Self-Dual Metrics,
Null Geodesics, 8

Holomorphic Disks
(Lecture V)

Claude LeBrun Stony Brook University

Autumn School on Holomorphic Disks Schloss Rauischholzhausen, November 17, 2018

Joint work with

Lionel Mason
Oxford University

Joint work with

Lionel Mason Oxford University

Nonlinear Gravitons, Null Geodesics, and Holomorphic Disks, Duke Math. J. 136 (2007) 205-273.

Twistor correspondences

Twistor correspondences (Penrose):

Twistor correspondences (Penrose): geometries from moduli space

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold,

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold, $P \subset Z$ totally real submanifold.

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold, $P \subset Z$ totally real submanifold.

We have seen:

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold, $P \subset Z$ totally real submanifold.

We have seen:
Holomorphic disks in $\mathbb{C P}_{2} \longleftrightarrow \rightsquigarrow$ Zoll surfaces.

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold, $P \subset Z$ totally real submanifold.

We have seen:
Holomorphic disks in $\mathbb{C P}_{2} \longleftrightarrow \rightsquigarrow$ Zoll surfaces.
This lecture:

Twistor correspondences (Penrose): geometries from moduli space of holomorphic curves

$$
\mathbb{C P}_{1} \hookrightarrow Z
$$

where Z complex manifold.
Analogous pattern:
moduli of holomorphic disks

$$
\left(D^{2}, S^{1}\right) \hookrightarrow(Z, P)
$$

where Z complex manifold, $P \subset Z$ totally real submanifold.

We have seen:
Holomorphic disks in $\mathbb{C P}_{2} \longleftrightarrow \rightsquigarrow$ Zoll surfaces.
This lecture:
Disks in $\mathbb{C P}_{3}$, with boundaries on deformed \mathbb{R}^{3}.

Penrose

Penrose nonlinear graviton:

Penrose nonlinear graviton:
Local description of holomorphic self-dual 4-manifolds.

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:
Global smooth Riemannian reformulation.

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:
Global smooth Riemannian reformulation.

This lecture:

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:
Global smooth Riemannian reformulation.

This lecture: split-signature metrics

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:
Global smooth Riemannian reformulation.

This lecture: split-signature metrics:
pseudo-Riemannian metrics

Penrose nonlinear graviton:
Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:
Global smooth Riemannian reformulation.

This lecture: split-signature metrics: pseudo-Riemannian metrics with components

$$
\left[\begin{array}{llll}
+1 & & & \\
& +1 & & \\
& & -1 & \\
& & & -1
\end{array}\right]
$$

in suitable local frame.

4-dimensional geometry is idiosyncratic.

4-dimensional geometry is idiosyncratic.
In split signature setting, this happens because. . .

The Lie group $S O(2,2)$ is not simple:

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right)$,

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2}, \\
\star^{2}=1 .
\end{gathered}
$$

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2}, \\
\star^{2}=1 .
\end{gathered}
$$

Λ^{+}self-dual 2-forms.
Λ^{-}anti-self-dual 2-forms.

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2}, \\
\star^{2}=1 .
\end{gathered}
$$

Λ^{+}self-dual 2-forms.
Λ^{-}anti-self-dual 2-forms.

Why important?

The Lie group $S O(2,2)$ is not simple:

$$
\mathfrak{s o}(2,2) \cong \mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2)
$$

On oriented split-signature $\left(M^{4}, g\right), \Longrightarrow$

$$
\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}
$$

where $\Lambda^{ \pm}$are (± 1)-eigenspaces of

$$
\begin{gathered}
\star: \Lambda^{2} \rightarrow \Lambda^{2}, \\
\star^{2}=1 .
\end{gathered}
$$

Λ^{+}self-dual 2-forms.
Λ^{-}anti-self-dual 2-forms.

Why important?
Curvature tensors are bundle-valued 2-forms!

Riemann curvature of g

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

Riemann curvature of g

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces

Riemann curvature of g

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

Riemann curvature of g

$$
\mathcal{R}: \Lambda^{2} \rightarrow \Lambda^{2}
$$

splits into 4 irreducible pieces:

\[

\]

where

$$
\begin{aligned}
s & =\text { scalar curvature } \\
\stackrel{\circ}{r} & =\text { trace-free Ricci curvature } \\
W_{+} & =\text {self-dual Weyl curvature } \\
W_{-} & =\text {anti-self-dual Weyl curvature }
\end{aligned}
$$

$W_{ \pm}$are conformally invariant
$W_{ \pm}$are conformally invariant:
unchanged by conformal rescaling $g \rightsquigarrow f g$,
$W_{ \pm}$are conformally invariant:
unchanged by conformal rescaling $g \rightsquigarrow f g$,
$f: M \rightarrow \mathbb{R}^{\times}$any non-zero function.
$W_{ \pm}$are conformally invariant: unchanged by conformal rescaling $g \rightsquigarrow f g$, $f: M \rightarrow \mathbb{R}^{\times}$any non-zero function.

Definition. Oriented split-signature $\left(M^{4},[g]\right)$ called self-dual iff satisfies $W_{-} \equiv 0$.
$W_{ \pm}$are conformally invariant:
unchanged by conformal rescaling $g \rightsquigarrow f g$,
$f: M \rightarrow \mathbb{R}^{\times}$any non-zero function.

Definition. Oriented split-signature $\left(M^{4},[g]\right)$ called self-dual iff satisfies $W_{-} \equiv 0$.

Here

$$
[g]=\{f g \mid f \neq 0\}
$$

denotes conformal class of split-signature metric.

Prototypical example:

Prototypical example:
standard indefinite product metric

$$
g_{0}=\pi_{1}^{*} h-\pi_{2}^{*} h
$$

Prototypical example:

standard indefinite product metric

$$
g_{0}=\pi_{1}^{*} h-\pi_{2}^{*} h
$$

on $S^{2} \times S^{2}$, where h curvature 1 on S^{2}.

Prototypical example:

standard indefinite product metric

$$
g_{0}=\pi_{1}^{*} h-\pi_{2}^{*} h
$$

on $S^{2} \times S^{2}$, where h curvature 1 on S^{2}.

- conformally flat \Longrightarrow self-dual.

Prototypical example:
standard indefinite product metric

$$
g_{0}=\pi_{1}^{*} h-\pi_{2}^{*} h
$$

on $S^{2} \times S^{2}$, where h curvature 1 on S^{2}.

- conformally flat \Longrightarrow self-dual.
- null geodesics all embedded circles.

Prototypical example:
standard indefinite product metric

$$
g_{0}=\pi_{1}^{*} h-\pi_{2}^{*} h
$$

on $S^{2} \times S^{2}$, where h curvature 1 on S^{2}.

- conformally flat \Longrightarrow self-dual.
- null geodesics all embedded circles.

Definition.

Definition (Guillemin).

Definition (Guillemin). ($\left.M^{n},[g]\right)$

Definition (Guillemin). ($\left.M^{n},[g]\right)$

(Indefinite pseudo-Riemannian manifold.)

Definition (Guillemin). ($\left.M^{n},[g]\right)$

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:

Theorem A.

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g)

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then,

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology,

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g in the space of pseudo-Riemannian metrics on M

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g in the space of pseudo-Riemannian metrics on M such that

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g in the space of pseudo-Riemannian metrics on M such that every self-dual metric

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g in the space of pseudo-Riemannian metrics on M such that every self-dual metric contained in this neighborhood

Definition (Guillemin). ($M^{n},[g]$) called Zollfrei if each null geodesic is embedded circle $S^{1} \subset M$.

Surprising stability result:
Theorem A. Let (M, g) be a self-dual Zollfrei 4-manifold. Then, with respect to the C^{2} topology, there is an open neighborhood of g in the space of pseudo-Riemannian metrics on M such that every self-dual metric contained in this neighborhood is also Zollfrei.

To study moduli of self-dual conformal structures, therefore reasonable to first focus on understanding self-dual metrics that are also Zollfrei.

To study moduli of self-dual conformal structures, therefore reasonable to first focus on understanding self-dual metrics that are also Zollfrei.

Which 4-manifolds admit self-dual Zollfrei metrics?

Second key example:

Second key example:
Real projective quadric

Second key example:
Real projective quadric

$$
\mathbb{M}^{2,2}=\left\{\left.\left[x_{1}: x_{2}: x_{3}: y_{1}: y_{2}: y_{3}\right] \in \mathbb{R} \mathbb{P}^{5}| | \vec{x}\right|^{2}-|\vec{y}|^{2}=0\right\}
$$

Second key example:
Real projective quadric

$$
\begin{aligned}
\mathbb{M}^{2,2} & =\left\{\left.\left[x_{1}: x_{2}: x_{3}: y_{1}: y_{2}: y_{3}\right] \in \mathbb{R} \mathbb{P}^{5}| | \vec{x}\right|^{2}-|\vec{y}|^{2}=0\right\} \\
& =\left(S^{2} \times S^{2}\right) / \mathbb{Z}_{2}
\end{aligned}
$$

since \mathbb{Z}_{2}-action

$$
(\vec{x}, \vec{y}) \mapsto(-\vec{x},-\vec{y})
$$

preserves g_{0}.

Second key example:
Real projective quadric

$$
\begin{aligned}
\mathbb{M}^{2,2} & =\left\{\left.\left[x_{1}: x_{2}: x_{3}: y_{1}: y_{2}: y_{3}\right] \in \mathbb{R} \mathbb{P}^{5}| | \vec{x}\right|^{2}-|\vec{y}|^{2}=0\right\} \\
& =\left(S^{2} \times S^{2}\right) / \mathbb{Z}_{2}
\end{aligned}
$$

since \mathbb{Z}_{2}-action

$$
(\vec{x}, \vec{y}) \mapsto(-\vec{x},-\vec{y})
$$

preserves g_{0}.

Exercise:
The affine chart $x_{3}-y_{3}=1$ gives local coordinates $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ on $\mathbb{M}^{2,2}$ in which

$$
g_{0} \propto d x_{1}^{2}+d x_{2}^{2}-d y_{1}^{2}-d y_{2}^{2}
$$

Theorem B. Let $(M,[g])$ be a connected oriented split-signature 4-manifold which is Zollfrei and self-dual. Then M is homeomorphic to either $S^{2} \times S^{2}$ or $\mathbb{M}^{2,2}$.

Theorem B. Let $(M,[g])$ be a connected oriented split-signature 4-manifold which is Zollfrei and self-dual. Then M is homeomorphic to either $S^{2} \times S^{2}$ or $\mathbb{M}^{2,2}$.

Topological rigidity!

Theorem B. Let $(M,[g])$ be a connected oriented split-signature 4-manifold which is Zollfrei and self-dual. Then M is homeomorphic to either $S^{2} \times S^{2}$ or $\mathbb{M}^{2,2}$.

Topological rigidity!

Geometric rigidity?

Flexibility!

Flexibility!

Theorem C. There is a natural one-to-one correspondence between

- equivalence classes of smooth self-dual conformal structures [g] on $S^{2} \times S^{2}$; and

Flexibility!

Theorem C. There is a natural one-to-one correspondence between

- equivalence classes of smooth self-dual conformal structures [g] on $S^{2} \times S^{2}$; and
- equivalence classes of smooth embeddings

$$
\mathbb{R P}^{3} \hookrightarrow \mathbb{C P}_{3}
$$

Flexibility!

Theorem C. There is a natural one-to-one correspondence between

- equivalence classes of smooth self-dual conformal structures $[g]$ on $S^{2} \times S^{2}$; and
- equivalence classes of smooth embeddings

$$
\mathbb{R P}^{3} \hookrightarrow \mathbb{C P}_{3}
$$

at least in a neighborhood of the standard conformal metric $\left[g_{0}\right]$ and the standard embedding of $\mathbb{R P}^{3}$.

Actually, g_{0} is indefinite scalar-flat Kähler metric

Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon

Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon
Any Riemannian scalar-flat Kähler metric g on a complex surfaces is automatically anti-self-dual.

Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon

Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon, stood on its head:

> Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon, stood on its head:
Any indefinite scalar-flat Kähler metric g on a complex surfaces is automatically self-dual.

> Actually, g_{0} is indefinite scalar-flat Kähler metric on $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Observation of Gauduchon, stood on its head:
Any indefinite scalar-flat Kähler metric g on a complex surfaces is automatically self-dual.

Complex orientation: indefinite Kähler form ω is anti-self-dual. . .

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Every such metric arises from a family of analytic disks in $\mathbb{C P}_{3}$

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Every such metric arises from a family of analytic disks in $\mathbb{C P}_{3}$ with boundary on a totally real $\mathbb{R P}^{3}$ 。

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Every such metric arises from a family of analytic disks in $\mathbb{C P}_{3}$ with boundary on a totally real $\mathbb{R P}^{3}$.

Near the standard metric g_{0} scalar-flat Kähler metrics of fixed total volume

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Every such metric arises from a family of analytic disks in $\mathbb{C P}_{3}$ with boundary on a totally real $\mathbb{R P}^{3}$.

Near the standard metric g_{0} scalar-flat Kähler metrics of fixed total volume \longleftrightarrow with those totally real embeddings

$$
\mathbb{R P}^{3} \hookrightarrow \mathbb{C P}^{3}-Q
$$

on which the pull-back of the 3-form
$\phi=\Im m \frac{z_{1} d z_{2} \wedge d z_{3} \wedge d z_{4}-\cdots-z_{4} d z_{1} \wedge d z_{2} \wedge d z_{3}}{\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}\right)^{2}}$
vanishes.

Theorem D. The only complex surface (M, J) admitting Zollfrei scalar-flat indef Kähler metrics is $\mathbb{C P}_{1} \times \mathbb{C P}_{1}$.

Every such metric arises from a family of analytic disks in $\mathbb{C P}_{3}$ with boundary on a totally real $\mathbb{R P}^{3}$.

Near the standard metric g_{0} scalar-flat Kähler metrics of fixed total volume \longleftrightarrow with those totally real embeddings

$$
\mathbb{R P}^{3} \hookrightarrow \mathbb{C P}^{3}-Q
$$

on which the pull-back of the 3-form
$\phi=\Im m \frac{z_{1} d z_{2} \wedge d z_{3} \wedge d z_{4}-\cdots-z_{4} d z_{1} \wedge d z_{2} \wedge d z_{3}}{\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}\right)^{2}}$
vanishes. Here Q denotes the quadric surface

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=0
$$

\Longrightarrow Near g_{0},
\{self-dual $[g]$ on $\left.S^{2} \times S^{2}\right\} /\{$ based diffeomorphisms $\}$ $\longleftrightarrow\left\{\right.$ vector fields v on $\left.\mathbb{R P}^{3}\right\}$,
\Longrightarrow Near g_{0},
\{self-dual $[g]$ on $\left.S^{2} \times S^{2}\right\} /\{$ based diffeomorphisms $\}$ $\longleftrightarrow\left\{\right.$ vector fields v on $\left.\mathbb{R P}^{3}\right\}$,
while
\{scalar-flat Kähler $g\} /\{$ diffeomorphisms, rescaling\}
$\longleftrightarrow\{$ vector fields $v \mid \nabla \cdot v=0\}$.
\{self-dual $[g]$ on $\left.S^{2} \times S^{2}\right\} /\{$ based diffeomorphisms $\}$ $\longleftrightarrow\left\{\right.$ vector fields v on $\left.\mathbb{R P}^{3}\right\}$,
while
\{scalar-flat Kähler $g\} /\{$ diffeomorphisms, rescaling\}
$\longleftrightarrow\{$ vector fields $v \mid \nabla \cdot v=0\}$.
\Longrightarrow Both moduli spaces are infinite-dimensional.

End, Part IV

