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Twistor correspondences (Penrose):
geometries from moduli space of holomorphic curves

CPl%Z

where Z complex manifold.

Analogous pattern:
moduli of holomorphic disks

(D*,8Y — (2, P),

where Z complex manifold,
P C Z totally real submanifold.

We have seen:
Holomorphic disks in CPPy «~~ Zoll surfaces.

This lecture:
Disks in CPP5, with boundaries on deformed RIP3.
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Penrose nonlinear graviton:

Local description of real-analytic selt-dual 4-manifolds.

Atiyah-Hitchin-Singer:

Global smooth Riemannian reformulation.

This lecture: split-signature metrics:

pseudo-Riemannian metrics with components

+1
+1
—1
—1

in suitable 100&1 frame.
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The Lie group SO(2,2) is not simple:

50(2,2) = s0(1,2) @ so(1,2).
On oriented split-signature (M 4, q), —>
AN =AT @A™
where AF are (£1)-eigenspaces of
x A2 = A2
x =1

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.

Why important?

Curvature tensors are bundle-valued 2-forms!
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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W1 are conformally tnvariant:

unchanged by conformal rescaling g ~~ fg¢,

f M — R”™ any non-zero function.

Definition. Oriented split-signature (M*, [g]) called
self-dual 1ff satisfies W _= 0.

Here

gl =1{fg | f#0}

denotes conformal class of split-signature metric.
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X X
g0 = m v =7y
on S? x 52 where h curvature 1 on S2.

e conformally flat = self-dual.

e null geodesics all embedded circles.
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Definition (Guillemin). (M™, |g]) called Zollfrei
if each null geodesic is embedded circle S* C M.

Surprising stability result:

Theorem A. Let (M, qg) be a self-dual Zollfrei
d-manifold. Then, with respect to the C? topol-
oqy, there is an open neighborhood of g in the
space of pseudo-Riemannian metrics on M such
that every self-dual metric contained in this neigh-

borhood is also Zollfre.
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To study moduli of self-dual conformal structures,
therefore reasonable to first focus on understanding
self-dual metrics that are also Zollfrei.

Which 4-manifolds admsat selt-dual Zollirel metrics?
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Second key example:

Real projective quadric

W22 = {lay sy gy ye] € RP | |7 — 117 = 0]
= (S* x S%) /7
since Zo-action
@) > ()

preserves go.

Eixercise:
The affine chart x5 — y3 = 1 gives local
coordinates (z7, z9, y1,y2) on M>? in which

g X dx12 -+ dx22 — dy12 — dy22
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Geometric rigidity?
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Flexibility!

Theorem C. There 1s a natural one-to-one cor-
respondence between

e cquivalence classes of smooth self-dual confor-
mal structures [g] on S® x S?; and

e cquivalence classes of smooth embeddings
RP3 < CPs,

at least in a neighborhood of the standard con-
formal metric |gg| and the standard embedding

of RPS.
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Actually, gg is indefinite scalar-flat Kahler metric
on CPl X (CPl.

Observation of Gauduchon, stood on its head:

Any indefinite scalar-flat Kahler metric g on a
complex surfaces is automatically self-dual.

Complex orientation:
indefinite Kahler form w is anti-self-dual. . .
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Theorem D. The only complex surface (M, J)

admitting Zollfrer scalar-flat indef Kahler met-
T1CS 15 Cpl X CPl.

FEvery such metric arises from a family of ana-

lytic disks in CIP3 with boundary on a totally real
RPS.

Near the standard metric go scalar-flat Kahler

metrics of fixed total volume <— with those to-
tally real embeddings

RP? — CP° — ()
on which the pull-back of the 3-form
21dzo Ndzz Ndzg — -+ - — zadzy N\ dzo N\ dz3
(217 + 29° + 23° + 24°)°
vanishes. Here () denotes the quadric surface

O =Im

Z12 + Z22 + 232 + Z42 = (.
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— Near g,

{self-dual [g] on S? x S?}/{based diffeomorphisms}
s {vector fields v on RP%},

while
{scalar-flat Kahler g} /{ diffeomorphisms, rescaling}

+— {vector fields v | V- v = 0}.

—> Both moduli spaces are infinite-dimensional.



End, Part IV



