

8+0)) 4 4a(7 + 58~ + 17642 + 27072 + 228v% 1 964% + 16~8 £ 1680 (1 + +)% + 48% (24 + 924 +123~2 + 7043 + 144%) 1 454 (57 + 263~ + 43872 1+ 338~3 1 119+% £ 1445) ¢

233 (135 + 736~ + 147072 + 1412~° + 6764? + 140+° +8~0) + 482 (44 + 278~ + 645+2 + 735~° + 43874 + 1234° 4+ 12~45) 1 25(20 + 210~ + 556~2 + 736~° 4 526~7% + 18445 +

24+9)) 4 402 (24 + 176+ + 479+2 + 65273 + 478~ 117275 + 2446 1 248%(1 £ )2 1 48% (43 + 123~ + 108~2 + 3043) + 254 (239 + 876~ + 1089~2 + 556+° +98+%) +45°% (163 +

735~ + 1179~2 + 856~° + 278+ + 307%) + 48(44 + 278~ + 64542 + 735+° + 438~+% + 12345 + 1246) 4 52479 + 2580~ + 5058+2 + 471645 + 217842 + 432+° + 24~,6))V

[1 4107 + 3672 + 6497 + 607* + 247° + 2485 (1 + 7)® + 2405 (1 + 8+ 7)® + 12641 + 1) 25 + 207 + 2377 +107%) + 1687 (4 + 287 + 7297 + 9042 + 574* +154°) +

12%(3 + 247 + 6972 + 96+ + 687 +209°) + 28(5 + 457 + 14477 + 22493 + 1807 +607%) + 1201 (1 + B+ )2 (5 + 207 + 23+% + 1075 + 1085 (1 + 4) + B2(23 + 464 +

1672) 4 28(10 4 307 + 2372 + 5+2)) + 1603 (4 + 287 + 7292 + 9073 + 579% + 1545 +158%(1 + )2 + 384 (19 + 577 + 5072 + 13+%) + 38%(30 + 1207 + 15542 + 78+ +

13v%) 4+ 382 (24 4 1207 + 20672 4 155v% 4 50v* +5¢°) + B(28 + 168+ + 36072 4+ 3607> + 1714% +307°)) + 1202 (3 + 247 + 6972 + 9673 + 68v* + 204° +208% (1 + )3 +

BL(68 + 272~ + 366~2 + 200> + 36+?) + 483 (24 + 120~ + 206~2 + 155> + 5042 + 5+5) + 28(12 + 844 + 20742 + 24043 + 1364% + 307°) + 82(69 + 414~ + 864~2 +

824~3 + 366~ + 607%)) + 2a(5 + 45+ + 14442 + 22443 + 1804 + 607% + 608 (1 + )% + 128%(15 + 75~ + 1362 + 114~3 + 4342 + 5+5) + 1282 (12 + 84~ + 2072 +

240~3 + 13674 + 307%) + 885 (28 + 168~ + 360~2 + 360~° + 1714% + 30~°) + 38(15 + 120~ + 3362 + 448~> + 300~* + 8075))}



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —
but quite complicated!



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —
but quite complicated!

Proof proceeds by showing critical point invariant
under certain discrete automorphisms of M.









<&







@\R



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —
but quite complicated!

Proof proceeds by showing critical point invariant
under certain discrete automorphisms of M.

Done by showing A convex on appropriate lines.



To prove Theorem, show that

AKX =R

has unique critical point for relevant M .

Here X = K/RT.

A is explicit rational function —
but quite complicated!

Proof proceeds by showing critical point invariant
under certain discrete automorphisms of M.

Done by showing A convex on appropriate lines.

Final step then just calculus in one variable. ..
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Proposition. Modulo rescalings and biholomor-
phisms, there is exactly one conformally Kahler,
Einstein metric h on M = CPy#2CPy. This

metric coincides with the C-L-W metric.

Proposition. Modulo rescalings and biholomor-
phisms, there is only one conformally Kahler,
Einstein metric h on M = CPo#3CP>. This
metric 15 actually Kahler-Einstein, and 1S ex-
actly the metric discovered by Siu.



Theorem B. Let (M*,.]) be a compact complex
surface, and suppose that h is an Einstein metric
on M which 1s Hermitian with respect to J:

h(J-,J-) = h.
Then either

o (M, .J,h) is Kahler-Finstein; or

o V[ ~ CP>#CPy, and h is a constant times the
Page metric; or

o\ ~ CP>#2CP> and h is a constant times
the CLW metric.



