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Twistor correspondences (Penrose):
geometries from moduli space of holomorphic curves

CP1 ↪→ Z

where Z complex manifold.

Analogous pattern:
moduli of holomorphic disks

(D2, S1) ↪→ (Z, P ),

where Z complex manifold,
P ⊂ Z totally real submanifold.

We have seen:
Holomorphic disks in CP2 ! Zoll surfaces.

This lecture:
Disks in CP3, with boundaries on deformed RP3.
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Penrose nonlinear graviton:

Local description of real-analytic self-dual 4-manifolds.

Atiyah-Hitchin-Singer:

Global smooth Riemannian reformulation.

This lecture: split-signature metrics:

pseudo-Riemannian metrics with components
+1

+1
−1
−1


in suitable local frame.
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The Lie group SO(2, 2) is not simple:

so(2, 2) ∼= so(1, 2)⊕ so(1, 2).

On oriented split-signature (M4, g), =⇒
Λ2 = Λ+ ⊕ Λ−

where Λ± are (±1)-eigenspaces of

? : Λ2→ Λ2,

?2 = 1.

Λ+ self-dual 2-forms.
Λ− anti-self-dual 2-forms.

Why important?

Curvature tensors are bundle-valued 2-forms!
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Riemann curvature of g

R : Λ2→ Λ2

splits into 4 irreducible pieces:

Λ+∗ Λ−∗

Λ+ W+ + s
12 r̊

Λ− r̊ W− + s
12

where

s = scalar curvature

r̊ = trace-free Ricci curvature

W+ = self-dual Weyl curvature

W− = anti-self-dual Weyl curvature
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W± are conformally invariant:

unchanged by conformal rescaling g  f g,

f : M → R× any non-zero function.

Definition. Oriented split-signature (M4, [g]) called
self-dual iff satisfies W−≡ 0.

Here
[g] = {f g | f 6= 0}

denotes conformal class of split-signature metric.
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Theorem A. Let (M, g) be a self-dual Zollfrei
4-manifold. Then, with respect to the C2 topol-
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To study moduli of self-dual conformal structures,
therefore reasonable to first focus on understanding
self-dual metrics that are also Zollfrei.

Which 4-manifolds admit self-dual Zollfrei metrics?
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Second key example:

Real projective quadric

M2,2 =
{

[x1 : x2 : x3 : y1 : y2 : y3] ∈ RP5
∣∣∣ |~x|2 − |~y|2 = 0

}
= (S2 × S2)/Z2

since Z2-action

(~x, ~y) 7→ (−~x,−~y)

preserves g0.

Exercise:
The affine chart x3 − y3 = 1 gives local
coordinates (x1, x2, y1, y2) on M2,2 in which

g0 ∝ dx1
2 + dx2

2 − dy1
2 − dy2

2
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Theorem B. Let (M, [g]) be a connected ori-
ented split-signature 4-manifold which is Zollfrei
and self-dual. Then M is homeomorphic to ei-
ther S2 × S2 or M2,2.

Topological rigidity!

Geometric rigidity?
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Flexibility!

Theorem C. There is a natural one-to-one cor-
respondence between

• equivalence classes of smooth self-dual confor-
mal structures [g] on S2 × S2; and

• equivalence classes of smooth embeddings

RP3 ↪→ CP3,

at least in a neighborhood of the standard con-
formal metric [g0] and the standard embedding
of RP3.
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Actually, g0 is indefinite scalar-flat Kähler metric
on CP1 × CP1.

Observation of Gauduchon, stood on its head:

Any indefinite scalar-flat Kähler metric g on a
complex surfaces is automatically self-dual.

Complex orientation:
indefinite Kähler form ω is anti-self-dual. . .
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Theorem D. The only complex surface (M,J)
admitting Zollfrei scalar-flat indef Kähler met-
rics is CP1 × CP1.

Every such metric arises from a family of ana-
lytic disks in CP3 with boundary on a totally real
RP3.

Near the standard metric g0 scalar-flat Kähler
metrics of fixed total volume ←→ with those to-
tally real embeddings

RP3 ↪→ CP3 −Q
on which the pull-back of the 3-form

φ = =mz1dz2 ∧ dz3 ∧ dz4 − · · · − z4dz1 ∧ dz2 ∧ dz3

(z1
2 + z2

2 + z3
2 + z4

2)2

vanishes. Here Q denotes the quadric surface

z1
2 + z2

2 + z3
2 + z4

2 = 0.
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←→ {vector fields v | ∇ · v = 0}.
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=⇒ Near g0,

{self-dual [g] on S2 × S2}/{based diffeomorphisms}
←→ {vector fields v on RP3},

while

{scalar-flat Kähler g}/{diffeomorphisms, rescaling}
←→ {vector fields v | ∇ · v = 0}.

=⇒ Both moduli spaces are infinite-dimensional.
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End, Part IV
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