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Abstract

Let (M,g) be a compact oriented 4-dimensional Einstein manifold. If
M has positive intersection form and g has non-negative sectional curva-
ture, we show that, up to rescaling and isometry, (M,g) is CP2, with its
standard Fubini-Study metric.

1 Introduction

A Riemannian manifold (M, g) is said to be Einstein if it has constant Ricci
curvature — i.e. if its Ricci tensor r is a constant multiple of the metric:

r = λg. (1)

If g is complete and λ > 0, Myers’ theorem [18] then tells us that M is compact,
and has finite fundamental group.

The simplest examples of compact Einstein manifolds with positive Ricci
curvature (λ > 0) are provided by the irreducible symmetric spaces of compact
type. In dimension 4, this observation yields exactly two orientable examples:
S4 = SO(5)/SO(4) and CP2 = SU(3)/U(2), both of which actually have posi-
tive sectional curvature. A slight generalization would be to allow for reducible
symmetric spaces; in dimension 4, this gives us the additional oriented examples
of S2 × S2 = SO(4)/[SO(2) × SO(2)] and its quotient by the simultaneous an-
tipodal map on both factors. The latter examples have non-negative sectional
curvature, although some of their sectional curvatures are actually zero.

While [24] there certainly are other compact 4-dimensional Einstein mani-
folds with λ > 0, none are known which have non-negative sectional curvature.
∗Supported in part by NSF grant DMS-9623048.
†Supported in part by NSF grant DMS-9802722.
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One might hope that this is not merely accidental. In this direction, we are able
to offer the following partial result:

Theorem A Let M be a smooth compact oriented 4-manifold with (strictly)
positive intersection form, and suppose that g is an Einstein metric on M which
has non-negative sectional curvature. Then (M, g) is homothetically isometric
to CP2, equipped with its standard Fubini-Study metric.

To clarify the statement, let us recall that one can always find bases for the
de Rham cohomology H2(M,R) in which the intersection pairing

H2(M,R)×H2(M,R) −→ R

( [ϕ] , [ψ] ) 7→
∫
M

ϕ ∧ ψ

is represented by a diagonal matrix

1
. . .

1︸ ︷︷ ︸
b+(M)

b−(M)


−1

. . .
−1


and, in these terms, our first hypothesis stipulates that b−(M) = 0 and that
b+(M) 6= 0. The Fubini-Study metric is the unique U(2)-invariant metric on
CP2 = SU(3)/U(2) with total volume π2/2; it is Einstein, and has sectional
curvatures K(P ) ∈ [1, 4]. By homothetically isometric, we mean isometric after
rescaling; in other words, the theorem concludes by asserting the existence of
a diffeomorphism Φ : M → CP2 such that g = Φ∗cg0 for some some positive
constant c.

Theorem A is actually a consequence of the following, more general result:

Theorem B Let (M, g) be a smooth compact oriented Einstein 4-manifold with
non-negative sectional curvature. Assume, moreover, that g is neither self-dual
nor anti-self-dual. Then the Euler characteristic χ and the signature τ of M
satisfy

9 ≥ χ > 15
4
|τ |.

Here τ(M) := b+(M) − b−(M), whereas χ(M) = 2 + b+(M) + b−(M) if M
has finite fundamental group. Thus, for example, while Tian [24] has shown
that the manifolds CP2#kCP2, 3 ≤ k ≤ 8, admit Einstein metrics with positive
Ricci curvature, these spaces definitely do not admit Einstein metrics of positive
sectional curvature.
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Theorem B was directly inspired by the following result of Hitchin [14]: if a
compact oriented 4-manifoldM admits an Einstein metric g of positive sectional
curvature, then the Euler characteristic χ and signature τ of M must satisfy

χ ≥
(

3
2

)3/2

|τ |.

By freely quoting the subsequent topological results of Freedman [9], this ac-
tually contains enough information to conclude that an Einstein 4-manifold of
positive intersection form and positive sectional curvature must be homeomor-
phic to either CP2 or CP2#CP2. Even on the crude level of homeomorphism
type, however, Theorem A represents a 2-fold improvement over Hitchin’s re-
sult. This reflects the fact that Hitchin’s coefficient of

(
3
2

)3/2 = 1.837 . . . is less
than half the coefficient of 15

4 = 3.75 appearing in Theorem B.
Let us conclude this introduction with some general remarks regarding the

class of Riemannian manifolds under consideration. First of all, a celebrated
result of Synge [22] asserts that any compact, orientable, even-dimensional Rie-
mannian manifold of positive sectional curvature is necessarily simply connected.
On the other hand, we have already seen, by the example of (S2×S2)/Z2, that
no such result holds when the sectional curvature is merely assumed to be non-
negative, even if the Ricci curvature is positive. Nonetheless, Theorem B does
tell us that a compact orientable Einstein 4-manifold of non-negative sectional
curvature and non-zero signature must be simply connected. Indeed, if |τ | ≥ 1,
the inequality χ > 15

4 |τ | and the observation that χ ≡ τ mod 2 together then
guarantee that χ ≥ 5. But if such a manifold were not simply connected, its
universal cover would then violate the inequality 9 ≥ χ.

Finally, let us observe that there are, up to diffeomorphism, only finitely
many compact 4-manifolds with Einstein metrics of non-negative Ricci curva-
ture. The flat 4-manifolds, of course, nominally form a subclass of the the
manifolds under discussion, but Bieberbach’s theorem [3] in any case tells us
that there are finitely many diffeomorphism types of these. For the others, which
are our real concern here, the Ricci curvature must be positive, and we may thus
rescale the metric so that, for example, r = 3g. The definition of the Ricci curva-
ture then tells us that the sectional curvatures all satisfy 0 ≤ K(P ) ≤ 3. On the
other hand, Myers’ theorem [18] predicts that the diameter is ≤ π. Moreover,
the 4-dimensional Gauss-Bonnet theorem [2, 14] and our upper bound on cur-
vature imply the volume is ≥ 8π2/15. With such bounds, Cheeger’s finiteness
theorem [6] then predicts that the given class of manifolds is precompact in the
Cα topology1, and therefore consists of finitely many diffeomorphism classes.
Unfortunately, however, such arguments by no means predict the actual number
of diffeotypes. By contrast, Theorem B and Freedman’s classification [9] tell us
that there are at most twelve homeotypes of simply connected compact Einstein
4-manifolds with non-negative sectional curvature.

1Indeed, the ellipticity of the Einstein equations guarantees [1] that the class of manifolds
in question is actually compact in the C∞ topology.
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2 The Curvature of 4-Manifolds

We begin by recalling that the rank-6 bundle of 2-forms Λ2 on an oriented
Riemannian 4-manifold (M4, g) has an invariant decomposition

Λ2 = Λ+ ⊕ Λ− (2)

as the sum of two rank-3 vector bundles. Here Λ± are by definition the
eigenspaces of the Hodge duality operator

? : Λ2 → Λ2,

corresponding respectively to the eigenvalue ±1. Sections of Λ+ are called self-
dual 2-forms, whereas sections of Λ− are called anti-self-dual 2-forms. But since
the curvature tensor of g may be thought of as a map R : Λ2 → Λ2, (2) gives
us a decomposition [21] of the curvature into primitive pieces

R =


W+ + s

12

◦
r

◦
r W− + s

12


, (3)

where the self-dual and anti-self-dual Weyl curvatures W± are trace-free as
endomorphisms of Λ±. The scalar curvature s is understood here to act by scalar
multiplication. On the other hand,

◦
r represents the trace-free Ricci curvature

r − s
4g, and so vanishes iff g is Einstein.

This last fact has a simple but crucial consequence.

Lemma 1 Let (M, g) be an oriented Einstein 4-manifold. If the sectional cur-
vature of g is non-negative, then

s√
6
≥ |W+|+ |W−| (4)

at each point of M .

Proof. Every 2-form ϕ on M can be uniquely written as ϕ = ϕ+ + ϕ−, where
ϕ± ∈ Λ±. Now a 2-form is expressible as a simple wedge product of 1-forms iff
ϕ ∧ ϕ = 0. But this condition can be rewritten as |ϕ+|2 − |ϕ−|2 = 0. Thus the
sectional curvature of g is non-negative iff the curvature operator R : Λ2 → Λ2

satisfies
〈ϕ+ + ϕ−,R(ϕ+ + ϕ−)〉 ≥ 0

for all unit-length self-dual 2-forms ϕ+ and all unit-length anti-self-dual 2-forms
ϕ−. But for an Einstein manifold, (3) tells us that this can be rewritten as

s

6
+ λ+ + λ− ≥ 0 (5)
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where, for each x ∈M , λ±(x) ≤ 0 is by definition the smallest eigenvalue of the
trace-free endomorphism W±x : Λ±x → Λ±x .

The claim will thus follow immediately from (5) if we can show that

|λ±| ≥
1√
6
|W±|.

To see, this, let λ+ ≤ µ+ ≤ ν+ be the eigenvalues of W+. Thus

|W+|2 = λ2
+ + µ2

+ + ν2
+.

But since W+ is trace-free, λ+ + µ+ + ν+ = 0, and hence

|W+|2 = λ2
+ + µ2

+ + ν2
+ + (λ+ − µ+ − ν+)(λ+ + µ+ + ν+)

= 2
[
λ2

+ − µ+ν+

]
.

If µ+ ≥ 0, this last expression is less than 2|λ+|2. Otherwise, λ+ ≤ µ+ < 0,
0 < ν+ ≤ 2|λ+|, and hence |W+|2 ≤ 6|λ+|2. Thus |λ+| ≥ 1√

6
|W+|. Since

|λ−| ≥ 1√
6
|W−| by the same argument, we are done.

The curvatures W±,
◦
r, and s correspond to different irreducible representa-

tion of SO(4), so the only invariant quadratic polynomials in the curvature of
an oriented 4-manifold are linear combinations of s2, | ◦r |2, |W+|2 and |W−|2.
This observation can be applied, in particular, to simplify the integrands [2, 14]
of the 4-dimensional Chern-Gauss-Bonnet

χ(M) =
1

8π2

∫
M

[
|W+|2 + |W−|2 +

s2

24
− |

◦
r |2
2

]
dµ (6)

and Hirzebruch signature

τ(M) =
1

12π2

∫
M

[
|W+|2 − |W−|2

]
dµ (7)

formulæ. Here the curvatures, norms | · |, and volume form dµ are, of course,
those of any given Riemannian metric g on M .

Applying Lemma 1 now gives us an elementary but useful result:

Lemma 2 Let (M, g) be a compact 4-dimensional Einstein manifold of non-
negative sectional curvature. If g is not flat, then

χ(M) <
5

8π2

∫
M

s2
g

24
dµg. (8)

Proof. Because g is not flat, and the sectional curvature is non-negative, our
Einstein metric g must have positive scalar curvature, and hence positive Ricci
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curvature. Myers’ Theorem [18] thus forces M to have finite fundamental group,
so that, in particular, b1(M) = 0.

By passing to a double cover if necessary, we may assume that M is ori-
entable. Let us choose to orient M so that τ(M) ≥ 0.

Lemma 1 now tells us that

|W+
g |2 + |W−g |2 ≤

(
|W+

g |+ |W−g |
)2 ≤ s2

g

6
,

so that

χ(M) =
1

8π2

∫
M

[
|W+

g |2 + |W−g |2 +
s2
g

24

]
dµg ≤ 5 · 1

8π2

∫
M

s2
g

24
.

If equality were to hold, we would have |W+
g | |W−g | ≡ 0 and |W+

g |+ |W−g | ≡
s√
6
. But any Einstein metric g is real-analytic [8] in harmonic coordinates.

With our orientation conventions, we must therefore have |W−g | ≡ 0. Our
Gauss-Bonnet formulæ (6–7) then tell us that χ(M) = 15

8 τ(M). However, the
Weitzenböck formula for harmonic 2-forms implies [5] that a self-dual 4-manifold
with s > 0 has b− = 0. Since we also have b1(M) = 0, it follows that χ(M) =
2 + τ(M). Solving for the signature, we find that τ(M) = 16

7
. As this is of

course a contradiction, it follows that the inequality is always strict.

This has an important consequence:

Lemma 3 Let (M, g) be a compact 4-dimensional Einstein manifold of non-
negative sectional curvature. Then χ(M) ≤ 9.

Proof. We may assume that g has positive Ricci curvature, since otherwise the
Euler characteristic would vanish. By rescaling, we can thus arrange for our
Einstein metric to have Ricci tensor r = 3g. Bishop’s inequality [4] then asserts
that the total volume of (M, g) is less than or equal to that of the 4-sphere with
its standard metric g1. Since both g and g1 have s = 12, Lemma 2 now asserts
that

χ(M) <
5

8π2

∫
M

s2
g

24
dµg ≤

5
8π2

∫
S4

s2
g1

24
dµg1 = 5χ(S4) = 10.

Since the Euler characteristic is an integer, it follows that χ(M) ≤ 9.

3 L2 Curvature Estimates

The key observations of §2 were basically point-wise in character. We now turn
to some results of a fundamentally global nature, beginning with a simplified
proof of a surprising fact discovered in [12].
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Lemma 4 Suppose (M, g) is a compact oriented Einstein 4-manifold of positive
scalar curvature. Then either W+ ≡ 0, or else there is a smooth, conformally
related metric ĝ = u2g such that∫

M

[
sĝ − 2

√
6|W+

ĝ |ĝ
]
dµĝ ≤ 0.

Moreover, one can either arrange for the inequality to be strict, or for the metric
ĝ to be locally Kähler.

Proof. For each metric ĝ on our oriented 4-manifold M , let us consider the
quantity Sĝ defined by

Sĝ = sĝ − 2
√

6|W+
ĝ |ĝ.

Under conformal rescaling, this curvature function behaves very much like the
usual scalar curvature s. Indeed, if ĝ = u2g, where u is a smooth positive
function, then

Sĝ = u−3♦u, (9)

where, in terms of the (positive) Laplace-Beltrami operator ∆ = d∗d =
−div grad, the linear elliptic operator ♦ = ♦g is defined by

♦ = 6∆g +Sg .

Since dµĝ = u4dµg, we thus have∫
M

[
sĝ − 2

√
6|W+

ĝ |ĝ
]
dµĝ =

∫
M

Sĝdµĝ =
∫
M

(u♦u)dµg.

The above generalities apply to any conformally related pair of metrics. But
in the present case, the given metric g is assumed to be Einstein. The second
Bianchi identity therefore tells us that its self-dual Weyl curvature is harmonic,
in the sense that

∇aW+
abcd = 0. (10)

In spinor terms, this says that ∇W+ ∈ S− ⊗
⊙5 S+. Now suppose U ∈

⊙4 S+

and v ∈ S− ⊗ S+ = C ⊗ TM are real elements, and let (v ⊗ U)‖ denote the
orthogonal projection of v⊗U to S−⊗

⊙5 S+. Using the notational conventions
of [20], we then have[

(v ⊗ U)‖
]
A′ABCDE

= vA′(AUBCDE)

=
1
5

[vA′AUBCDE + vA′BUACDE

+ vA′CUABDE + vA′DUABCE + vA′EUABCD ] ,
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so that

|(v ⊗ U)‖|2 = vA
′AUBCDEvA′(AUBCDE)

=
1
5
vA
′AUBCDE [vA′AUBCDE + vA′BUACDE + vA′CUABDE

+ vA′DUABCE + vA′EUABCD ]

=
|v|2
5
UBCDE

[
UBCDE +

1
2
εB

AUACDE +
1
2
εC

AUABDE+

+
1
2
εD

AUABCE +
1
2
εE

AUABCD

]
=

3
5
|v|2|U |2.

The Cauchy-Schwarz inequality therefore predicts that

〈v ⊗ U,∇W+〉 ≤
√

3
5
|v| |U | |∇W+|.

Away from the zeroes of W+, setting U = W+ thus yields

|W+| ∇v|W+| = 〈v ⊗W+,∇W+〉 ≤
√

3
5
|v| |W+| |∇W+|,

giving us the Kato inequality

|∇W+| ≥
√

5
3

∣∣∇|W+|
∣∣ . (11)

On the other hand, Derdziński [7] observed that equation (10) also implies
the Weitzenböck formula

0 =
1
2

∆|W+|2 + |∇W+|2 +
s

2
|W+|2 − 18 detW+ (12)

where ∆ is again the positive Laplacian and detW+ is the determinant of the
bundle endomorphism W+ : Λ+ → Λ+; cf. [20, equation (6.8.40)]. In con-
junction with the (sharp) algebraic inequality 3

√
6 detW+ ≤ |W+|3, equations

(11–12) imply that the non-negative function u0 = |W+|1/3 satisfies

0 ≥ ♦u0 (13)

in the classical sense, except at the locus u0 = 0, where it presumably fails to
be smooth. Now, for each ε > 0, let fε : [0,∞)→ (0,∞) be a smooth positive
function which is constant on [0, ε/2], satisfies fε(x) = x for x > ε, and has
non-negative second derivative everywhere. We may then consider the smooth
positive function uε = fε ◦u0, and the metric gε = u2

εg. Let Mε be the set where
u0 < ε. Then∫

M

Sgεdµgε =
∫
M

(uε♦uε)dµg

≤ Cε2Vol(Mε) +
∫
M−Mε

(u0♦u0)dµg,

8



where C is any positive upper bound for Sg .
Now assume that W+ 6≡ 0. Since g is real-analytic [8] in harmonic coordi-

nates, so is u6
0 = |W+|2, and hence Vol(Mε) −→ 0 as ε→ 0. Thus

∫
M
Sgεdµgε

is negative for small ε unless equality holds in (13).
In the latter case, however, we have |W+|3 ≡ 3

√
6 detW+, and hence W+

has at most 2 distinct eigenvalues at each point. Derdziński’s theorem [7] thus
asserts that W+ 6= 0, and that ĝ = u2

0g is locally Kähler — i.e. becomes Kähler
after possibly pulling back to a double cover of M .

This implies [12] a remarkable “gap theorem” for W+:

Theorem 1 Let (M, g) be a compact oriented Einstein 4-manifold with s > 0
and W+ 6≡ 0. Then ∫

M

|W+
g |2gdµg ≥

∫
M

s2
g

24
dµg,

with equality iff ∇W+ ≡ 0.

Proof. A fundamental result of Obata [19] implies that any Einstein metric
is a Yamabe minimizer; moreover, such a metric is always the unique Yamabe
minimizer, modulo homotheties and — on the round sphere — global conformal
transformations. Thus, if ĝ = u2g is any conformal rescaling of our Einstein
metric g, we have ∫

M
sgdµg√∫
M
dµg
≤
∫
M
sĝdµĝ√∫
M
dµĝ

.

However, assuming that W+ 6≡ 0, Lemma 4 tells us that u can be chosen so
that ∫

sĝdµĝ ≤ 2
√

6
∫
|W+

ĝ |dµĝ

≤
(

24
∫
|W+

ĝ |2dµĝ
) 1

2
(∫

dµĝ

) 1
2

.

Since sg is constant, and because the L2 norm of W+ is conformally invariant,
it therefore follows that(∫

M

s2
gdµg

)1/2

=

∫
M
sgdµg√∫
M
dµg

≤
∫
M
sĝdµĝ√∫
M dµĝ

≤
(

24
∫
|W+

ĝ |2dµĝ
) 1

2

=
(

24
∫
|W+

g |2dµg
) 1

2

.
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Moreover, equality can occur only if ĝ is both locally Kähler and isometric to a
constant times g. The latter, of course, happen iff g is itself locally Kähler. But
since s 6= 0 is constant and W+ 6≡ 0, the latter is equivalent to requiring that
∇W+ ≡ 0.

Reading this in the mirror, we have:

Corollary 1 Let (M, g) be an oriented compact Einstein 4-manifold with s > 0
and W− 6≡ 0. Then ∫

M

|W−g |2dµg ≥
∫

s2
g

24
dµg , and (14)

2χ− 3τ
3

(M) ≥ 1
4π2

∫
M

s2
g

24
dµg . (15)

Moreover, both these inequalities are strict unless ∇W− ≡ 0.

Proof. Reversing the orientation of M interchanges W+ and W−. Applying
this observation to Theorem 1 immediately yields (14). But this and the Gauss-
Bonnet-type formulæ (6–7) then tell us that

(2χ− 3τ)(M) =
1

4π2

∫
M

[
2|W−g |2 +

s2

24

]
dµg

≥ 3
4π2

∫
M

s2
g

24
dµg ,

thus proving (15).

4 The Main Theorems

Combining the estimates of §§2–3 now allows us to prove our main inequality:

Theorem B Let (M, g) be a smooth compact oriented Einstein 4-manifold with
non-negative sectional curvature. Assume, moreover, that g is neither self-dual
nor anti-self-dual. Then the Euler characteristic χ and the signature τ of M
satisfy

9 ≥ χ > 15
4
|τ |.

Proof. Combining (8) and (15), we have

2
3
χ− τ ≥ 1

4π2

∫
s2

24
dµ >

2
5
χ,

or in other words χ > 15
4
τ . Reversing the orientation of M , we also have

χ > −15
4
τ . Since Lemma 3 tells us that χ ≤ 9, we are therefore done.

Our other main result now follows:
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Theorem A Let M be a smooth compact oriented 4-manifold with (strictly)
positive intersection form, and suppose that g is an Einstein metric on M which
has non-negative sectional curvature. Then (M, g) is homothetically isometric
to CP2, equipped with its standard Fubini-Study metric.

Proof. By assumption, b+ > 0 and b− = 0, so χ(M) = 2 + b+ and τ(M) =
b+ > 0. Hence

15
4
τ =

15
4
b+ ≥

9
4

+ b+ > 2 + b+ = χ.

Theorem B therefore insists that our Einstein metric g of non-negative sectional
curvature must satisfy either W+ ≡ 0 or W− ≡ 0. But since τ > 0, the
signature formula (7) thus forces W− ≡ 0 and W+ 6≡ 0. In particular, g is
not flat, and, since it has non-negative sectional curvature, its scalar curvature
must somewhere be positive. Thus (M, g) is a non-conformally-flat, self-dual
Einstein 4-manifold of positive scalar curvature. A celebrated result of Hitchin
[2, Theorem 13.30], originally discovered via twistor methods [14, 10], therefore
tells us that (M, g) must, up to isometry, be CP2, equipped with a constant
multiple of the Fubini-Study metric.

5 Einstein Constants

Given a smooth compact n-manifold M , for what values of λ do Einstein’s
equations (1) have a unit-volume solution? The collection of all such λ is called
[2] the set of Einstein constants for M , and constitutes an interesting smooth
invariant of the manifold. Assuming that n > 2, this set is just the collection of
critical values of the Riemannian functional S/n, where

S(g) =

∫
M sgdµg(∫
M dµg

)n−2
n

,

since a metric is a critical point of S iff it is Einstein.
For CP2, it is a relatively recent result [17, 13] that the set of Einstein

constants has a maximal element, represented by, and only by, the Fubini-
Study metric. This provides one new explanation for the rigidity [16] of the
Fubini-Study metric. Theorem A of course provides an ostensibly different
explanation of this phenomenon, since the positivity of sectional curvatures
is an open condition in the C2 topology. However, the proof of Theorem A
tells us more. While it does not rule out the existence of an Einstein metric on
CP2 with sectional curvatures of varying sign, it does assert that the maximal
element in the set of Einstein constants for CP2 is isolated. Moreover, the form
of this assertion is actually quantitative.
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Theorem 2 Suppose that CP2 admits an Einstein metric g which is not iso-
metric to any multiple of the Fubini-Study metric g0. Then

S(g) <
1√
3
S(g0),

where S(g0) = 12π
√

2.

Proof. We may assume that the scalar curvature of g is positive, since the
result is otherwise trivial. By Hitchin’s theorem [14, 17], we therefore know
that W−g 6≡ 0. For CP2, χ = 3 and τ = 1. Thus (15) tells us that

1
4π2

∫
CP2

s2
g

24
dµg ≤

2χ− 3τ
3

(CP2) = 1.

Moreover, the inequality is strict, since Corollary 1 would otherwise predict that
the universal cover of (CP2, g) is reverse-oriented Kähler, contradicting the fact
that CP2 is simply connected and has b− = 0. Thus

S(g) =
(∫

CP2

s2
gdµg

)1/2

<
√

4π2 · 24 = 4π
√

6.

Since S(g0) = 12π
√

2, the result follows.

While Bishop’s inequality immediately implies that the set of Einstein con-
stants for S4 has a maximal element, represented by, and only by, the “round”
metric, the S4-analog of Theorem 2 was only recently proved [12]. Unfortu-
nately, however, an S4-analog of Theorem A remains out of our reach. The best
our present techniques can offer in this direction is

Theorem 3 Let g be an Einstein metric of non-negative sectional curvature on
S4. If g is not isometric to some multiple of the standard metric g1, then

1√
5
S(g1) < S(g) <

1√
3
S(g1),

where S(g1) = 8π
√

6.

Proof. If g is Einstein but has non-constant curvature, it cannot be conformally
flat. By (15), we thus have∫

S4
s2
gdµg ≤ 4π2 · 24

2χ− 3τ
3

(S4) = 27π2

and the inequality is in fact strict, since S4 cannot admit a (reverse-oriented)
Kähler metric. Thus

S(g) =
(∫

S4
s2
gdµg

)1/2

< 8π
√

2.
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On the other hand, if g has non-negative sectional curvature, (8) tells us that

5
8π2

∫
s2
g

24
dµg > χ(S4) = 2,

so that

S(g) =
(∫

S4
s2
gdµg

)1/2

>

√
27 · 3π2

5
= 8π

√
6
5
.

Since S(g1) = 8π
√

6, the assertion follows.
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[7] A. Derdziński, Self-dual Kähler Manifolds and Einstein Manifolds of Di-
mension Four, Comp. Math. 49 (1983) 405–433.

[8] D. DeTurck and J. Kazdan, Some Regularity Theorems in Riemannian
Geometry, Ann. Sci. Ec. Norm. Sup. 14 (1981) 249–260.

[9] M. Freedman, On the Topology of 4-Manifolds, J. Diff. Geom. 17 (1982)
357–454.

[10] T. Friedrich and H. Kurke, Compact Four-Dimensional Self-Dual Einstein
Manifolds with Positive Scalar Curvature, Math. Nachr. 106 (1982) 271–
299.

[11] M. Gursky, The Weyl Functional, DeRham Cohomology, and Kähler-
Einstein Metrics, preprint, 1996.

[12] M. Gursky, Four-Manifolds with δW+ = 0 and Einstein Constants on the
Sphere, preprint, 1997.

13



[13] M. Gursky and C. LeBrun, Yamabe Invariants and Spinc Structures,
Geom. Func. An. to appear.

[14] N.J. Hitchin, On Compact Four-Dimensional Einstein Manifolds, J. Diff.
Geom. 9 (1974) 435–442.

[15] N.J. Hitchin, Kählerian Twistor Spaces, Proc. Lond. Math. Soc. 43
(1981) 133–150.

[16] N. Koiso, Rigidity and Stability of Einstein Metrics. The Case of Compact
Symmetric Spaces, Osaka J. Math. 17 (1980) 51–73.

[17] C. LeBrun, Yamabe Constants and the Perturbed Seiberg-Witten Equations,
Comm. An. Geom. 5 (1997) 535–553.

[18] S.B. Myers, Riemannian Manifolds with Positive Mean Curvature, Duke
Math. J. 8 (1941) 401–404.

[19] M. Obata, The Conjectures on Conformal Transformations of Riemannian
Manifolds, J. Diff. Geom. 6 (1971) 247–258.

[20] R. Penrose and W. Rindler, Spinors and Space-Time. vol. 2: Spinor
and Twistor Methods in Space-Time Geometry, Cambridge Univer-
sity Press, 1986.

[21] I. M. Singer and J. A. Thorpe, The Curvature of 4-dimensional Einstein
Spaces, Global Analysis (Papers in Honor of K. Kodaira), pp. 355–
365, Univ. Tokyo Press, Tokyo, 1969.

[22] J.L. Synge, On the Connectivity of Spaces of Positive Curvature, Quart.
J. Math. 7 (1936) 316–320.

[23] J.A. Thorpe, Some Remarks on the Gauss-Bonnet Formula, J. Math.
Mech. 18 (1969) 779–786.

[24] G. Tian, On Calabi’s Conjecture for Complex Surfaces with Positive First
Chern Class, Inv. Math. 101 (1990) 101-172.

14


