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Definition. A compact connected smoothly em-
bedded 2-manifold N C CIPy will be called a docile
surface relative to Q if

o V' is a totally real submanifold of CIPy;
o /\' 15 disjoint from the conic Q,; and

e |\ 1s transverse to each tangent projective line
of the conic Q.
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Lemma. Let N C CIPy be a docile surface. Then
N 1s diffeomorphic to RPQ, and 1s isotopic to the

standard RP> C CPy through a family of other
docile surfaces.

Branched cover
11 : CPl X CPI — (CIP)Q
branched at O.

Involution
O : C]Pl X CPl — CPl X (Cpl

interchanges factors.
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Lemma. Let N C CIPy be any docile surface,
and let N C CP; x CP; be its inverse 1mage
under I1. Then CPPy x CPPy admits a p-invariant
Kdhler metric h for which N is Lagrangian. This
metric can be chosen so that its Kahler form
w represents 2wc) (CPy x CPy) in deRham coho-
mology, and if N 1s smoothly varied through a
famaily of other docile surfaces, a corresponding
famaily of such Kahler metrics can moreover be
chosen so as to depend smoothly on the given
parameters.
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Proposition. Let N C CIPy be any docile sur-
face, and suppose that f 1s a parameterized holo-
morphic disk in (CPy, N') whose relative homol-
ogy class |f] generates Ho(CIPy, N') = Z. Then
f is a smooth embedding, f(D?) meets N only

along f(OD?), and f(D?) meets Q transversely,
in a single point.
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Theorem. Let N C CIPy be any docile surface,
and let p € Q be any point of the reference conic.
Then there is a holomorphic disk in (CPy, V)
which passes through p and represents the gen-

erator of Ho(CIPy, N') = Z. Moreover, this disk

1s unique, modulo reparameterizations.
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Theorem (LM 2010). Let N C CIPy be any docile
surface, and let M denote the moduli space of all
holomorphic disks in (CPy, N') which represent
the generator of Ho(CPy, N) = Z. Then M is
diffeomorphic to S%. The interiors of these disks
foliate CIP9 — N, and the intersection pattern of
thewr boundaries defines a unique Zoll projective
structure |V| on M. Moreover, the reference
conic Q wnduces a specific conformal structure
lg] on M, and there is a unique V € |V| which
is a Weyl connection for the conformal class |g].















RP?

CP

CP; = N

RPQ*



Fundamental Open Problem:



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.

[ssues:



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.

[ssues:

e Family of disks exists for open set of /V.



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.

[ssues:

e Family of disks exists for open set of V. Closed?



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.

[ssues:

e Family of disks exists for open set of V. Closed?

e [s family unique?



Fundamental Open Problem:

Conjecture. The moduli space of Zoll metrics
g on S? is connected.

Issues:
e Family of disks exists for open set of V. Closed?
e [s family unique?

e [s relevant set of Lagrangian /V connected?
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