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l.€.

r=Ag

for some constant A € R.

Mathematicians call A the Einstein constant.

Has same sign as the scalar curvature
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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In fact, the moduli space of Einstein metrics on S°
has infinitely many connected components, because
J sequences unit-volume Einstein metrics with A—07.

(Bohm, Collins-Székelyhidi)

Connected sums (S? x S3)# - - - #(S5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli spaces typically disconnected.

Similar results for most simply connected spin 5-
manifolds. (Van Coevering, Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, Kobayashi-Todorov)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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K(P) = K(PY)
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H*(M,R)={p e D(A%) | dp =0, d*yp =0}

Since * is involution of RHS, —
H*(M,R) =H} dH,,

where

Hy ={p € T(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

The numbers
by (M) = dimH

are independent of ¢, and so are invariants of M.
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Best understood in terms of intersection pairing

(1o, [0]) H/MsOMD

Diagonalize:

+1

—1

T(M) = by (M) — b_(M)
“Signature” of M.
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H*(M,R)={p e D(A%) | dp =0, d*yp =0}
Since * is involution of RHS, —

H*(M,R) =H} dH,,

where

Hy ={p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

Example. On any Kihler (M4, ¢, J), Kéhler form
W = g(J7 )

1s a harmonic self-dual 2-form:

+
wE?—[g
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Hodge theory:

H*(M,R)={p e D(A%) | dp =0, d*yp =0}
Since * is involution of RHS, —

H*(M,R) =H} dH,,

where

Hy ={p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

Example. For any symplectic (M*, w),
3 “adapted” Riemannian ¢ such that w € HE;.
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Any Kahler form on M?2™ is a symplectic form:
do =0 _w:TM > T*M.

When n = 4, this affects the differential topology,
by yielding non-zero Seiberg-Witten invariants.

This in turn constrains the scalar curvature etc. of
arbitrary Riemannian metrics on the 4-manifold.

There is no higher-dimensional version of this story!
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invariant for any spin® structure on M.

If M admits a symplectic form w, this invariant is
non-zero for the spin® structure determined by w.

= V metric g, 3 a solution of the Seiberg-Witten
equations

Ds® =0
Fi = io(D).

for this spin® structure.
Weitzenbock argument = A metric g with s > 0!
Moreover, any g on M satisfies e.g.

/ s2dp > 32w (2x + 37) (M)
with equality iff ¢ is Kahler-Einstein.
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I[f bo(M) = 1, there are instead two Seiberg-
Witten invariants for each spin® structure, because
different perturbations of the SW equations yield
different signed counts of the number of solutions.

In practice, this means that psc metrics are only

obstructed on most, but not quite all, symplectic
M* with by = 1.
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Kahler geometry provides us with a particularly rich
source of examples of compact Einstein manifolds.

Basic question: What do these special examples
tell us about general Einstein metrics?

If (M*,.J) compact complex surface, and M admits
an Einstein metric, does M admit a conformally
Kahler, Einstein metric?

If (M*, J) compact complex surface, and M admits
an Einstein metric, then M must be of Kahler type!
In particular, admits symplectic structures!

If (M*,g,.J) compact complex surface, where ¢ is
both Hermitian and Einstein, then ¢ is conformally

Kahler!

False in higher dimensions!
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Theorem (L. '09). Suppose that M is a smooth
compact oriented 4-manaifold which admits a
symplectic structure w. Then M also admits an
Einstein metric g with X > 0 if and only if

(CP,#kCPy, 0<Ek<S

52 x SQ,
K3,
di
M 2 K37,
T4

T4 )2, T )23, T )2y, T | Zs,
T (Lo @ L), T /(L3 ® L3), or T" /(Lo ® Ly).

There are also attractive results in the A < 0 realm,
where Seiberg-Witten really comes into play. But
less definitive, and beyond the scope of this lecture.
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When n = 4, Einstein metrics satisfy a remarkable
conformally-invariant equation.
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only depends on the conformal class

lg] = {u29 | u: M QRJF}.

Measures deviation [¢g| from conformal flatness.
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For (M*, g) compact oriented Riemannian,

Gauss-Bonnet formula for Euler characteristic

1 st | 2
M) = — - w2 d
X (M) SWQ/M<24 o~ T IWIT ) dpe

— FEinstein metrics are critical points of 7!

In n = 4, 4 conformally-invariant decomposition

W:W+—|—W_



For (M*, g) compact oriented Riemannian,

Euler characteristic



For (M*, g) compact oriented Riemannian,

Euler characteristic

o= | I
X =gz [l T -7

Signature

w0 =5 [ (W= 1)

1272



For (M*, g) compact oriented Riemannian,

Euler characteristic

1 52 K
;wmgj/(—+wuﬁ+w2——
™ JM

Signature

w0 =5 [ (W= 1)

1272

X
=)
|

—127%7 (M) + 2 /M|W+\2dug



For (M*, g) compact oriented Riemannian,

Euler characteristic

1 52 K
xon=— [ <—+ W+ - I
™ JM

Signature

1
1272 S

(M) (W2 = W) du

W (lg)) = —1202r(M) + 2 /M|W+|2dug



For (M*, g) compact oriented Riemannian,

Euler characteristic

Signature

1
1272 S

(M) (W2 = W) du

W (lg)) = —1202r(M) + 2 /M|W+|2dug

L,
Bgp = Q(VCvd + §r6d)(W+>acbd



For (M*, g) compact oriented Riemannian,

Euler characteristic



A case of special interest:



A case of special interest:

(M*, g, .J) Kéhler.



Kahler case:

Al =Ru@ A~



Kahler case:

Al =Ru@ A~

AT = Re(A*Y) @ Rw



Kahler case:
AV = Ro @ AT
AT = Re(A*V) @ Rw

V.J=0= R € End(Ab)



Kahler case:
A =Rw@A™
AT = Re(A*V) @ Rw
VJ=0= R € End(AV) =

S
W+ — = 0
T



Kahler case:
A =Rw@A™
AT = Re(A*V) @ Rw
VJ=0= R € End(AV) =

S
Wo 4+ — = 0
T

NV



Kahler case:
AV = Ro @ AT
AT = Re(A*Y) @ Rw

VJ=0= R € End(AV) =

S
12 .
W_|_ — _E

@) [V



Kahler case:
AV = Ro @ AT
AT = Re(A*V) @ Rw

VJ=0= R € End(AV) =

g2
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On Kahler metrics,

[ 1w - / iy

so any critical point of restriction must be
extremal in sense of Calabi.

Lemma. If g 1s a Kahler metric on a complex
surface (M 4 ), the following are equivalent:

e g is an extremal Kahler metric;

e B=B(J-J);

)= B(J- ) is a closed (1,1)-form;

e g; = g+ tB is Kahler metric for small t.
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Restriction of 7, to Kahler metrics?

On Kahler metrics,

[ 1w - / iy

so any critical point of restriction must be
extremal in sense of Calabi.

So Bach-flat Kahler = ¢ extremal and
0 = si" 4+ 2Hessy(s).

- If s > 0 everywhere, the metric s™2¢ is Einstein.
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Most important cases are toric, and the action A
can be directly computed from moment polygon.
Formula involves barycenters, moments of inertia.
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Action Function on Kahler Cone

For any extremal Kéhler (M*, g, .J),

1
3272

C w :
g = “[ -+ el il

2
A(lw])

where JF 1s Futaki invariant.

A is function on Kahler cone KK ¢ H?(M,R).

Proposition. If g is a Kahler metric on a com-
pact complex surface (M*,.J), with Kdihler class
w], then g satisfies B =0 <—

e g 1s an extremal Kahler metric; and

e (W] is a critical point of A: I — R.
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each del Pezzo (M*J) admits a
J-compatible conformally Kahler, FEinstein
metric, and this metric is geometrically unique.
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One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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Theorem (L '15). On any del Pezzo M*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

Wi(w,w) >0

everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W .

Kahler = AT = Rw @ ReA2V
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Reasonably satisfying result.
But W (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W .

Kahler = AT = Rw @ ReA2V

det(TV.) = d E s s 0
et(Wy) = de 12 364

@) [V

for these metrics & conformal rescalings:

g~ h=f2g = det(W5) ~~ F0 det(W/4).
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Reasonably satistying result.
But W (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W .

Wu's criterion:

det(W+) > ().

Wu (2021): terse, opaque proof that <.
I (2021a): completely different proof.

L. (2021b): related classification result.
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Let o« > 8 > 7y be eigenvalues of W :

87
We=1 /b
Y

a+B+v=0

a>0, <0, lch_|_7é0

det(Wy) = afy

det(Wy) >0 =« has multiplicity 1.

Get almost-complex structure .J on M or M by

W = g(J7 )
Claim: (M, g) compact Einstein = .J integrable.



Let o« > 8 > 7y be eigenvalues of W :

87
We=1 /b
Y

a+B+v=0

a>0, <0, lch_|_7é0

det(Wy) = afy

det(Wy) >0 =« has multiplicity 1.

Integrability proot based on Weitzenbock formula

0= V*VW+ + §W+ —6Wio WL+ 2‘W+|2]
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Theorem (Wu/lL 21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

W AT = AT
satisfies
d6t<W+) > ()

at every point of M. Then M s diffeomorphic to
a del Pezzo surface, and g is one of the confor-
mally Kahler Einstein metrics weve discussed.

Corollary. Every simply-connected compact ori-
ented Einstein (M*, h) with det(W,) > 0 is dif-
feomorphic to a del Pezzo surface. Conversely,
every del Pezzo M?* carries Finstein h with
det(Wi) > 0, and these sweep out exactly one
connected component of moduli space & (M ).



Current Research:



Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise
as Gromov-Hausdorff limits of sequences of smooth

Kéhler-Einstein manifolds (M?, g;)-



Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise
as Gromov-Hausdorff limits of sequences of smooth

Kéhler-Einstein manifolds (M?, g;)-

Most positive K-E 4-orbifolds don’t arise this way!



Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise

as Gromov-Hausdorff limits of sequences of smooth
Kéhler-Einstein manifolds (M?, g;)-

Most positive K-E 4-orbifolds don’t arise this way!

Current work with Tristan Ozuch:



Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise

as Gromov-Hausdorff limits of sequences of smooth
Kéhler-Einstein manifolds (M?, g;)-

Most positive K-E 4-orbifolds don’t arise this way!
Current work with Tristan Ozuch:

Obtain the same conclusion, without assuming that
the Einstein manifolds (M, gj) are Kahler.



Current Research:

Odaka-Spotti-Sun completely classified the A > 0
Kéhler-Einstein orbifolds (X#, gso) that can arise
as Gromov-Hausdorff limits of sequences of smooth

Kéhler-Einstein manifolds (M?, g;)-
Most positive K-E 4-orbifolds don’t arise this way!
Current work with Tristan Ozuch:

Obtain the same conclusion, without assuming that
the Einstein manifolds (M, gj) are Kahler.

Techniques used extend today’s results.
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Thanks for the invitation!
It’s a pleasure to be here!




