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Hibert conjectured:
Any Zoll g on S? must have constant curvature.

Assigned this to Otto Zoll as his thesis problem.

But Hilbert’s conjecture turned out to be false!
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The Radon Transform on Zoll Surfaces
Victor GUILLEMIN

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

IN MEMORY OF NORMAN LEVINSON

1. INTRODUCTION

The standard metric, ds, , on S? has the property that all its geodesics
are closed. Zoll proved (doctoral dissertation, Géttingen, 1901) that
there are other smooth metrics on S? with this property. His examples
are surfaces of revolution (the metric is invariant with respect to the
group of rotations about the z-axis); however, it is easy to get examples
with this property which are not surfaces of revolution by modifying
Zoll’s result a bit. Such examples are discussed by Blaschke [1].

We will call a2 metric on S? with the property that the associated
geodesic flow, in T*S% — 0, is periodic of period 2w a Zoll surface.
The purpose of this paper is to investigate the existence of Zoll surfaces
other than the examples cited above. By the Korn-Lichtenstein theorem
every metric on S2 is conformally equivalent to the standard metric,
so we will confine ourselves to looking for Zoll surfaces with metrics
of the form e° dsy, p € C°(S?). The set of all p for which this metric is
a Zoll metric, is a subset of C*(S?%); and a natural question to ask is:
What is the tangent space to this set at p = 0? In other words, for
what g € C*(S?) do there exist Zoll deformations et ds, of the standard
metric such that

pp=0 and  dp,/dt = at t=0? (1.1)

This problem was first proposed by Hilbert and partly solved by Funk
in his doctoral dissertation, written under Hilbert in 1913 [2]. Funk’s
result is that a necessary condition for there to exist a Zoll deformation p,
satisfying (1.1) is that p be an odd function, p(—x) = —p(x) for all x € S2.
The purpose of this paper is to show that Funk’s condition is sufficient



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

Paul Funk (1913): formal power series analysis ~

Conjecture Near standard ‘round’ metric A,
{Zoll metrics g on S?}/{diffeos, rescaling}
> {odd functions f : 5% — R}.

Victor Guillemin (1976): Proved, using Nash-Moser.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930):



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture
only Zoll metric g on RP?



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture
only Zoll metric ¢ on RP? is the standard
‘round’ metric h.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture Modulo diffeomorphisms and rescal-
ings, the only Zoll metric g on RP? is the standard
‘round’ metric h.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture Modulo diffeomorphisms and rescal-
ings, the only Zoll metric g on RP? is the standard
‘round’ metric h.

Actual Blaschke conjecture concerns (M2, g) s.t.
Vp € M 3! conjugate point p’ # p € M.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture Modulo diffeomorphisms and rescal-
ings, the only Zoll metric g on RP? is the standard
‘round’ metric h.

Actual Blaschke conjecture concerns (M2, g) s.t.
Vp € M 3! conjugate point p’ # p € M.

Equivalence was noticed by Reidemeister, who at-
tempted to give a proof based on this observation.



Definition. A Zoll metric on a smooth manifold
M 1s a Riemannian metric g whose geodesics are
all ssmple closed curves of equal length.

What about RIP? = 57 /797
Since Funk’s f is odd, doesn’t yield Zoll g on RIPZ.

Wilhelm Blaschke (1930): made conjecture <=

Conjecture Modulo diffeomorphisms and rescal-
ings, the only Zoll metric g on RP? is the standard
‘round’ metric h.

Leon Green (1963): Correct proof, for C° metrics.
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AUF WIEDERSEHENSFLACHEN*

BY L. W. GREEN
(Received July 26, 1962)

1. A surface on which each point has one and only one conjugate point
is called a wiedersehensflache. (Rigorous definitions will be given below.)
In the first edition of his Vorlesungen iiber Differentialgeometrie [1],
Blaschke conjectured that such a surface must have constant curvature,
i.e., be isometric with an ordinary euclidean sphere. The second edition
[2] contained an appendix by Reidemeister giving a proof of this con-
jecture by projective methods. In the third edition [3], Blaschke pointed
out the error in this proof and described an example of Hjelmslev which
showed that this approach cannot work. In particular, there exist non-
riemannian metrics on the two sphere whose geodesics behave like those
on a wiedersehensflache.

Other work on this problem was reported by Funk [5] and Gambier [6].
Funk showed that there is no non-trivial analytic one parameter family
of wiedersehensflichen containing a sphere of constant curvature.

In 1960 we established a weaker conjecture, analogous to Blaschke’s
but dealing with focal points instead of conjugate points [7]. Finally, in
1961, we outlined a proof of the original conjecture, under the assumption
of positive curvature [8]. Before that announcement appeared in print,
however, we had succeeded in finding a simpler proof of the theorem
without that assumption.

In § 2 an exact definition of wiedersehensflachen is given and, for the
sake of completeness and rigor, some of their geometrical properties
described by Blaschke are established. Section 3 is devoted to extending
an integral geometric formula of Santald to cover our slightly more general
case. Some analytic properties of the Jacobi equation and the proof of
the main theorem are obtained in §4. In § 5 we generalize the key ine-
quality to n-dimensions.

We should like to express our thanks to H. L. Weinberger and M. Berger
for many helpful suggestions.

2. Let M be an orientable two dimensional C? surface with a complete
C? riemannian metric. Denote the unit tangent bundle of M by T and
its projection map by . For e e T, let x(s) be the unique geodesic on M,
parametrized by arc length, with initial conditions z(0) = +r(e), z'(0) =e.
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L & Mason 2002 gave entirely new proofs of these
results, while simultaneously formulating and solv-
ing a substantial generalization of the problem:

Definition. Let M be a smooth compact man-
ifold. A Zoll conection on M 1is a torsion-free
affine connection V for which the image of each
mazrimally-extended geodesic is a simple closed
curve.
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Definition. Two torsion-free affine connections
V and V' are said to be projectively equivalent if
they have the same unparameterized geodesics.

Lemma. Two torsion-free connections V and \Y
are projectively equivalent <

Vav = Vuv + ) v + 3(v)u

for some 1-form [3.

Definition. A Zoll projective structure V] on

M s the projective equivalence class of some
Zoll connection V.
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Theorem A. Let [V| be Zoll projective structure
on a compact surface M?. If

m (M) # 0,
there 1s a diffeomorphism
O M = RP?

such that |V] = |®*V|, where V is the Levi-Civita
connection of the standard, constant curvature
Riemannian metric h on RP?.

Notice that only remaining case is M = S2. ..
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Theorem B. Near standard structure |V,

{Zoll [V] on S?}/{based diffeomorphisms}

s {wvector fields v on RP*}
with
{ Zoll metrics g} /{diffeos, rescaling}

+— {divergence-free vector fields v}

For simplicity, all objects here are C'°°.

More precise and geometric version tomorrow. . .
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Poncelet duality:

This is where Reidemeister tried and failed!
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Poncelet duality: (over C)

CP, CP?

Complex geometry has useful natural rigidity!
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A ‘“traditional” twistor correspondence:

M N

Theorem (Kodaira). Let X CY be a compact
compler submanafold, with normal bundle v =
7Y/ X . If HY (X, 0()) =0, then HY(X, O(v))
1 tangent space of moduli space of nearby com-
plex submanzifolds.
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A ‘“traditional” twistor correspondence:

M N

Theorem (L 1980, Hitchin 1982). Let N be a
complexr surface that contains a CPy of normal
bundle O(1). Then the moduli space of all such
complex curves in N is a complex surface M,
and carries a natural holomorphic projective struc-
ture |V]. Moreover, every complex surface with
holomorphic projective structure locally arises in
this way.
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A ‘“traditional” twistor correspondence:

N = space of complex geodesics in (M, [V]).

M = space of CPy’s of self-intersection +1 in N .



Proofs by twistor methods.

A ‘“traditional” twistor correspondence:




Proofs by twistor methods.

A ‘“traditional” twistor correspondence:

Limitations:



Proofs by twistor methods.

A ‘“traditional” twistor correspondence:

Limitations:

e Doesn’t naturally lead to global results.



Proofs by twistor methods.

A ‘“traditional” twistor correspondence:

Limitations:

e Doesn’t naturally lead to global results.

e Geared to complex-analytic geometry.



Proofs by twistor methods.

A ‘“traditional” twistor correspondence:

Limitations:
e Doesn’t naturally lead to global results.
e Geared to complex-analytic geometry.

e Real-analytic geometry via analytic continuation.



Proofs by twistor methods.

A ‘“traditional” twistor correspondence:

Limitations:

e Doesn’t naturally lead to global results.

e Geared to complex-analytic geometry.

e Real-analytic geometry via analytic continuation.

e But doesn’t apply to smooth real geometries.
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Combine the real and complex pictures?

RIP? C) RIP2*

CPy CP% = N

A projective line in RP?* bounds two disks in A

Key: holomorphic disks with boundary on an RP?.

New kind of twistor correspondence. . .



End, Part 1



