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Definition. Zoll projective structure |V| on M

15 the projective equivalence class of some torsion-
free affine connection V for which the image

of each maxrimally-extended geodesic 1s a simple

closed curve.
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m (M) # 0,
there 1s a diffeomorphism
O M = RP?

such that |V] = |®*V|, where V is the Levi-Civita
connection of the standard, constant curvature
Riemannian metric h on RP?.

Notice that only remaining case is M = S2. ..



Theorem B. Near standard structure |V,

{Zoll [V] on S?}/{based diffeomorphisms}
s {wector fields v on RP*}



Theorem B. Near standard structure |V,
{Zoll [V] on S?}/{based diffeomorphisms}
s {wector fields v on RP*}
with
{ Zoll metrics g} /{diffeos, rescaling}

+— {divergence-free vector fields v}



Theorem B. Near standard structure |V,
{Zoll [V] on S?}/{based diffeomorphisms}
s {wector fields v on RP*}
with
{ Zoll metrics g} /{diffeos, rescaling}

+— {divergence-free vector fields v}

For simplicity, all objects here are C'°°.



Theorem B. Near standard structure |V,

{Zoll [V] on S?}/{based diffeomorphisms}

s {wector fields v on RP*}
with
{ Zoll metrics g} /{diffeos, rescaling}

+— {divergence-free vector fields v}

For simplicity, all objects here are C'°°.

Now for a more geometric reformulation. . .
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Theorem B. Near standard structure |V,

{Zoll [V] on S?}/{based diffeomorphisms}
«— {Total real N*> C CIPy near standard RIP’Z}
with

{Zoll metrics g} /{diffeos, rescaling}
s {N? C CP5 that are “twisted Lagrangian”}



Proposition. Let M? be any surface, and let
Z4 = PTcM be its projectivized complexified tan-
gent bundle.

Then any affine connection V on M determines
a rank-2 sub-bundle 1) C T Z with

CH(D),CH(D)] € C(D)

and
. — |0 if2&PT'M,
dim Dz 01 Z{1ﬁ¢ePTM.

Moreover, two connections V and \V grve rise to
the same 1) iff they are projectively equivalent.
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o If M ~ S% PTM divides Z* into two compo-
nents (/4 :

] —"T

Let Z, = U, UPTM, and let N be obtained from
Z by collapsing 02, = PT'M to V.
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Proposition. For any C° compact Zoll surface

(M?,[V]), there is a unique almost-complex struc-
ture J on N** such that

U.(D) c TV YN, ).

Moreover, J is integrable, and so makes N into
a compact compler surface.

V] J Integrability Theorem
C™ % | Newlander-Nirenberg (1957)
oV ¢ Malgrange (1968)

C3 | Lipschitz Hill-Taylor (2002)
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Complex surface N has some extra properties:
e T (N) =0, by(N) = 1.
e V2 C N* totally real.

o If M ~ S2 family of holomorphic disks D? with
OD? C N. Interiors foliate NV — .
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pact complex surface with by(S) = 1. Then S is
biholomorphic to CIPs.
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ture on an oriented surface M =~ S2. Then, up
to a projective linear transformation, the pro-
jective structure [V|] uniquely determines a to-
tally real embedding of the space of geodesics
N ~ RP? into CP,. If [V] is C™, so is the em-
bedding. Moreover, the image of each of the cir-
cles U, C N, x € M, bounds a holomorphic em-
bedding of the disk D? — CPs, and the interiors
of these disks foliate the complement CPy — V.
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bedding of RPP? which arises from a Ck: projec-
tive structure [V] on M ~ S?, k>3, o € (0,1).
Then there is a C*tL" Riemannian metric q
on M whose Levi-Civita connection YV belongs to

the projective class |V iff (modulo PSL(3,C))
the surface N avoids the conic O defined by

212 + 222 + 232 = 0,

and is Lagrangian with respect to the sign-ambiguous
symplectic structure £w on CPy — O defined by

Lo [ A dzo N\ dza + 29 dzg N dz1 + z3 dz1 N\ dzo |
(212 + 292 + 232)3/2

Moreover, w determines the metric g up to an
overall multiplicative constant.
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If embedding NV — CIP5 perturbed, disks survive. . .

Back in 2002, we took a low-tech route. . .



Theorem. Let N be any embedding of RP? into
CPy which is C2k+5 close to the standard one.
Let {(, | ©* € M} be the family of circles in
N which bound constructed holomorphic disks in
CIPy. For each 1y € N, set

Cy={xeM|yel;}

Then there is a unique Ck Zoll projective struc-
ture [V] on M = S* for which every ¢, is a
geodesic.



If embedding NV — CIP5 perturbed, disks survive. . .

By 2010, we were using better tools. ..
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Our holomorphic disks (D, dD) in (CPy, N') meet
transversely in one point on /V'), and therefore have
normal Maslov index +1.

Meaning”
Use normal bundles N ot D C CP» & votdD C P
to construct hol. vector bundle over double

E

3 3
CPy =D Uyp D

Normal Maslov index is degree of F.
Equals +1 in our case:

||
2
S
[« =]

E=0()



Our holomorphic disks (D, dD) in (CPy, N') meet
transversely in one point on /V'), and therefore have
normal Maslov index +1.

K(CP,O1) =0
WP, 01) =2

cf. Kodaira’s Theorem
on deformation of complex submanifolds
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Our holomorphic disks (D, dD) in (CPy, N') meet
transversely in one point on /V'), and therefore have
normal Maslov index +1.

(Forsternic, Gromov, et al.)
Perturbation of holomorphic disks.

Our disks Fredholm regular, & index 1 =
moduli space of disks is smooth 2-manifold.
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Definition. A compact connected smoothly em-
bedded 2-manifold N C C CPy will be called a
docile surface relative to O if

e V' is a totally real submanifold of CIPy;
o /\' 15 disjoint from the conic Q; and

e |\ 1s transverse to each tangent projective line
of the conic Q.



Theorem (LM 2010). Let N C CIPy be any docile
surface, and let M denote the moduli space of all
holomorphic disks in (CPy, N') which represent
the generator of Ho(CPy, N) = Z. Then M is
diffeomorphic to S%. The interiors of these disks
foliate CIP9 — N, and the intersection pattern of
thewr boundaries defines a unique Zoll projective
structure |V| on M. Moreover, the reference
conic Q wnduces a specific conformal structure
lg] on M, and there is a unique V € |V| which
is a Weyl connection for the conformal class |g].



RP?

CP,

CPi = N

RPQ*



End, Part IV



