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for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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Moduli Spaces of Einstein metrics

& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.

Actually related to various non-existence results:
Many 4-manifolds do not admit Einstein metrics!
Becomes more extreme if we demand A > 0. ..
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On oriented (M4, h),
A= AT @A™
where AT are (41)-eigenspaces of
%A% — A2,
w =1

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of h
R A% 5 A?
splits into 4 irreducible pieces:

AT* ATF

+ 7+ .8 G
/\W—FE T

s = scalar curvature
1 = trace-free Ricci curvature
W = self-dual Weyl curvature (conformally invariant)

W = anti-selt-dual Weyl curvature !
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Einstein = 1 82+2\W 2] g
1nsteln —
472 24 + Hh

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein h, then

(2x +37)(M) > 0,

with equality <= Riemannian connection V on
AT — M is flat <= (M, h) finitely covered by
flat T* or Calabi-Yau K3.
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CPy#kCPy, 0< k<8,
S2 % S2.

K3,
K3/Zo,

T4

T4 )2, T )23, T )24, T* ) Zs,

TY)(Zo © 7o), T/ (Z3 ® Z3), or T*)(Zo  Zy).

Below the line:

Every Einstein metric is Ricci-flat Kahler.

Moduli space &(M) connected!
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Conformal geometry:

Two Riemannian metrics ¢ and h are said to be
conformally related if

h= f*g
for some smooth function f : M — RT.

If ¢ is Kahler, we will then say that
h is conformally Kahler.

(M*, h) Einstein and conformally Kihler =
g is Bach-flat = ¢ is extremal Kahler metric.

(M*, h) also compact, but not Kéhler-Einstein =

s>0 and h = const S_Qg
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each del Pezzo (M*,J) admits a
J-compatible conformally Kahler, FEinstein
metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi 87, L. "12.
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Theorem (L '15). On any del Pezzo M*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

W (w,w) >0

everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Reasonably satisfying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Kahler = AT = Rw @ ReA2V

S
¥ 3
det(W™) = det 5 | =2 >0
(W) = de 12 364

@) Vo

for these metrics & conformal rescalings:

g~ h=f2g = det(W) ~ f0det(W).
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2019): terse, opaque proof that <.
L (2019): completely different proof.

L (2020): related classification result.
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+f+v7=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

Get almost-complex structure .J on M or M by
w=h(J").
Claim: (M, h) compact Einstein = .J integrable.
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Theorem A. Let (M, h) be a simply-connected
compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then h 1s conformal to an

orientation-compatible Bach-flat extremal Kahler
metric g with scalar curvature s >0 on M.

Simply connected hypothesis is essential!
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Theorem B. Let M be smooth compact oriented
4-manifold with m # 0. Then, M admits an

Einstein metric h with det(TW ") > 0 <=
(P = (9% x 52)/{a x v),
2 = (5% x 5% /{(a x a),
M % { 24CP,,
942CPy, or
| 2#3CPs.

Moreover, for each such Einstein metric h, the
universal cover (M, h) is Kahler-Einstein, and

(52 % §2

— diff CPQ#S@Q,
CPy#5CPy, or
\@P2#7@2,

s a del Pezzo defined over R, with real locus & .
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Why Kahler-Einstein? Why can’t you have

CP,#CPy 223 M7

Impossible for M oriented!

Otherwise, H(M, Z) would be purely torsion.
Meanwhile, H Q(CPQ#@Q, 7.) is torsion-free.

.. Pull-back of a spin® structure is a spin structure.

But CPo#CPs isn’t spin!
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(P = (9% x 52)/{a x v),
2 = (5% x 5% /{(a x a),
M % { 24CP,,

942CPy, or

| 2#3CPs.

Cute fact: No 4-manifold on this list admits an
orientation-compatible almost-complex structure!

Indeed, they all have Todd genus
X+T 1—[)1—|—b_|__

1
Td = — & 7.
4 2 2§Z
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Theorem C. There are exactly 15 diffeotypes of
compact oriented 4-manifolds M that carry Ein-
stein metrics h with det(W ™) > 0 everywhere.
For each manifold, the moduli space & jot (M) of
these special Einstein metrics is connected, and

exactly sweeps out a single connected component
of the Finstein moduli space & (M ).



Theorem D. Let (M, h) be a compact oriented
Einstein 4-manifold. If

5v/2
~ 21V21
everywhere on M, then actually det(TV ") > 0.
Consequently, all the results described remain

true if we merely tmpose this ostensibly weaker
hypothesis.

WT4£0 and det(W ') >
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Some indication of the proof:

By second Bianchi identity;,

h Einstein = W™ = (6IW)" = 0.

|
(OW)pea = =VaWhea = =Vierap + o Vas

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.
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If h = f2¢ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).
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We'll choose g = f~2h and w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2fWHAT

with w ® w, and integrate by parts. This yields:

0= / (7, VoV (w05 (w,0) 6| () P2l Pleo?] £
o >
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Let aw > 3 > ~ be eigenvalues of W™

0

Wr=1| g8

~

a+8+v=0
a>0 <0, HW"#£0
det(W™T) = aBy

det(W") >0 = o has multiplicity 1.

So v = avj, : M — RT a smooth function. Set

f=ay ™ g=fh =
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Eigenvalues of W™ carry a conformal weight:

For g = f—2h,

o 2o

So our choice of f = o~ 1/3 implies

0= al/s = 1

— af =1
Now choose w € AT so that
W) =aw, |uly=v2

after at worst passing to double cover M — M.
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S
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Wy >

DO | o
Q
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det(WT) >0 = W (Vew, Véw) <0



200{w, V*Vw)

S
+§Oz|w|2 — 3042\w]2} f du

wlp =2 = (Vew) Lw

det(WH) >0 —

— WH(Vew, Véw) > 0
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But

af =1
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0 2/ [2<w,V*Vw>—3W+(w,w)+§\w\2 d
M






oz/ [%|Vw\2+%<w, (d+ d¥)? w>} du
M

Because

(d+d*)? = Vv — oW +§

on AT,



1
02—/ |Vw\2d,u+3/ ldwl|? dpu
2Jm M



1
oz—/ \Vw\QdquS/ ldwl|? dpu
2JMm M

So Vw = 0, and ¢ is Kahler!
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Bye!



