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Definition. A Zoll projective connection |V| on
a smooth manifold M s tame if the associated
foliation of P(T'M) by circles is locally trivial.

Theorem. If M? is a compact surface, then any
Zoll projective connection V| on M s tame.

Theorem. If a compact surface M? admits a
Zoll projective connection |V|, then

T (M)] < oo,

and hence
M =~ S? or RP.



Proposition. For any Zoll [V] on a compact
surface M?, we have a double fibration

P M
/ X
M N

where N &~ RIP? is the space of geodesics of [V].

If M ~ RP?, v : PTM — N can be identified
with PT'N — N via vy(ker piy).

If M~ S? v:PTM — N can be identified with
ST N — N.
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Moreover, two connections V and \V grve rise to
the same 1) iff they are projectively equivalent.



Corollary. For any (M?,[V]),
U = PTeM — PTM

s a complexr manifold.

ST




Corollary. For any (M?,[V]),
U = PTeM — PTM

s a complexr manifold.

O+ )




Corollary. For any (M?,[V]),
U = PTeM — PTM

s a complexr manifold.

ST




Proposition. Let M? be any surface, and let
Z4 = PTcM be its projectivized complexified tan-
gent bundle.

Then any affine connection NV on M determaines
a rank-2 sub-bundle 1) C T Z with

CH(D), CH(D)] € (D)

and

| — (0 ifz¢PTM,
dim D, N Z{1 if = € PTM.



Proposition. Let M? be any surface, and let
Z4 = PTcM be its projectivized complexified tan-
gent bundle.

Then any affine connection NV on M determaines
a rank-2 sub-bundle 1) C T Z with

CH(D), CH(D)] € (D)

and

. — [0 if2¢PTM,
dim Dz 01 Z{1 if z € PTM.

Functions killed by [) across real slice?
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Need to blow down PT M

o If M ~ S% PTM divides Z* into two compo-
nents (/4 :

) — S—Tr

Let Z, = U, UPTM, and let N be obtained from
Z by collapsing 02, = PT'M to N. Let

\DIZ_F%N

be the blowing down map.
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Proposition. For any C° compact Zoll surface

(M?,[V]), there is a unique almost-complex struc-
ture J on N** such that

U.(D) c TV YN, ).

Moreover, J is integrable, and so makes N into
a compact compler surface.

V] J Integrability Theorem
C™ % | Newlander-Nirenberg (1957)
oV ¢ Malgrange (1968)

C3 | Lipschitz Hill-Taylor (2002)
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Complex surface N has some extra properties:
e T (N) =0, by(N) = 1.
e V2 C N* totally real.

o If M ~ S2 family of holomorphic disks D? with
OD? C N. Interiors foliate NV — .

o If M ~ RP? family of genus 0 compact complex
curves ». Anti-holomorphic map ¢ : N — N,
o2 =1, fixing NV, preserving each Y.
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Proof quite deep! Kahler-Einstein metrics, etc.

Blaschke case: may use low-tech substitute. . .
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Lemma. Let § be a compact complex surface,
equipped with a fixed homology class a € Hy(S,7Z)
such that a-a = 1. For every p € §, suppose
that there exists a non-singular, embedded com-
plex curve > C S of genus 0 passing through p,
with homology class |X] = a. Then there is a
biholomorphism

F:8 = CPy,
s.t. each F(X) is a line CP; C CIPs.

Proof particularly easy if assume b1(S) = 0. Ideas
due to Castelnuovo, Enriques & Kodaira.



Theorem A. Let [V| be Zoll projective structure
on a compact surface M?. If

m (M) # 0,
there 1s a diffeomorphism
O M = RP?

such that |V] = |®*V|, where V is the Levi-Civita
connection of the standard, constant curvature
Riemannian metric h on RP?.
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Proof of Theorem A: Lemma —
L F:N — CP

Using SL(3,C) action, can modify F' so that o
becomes complex conjugation

[Zl L 29 Zg] — [Zl L 29 23].

Thus F : N — RP?. Each £y = %, NN goes
to some RP! RPQ*, corresponding to some point
O(x) € RP?. This gives map (in fact, diffeomor-
phism)

O : M — RIP

which sends every geodesic to a projective line. Thus

[D*v] = [V]. QED
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Zoll metric case: If V is metric connection of Zoll
g on M =~ RP? also get a complex curve Q C N
Can arrange for F' to also send to standard conic.

Classical Blaschke conjecture follows because ® pre-
serves both geodesics and conformal structure, and
hence ®*h = ¢g.
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