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() W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).

o H2(M) =, H2(M) inverse of natural map.
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g (9500 — 9jk0) Vo = —xdlog (\/ det g) +0(0°7%).
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SO
1

m(M, ) = ——(#(c1), [])

as claimed.
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So Letschetz theorem on intersection form implies:

Lemma. Any ALE Kahler manifold has only
one end.
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and such that df = p, where p 1s the Ricct form
of g with respect to a given compatible integrable
almost-complex structure .J.
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where .J( standard complex structure on C"".

Now consider smooth trivialization of A" given
by orthogonal projection of dzt A -+ A dz™
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Integrating on S,/I" therefore yields:
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The mass formula then follows, much as before.



Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

() W™ (m 1)
m(M, g) = = (2m — 1)gm—1 Jr4(2?77, — 1)x™m /M Sgdilg
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which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.

This has some interesting consequences. . .
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Proof actually shows something stronger!
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with = <= (M, g, .J) is scalar-flat Kahler.
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which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
o= A A dT

of the canonical line bundle which vanishes exactly
at the critical points of P.

The zero set of ¢, counted with multiplicities, gives
us a canonical divisor

D = ZHJD]

and

W m—1
~(@(e1) ) = 3o Vol (D

so the mass formula implies the claim.
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End, Part 111
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