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Abstract

Which smooth compact n-manifolds admit Riemannian metrics of
constant Ricci curvature? A direct variational approach sheds some
interesting light on this problem, but by no means answers it. This
article surveys some recent results concerning both Einstein metrics
and the associated variational problem, with the particular aim of
highlighting the striking manner in which the 4-dimensional case dif-
fers from the case of dimensions > 5.

1 The Total Scalar Curvature

For the purposes of this article, the term FEinstein metric will mean a Riemannian
metric of constant Ricci curvature. In physics jargon, that’s to say that an Einstein
metric g is a Euclidean-signature solution of the Einstein vacuum equations

r = \g,

for some (unspecified) value of the cosmological constant A € R. Here r denotes the
Ricci tensor
Tap = Rcacb

of the (positive definite) Riemannian metric g. Notice that the scalar curvature
s =1, = R, of g is related to the the constant \ by

s=mn,

where n is the dimension of the manifold on which g is defined.

Einstein metrics are the solutions of a natural variational problem which can
be traced back to Hilbert [1]. Choose a smooth compact oriented manifold M of
dimension n > 2, and let M = M s denote the space of C*° Riemannian metrics on
M. We may then consider the total scalar curvature functional, or Einstein-Hilbert
action

S: M-=R,

given by
327
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S(9) = / Sgllg,
M

where s, and pg = /det g;jdaz' A---Adz™ are respectively the scalar curvature and
volume n-form of the metric g. If hyp is any symmetric tensor field, one then has

d s
5@+ o == [ (ur=So, .

so that, as discovered by Hilbert, the critical points of S are then just the Ricci-flat
metrics. If we restrict the functional to the submanifold M; C M of metrics of
total volume 1, however, the Lagrange-multiplier method immediately predicts that
the critical points of S|aq, are precisely the unit-volume Einstein metrics. Without
singling out the metrics of unit volume, we can accomplish much the same thing by
instead considering the ‘renormalized’ functional

6 =V n/ng,

where V(g) = [}, pg is the total volume of M with respect to g; the power of V has
been chosen precisely so as to make & invariant under rescalings g — cg, for ¢ any
positive constant. One then has

d s s—s
il _— _y(2-n)/n _ (20 0
dtG(g+th)|t_0 174 /M<h,r (n + 2 )g> Ky,

where sop = §(g)/V (g) is the average value of the scalar curvature, and, since n > 2,
this expression vanishes for all h iff s = so and » = *2g. The critical points of &
thus coincide with the Einstein metrics on M.

Naively, one might therefore be tempted to try to construct Einstein metrics
on M by minimizing or maximizing &. Unfortunately, however, this functional is
neither bounded above nor below! Nonetheless, there is a natural way of circumvent-
ing this difficulty, discovered by Hidehiko Yamabe [2] shortly before his premature
death in 1960. Yamabe realized that the restriction of & to any conformal class

COO
y=lg] ={ug |u: M — R}

of metrics is always bounded below. For each conformal class, one can thus define
an associated number Y (), called the Yamabe constant of the class, by

Y(v) = inf &(g).

Yamabe went on to give a flawed but highly original argument purporting to show
that the infimum Y () is always achieved. While this assertion and Yamabe’s strat-
egy for proving it are quite correct, his proof overlooks a fundamental analytic diffi-
culty concerning Sobolev inequalities of critical exponent. This issue is a profound
one, and Yamabe’s proof was ultimately only corrected in stages, first by Trudinger
[3], then by Aubin [4], and finally by Schoen [5]. For a clear, self-contained account
of the complete proof, see [6].
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Thus, any conformal class v on our manifold M contains a metric g which
minimizes &. Such metrics are called Yamabe metrics. Yamabe metrics always
have constant scalar curvature; and conversely, metrics with s = const < 0 are
always Yamabe metrics. An important result of Obata [7] guarantees that Einstein
metrics are always Yamabe metrics, even when s > 0.

Aubin’s contributions to the subject center on the observation that the Yamabe
constant of any conformal class v on any compact n-manifold M automatically
satisfies

2/n
2an(n = 1) | Gym—s)—1 , I even,

Y(7) < &(S", 90) = [ s l]m
2mn(n — 1) [m] , n odd,

where gg is the usual ‘round’ metric induced on the n-sphere by the standard em-
bedding S™ «— R**1. To see this, remember that any Riemannian manifold looks
like Euclidean space on a microscopic scale, and that (S™ — {point}, go) is confor-
mally related to Euclidean space via stereographic projection. Any metric on any
manifold may therefore be conformally rescaled so as to make the manifold look
like a nearly round, spherical balloon with a tiny, topology-laden gondola attached:

For any £ > 0, this trick constructs metrics g in any conformal class v with &(g) <
S(go) + ¢. The desired inequality follows.

Thus, while & is neither bounded above nor below, one might try to find a crit-
ical point of the functional by a ‘mountain pass’ trick. Let Cpy = M /C®(M,R")
denote the set of conformal classes of Riemannian metrics on M. We have just
seen that & can be minimized in each conformal class v € Cyp;. We now attempt to
maximize the restriction of & to these Yamabe metrics.
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Fetricsina
Corformal Class

Confornal Classes

In particular, this idea leads [8,9] to the definition of a real-valued diffeomorphism
invariant

(M) = sup Y(y) = sup inf &(g),
YECM y€ECM IEY

which I will call the Yamabe invariant of the smooth compact manifold M. No-
tice that, while there are always sequences of unit-volume Yamabe metrics g; with
sg; 7/ Y(M), we have no reason to expect that the minimax is actually achieved.
Nonetheless, it is worth introducing some terminology to describe the most opti-
mistic situation:

Definition 1.1 Let M be a smooth compact manifold, and suppose that g is an
FEinstein metric on M. We will say that g is a supreme Einstein metric if

&(g) = D(M).

For example, Aubin’s estimate asserts that the standard Einstein metric go on
S™ is indeed supreme.

One of the main mathematical reasons for studying Einstein metrics is the desire
to find a higher-dimensional analog of the uniformization theorem for Riemann
surfaces. That is, given a compact manifold, one would like find a Riemannian
metric on it which is fairly unique. Now Einstein metrics are just the critical points
of the functional &, and it might very well be that there are many different critical
values. In this case, it is natural to choose the highest critical value since this
definitely gives one the right answer for the sphere, and, moreover, can be seen [10]
to give one the standard metric on compact quotients of locally symmetric spaces
of rank 1. The supreme condition, of course, is even stronger than this, for it is
defined in terms of a comparison involving non-Einstein metrics. The purpose of
this article is to explore what this condition means in practice. Here are some of
the questions I will try to explore:

e Which compact manifolds admit supreme Einstein metrics?
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e Are there manifolds which admit Einstein metrics, but do not admit supreme
Einstein metrics?

e Is the Yamabe invariant 9)(M) really computable in practice?

Of course, it should be clear from the outset that it is impossible to find supreme
Einstein metrics on many manifolds. For example, in all dimensions > 3 there are
manifolds like S”~! x S which admit metrics of positive scalar curvature, but which
have infinite fundamental group. A supreme Einstein metric on such a manifold
would have to have positive Ricci curvature — which is of course ruled out by
Myers’ Theorem. Thus, a direct minimax construction of supreme Einstein metrics
could generally hope only to produce, at best, Einstein metrics on related spaces
obtained by ‘bubbling off’ some of the topology. But in any case it seems worthwhile
to attempt to catalog the known topological obstructions to the existence of supreme
Einstein metrics. In the process, it will become clear that dimension 4 is utterly
anomalous for problems involving the scalar curvature.

2 Dimension Three

In dimension 3, the Ricci curvature algebraically determines the entire curvature
tensor via the formula

S
*Rxk = —g —
29 T,

where the Hodge star operator x has been used to identify ®2A? with ®2A'. Conse-
quently, a Riemannian 3-manifold is Einstein iff it has constant sectional curvature.
While this makes 3-dimensional Einstein manifolds ‘locally trivial,” in the sense
that they are necessarily locally isometric to standard models depending only on
the Einstein constant A, there are still some global issues worthy of discussion.

2.1 Obstructions

Not every 3-manifold admits an Einstein metric. Indeed, since the a 3-dimensional

Einstein manifold M must have constant sectional curvature, its universal cover M
must be diffeomorphic to S or R3, which implies that

7T2(M) = 7T2(M) = 0

This can be used to rule out not only S x 52, but also any connected sum M #M>
where neither M; nor M> is a homotopy 3-sphere. Here the connected sum operation
#, which is defined for any pair of manifolds of the same dimension, is performed

57

by deleting a standard ball from each manifold, and then identifying the resulting
spherical boundaries via a reflection.
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2.2 Uniqueness

As we have already observed, the problem of classifying 3-dimensional Einstein man-
ifold reduces to that of classifying Riemannian 3-manifolds of constant sectional cur-
vature M. The sign of this sectional curvature, and hence of the Einstein constant
A, is determined by the structure of the fundamental group 7y (M). Namely,

A>0 <= |m(M)| < oo;
A=0<=ZPZC m(M);
A< 0 <= |m(M)| = o0, but Z&Z ¢ 7 (M).

The moduli space of Einstein metrics (modulo rescalings and diffeomorphisms)
is at most a point in the A < 0 case. This is the prototypical case of Mostow rigidity
[11], which tells us that there is, up to global isometry, at most one hyperbolic metric
on any compact manifold of dimension > 2. When A > 0, the same phenomenon
occurs, albeit for somewhat different reasons [12]. When A = 0, however, the
situation is different, as the n-dimensional torus carries a non-trivial moduli space
SL(n,Z)\ SL(n,R)/SO(n) of geometrically distinct flat metrics of unit volume.

2.3 Supreme Finstein Metrics

Some two decades ago, Schoen and Yau showed [13] that the 3-torus T° cannot
admit metrics of positive scalar curvature. (Using a complete different set of ideas,
this result was then generalized to arbitrary dimension by Gromov and Lawson
[14].) If a compact 3-manifold admits a flat metric, it thus follows that this metric
is a supreme FEinstein metric, since any flat manifold is finite covered by a torus
[15]. It is natural to hope that similar statements can be made about 3-dimensional
Einstein manifolds for other values of A.

In this direction, Michael Anderson [16,17] is attempting to show that the hyper-
bolic metric on any compact hyperbolic 3-manifold M = H3 /T is in fact supreme —
meaning, once again, that it realizes the Yamabe invariant 2 (M). This would follow
from an ambitious program he is now pursuing in an attempt to prove Thurston’s
geometrization conjectures. His strategy is to first demonstrate the existence of
minimizers for the functionals

g VU /M<s§ + el Ry,

and then prove Gromov-Hausdorff convergence of these solutions as e — 0. Sur-
prisingly, the most delicate technical issues hinge on uniqueness questions for static
black holes! Up-to-date e-prints detailing describing Anderson’s current progress
can be obtained from his website

http://www.math.sunysb.edu/~anderson

2.4  Yamabe Invariants

As we have just seen, Anderson hopes to prove, in particular, that hyperbolic 3-
manifolds always have negative Yamabe invariant. Hyperbolic manifolds, of course,
necessarily have large fundamental groups; and one might instead ask about the
behavior of the Yamabe invariant for simply connected manifolds. But in dimension
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3, the celebrated Poincaré conjecture speculates that the only simply connected 3-
manifold is the 3-sphere S3, and this most certainly has positive Yamabe invariant!
That is, the usual Poincaré conjecture would immediately imply

Conjecture 2.1 (Weak Poincaré Conjecture) Any simply connected compact
3-manifold M3 has positive Yamabe invariant 2 (M).

This weak assertion is of independent interest, as will become clear in §4.1.

Of course, the full Poincaré conjecture is equivalent to the assertion that every
simply connected 3-manifold admits an Einstein metric. Richard Hamilton’s work
on heat flow for the Ricci curvature [18] provides a powerful tool for constructing
Einstein metrics with A > 0 on suitable 3-manifolds, and may well yet offer the best
strategy for proving the conjecture.

3 Dimension Four

Dimension 4 is the transitional dimension for Einstein’s equations. In dimension
n > 4, the curvature tensor of g is no longer determined by the Einstein condition
in a point-wise manner, and Einstein metrics are no longer describable in terms
of universal local models. On the other hand, a constellation of low-dimensional
accidents gives one strong topological information about Einstein 4-manifolds for
which there is no apparent high-dimensional analog.

3.1 Obstructions

Suppose that (M, g) is a compact oriented Riemannian 4-manifold. Then the rank-6
bundle of 2-forms on M invariantly decomposes into two rank-3 bundles

AP=AtoA, (1)

defined as the (£1)-eigenspaces of the Hodge star operator

*: A% = A2

Sections of AT are called self-dual 2-forms, whereas sections of A~ are called anti-
self-dual 2-forms. The numbers

b+ (M) = dim{p € T(A%) | dp = 0}

are independent of the metric, and depends only on the oriented homeomorphism
type of M*. The sum
ba(M) = by (M) +b_ (M)

is called the second Betti number of the manifold, while the difference
(M) = by (M) —b_(M)
is called the signature. The Euler characteristic of M can then be defined as
X(M) =2 —2b; (M) + ba(M),
where the first Betti number

b1 (M) = dim Hom(m, (M), R)
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counts the number of independent group homomorphisms from the fundamental
group to the real numbers.

Example. Let CP, denote the complex projective plane, with its standard orienta-
tion, and let CP, be the same smooth 4-manifold, but equipped with the opposite
orientation. Then one can construct new manifolds from these by the connected
sum operation #, where one removes small standard balls from a pair of manifolds
and glues the resulting S® boundaries together in a manner consistent with the
orientations, much as a surface of genus 2 can be constructed by gluing together
two 2-dimensional tori. Because the invariants by and b; behave additively with
respect to #, the iterated connected sum

ECP,#/(CP, = @2# ... #@}D%#@Q# ... #@_}pg,
k ¢

satisfies by =k, b_ = ¢, and b; = 0. In particular, this manifold has 7 = k — ¢, and
X=2+ k+7. <>

Now, for an arbitrary Riemannian metric g on M, let us think of the curvature
tensor as a linear map R : A2 — A2. Decomposing the 2-forms as in (1), we have

<o

Wt + &

<o

5

+
Sl=

Here Wy are the trace-free pieces of the appropriate blocks, and are called the
self-dual and anti-self-dual Weyl curvatures, respectively. The scalar curvature s is
understood to act by scalar multiplication, whereas the trace-free Ricci curvature

7(2 S
=r - —
49

acts on 2-forms by

[e] c ] c
Pab " Tac P b~ Tbhe P o
Now both the Euler characteristic x(M) and the signature 7(M) are actually
indices of elliptic operators on M, and the index theorem therefore predicts that
they can be expressed as curvature integrals. The formula

X0 = o [ wp a2 - R,
82 M 24 2

is usually called the 4-dimensional Gauss-Bonnet formula, while its analog

") = 5z [ W=7
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is closely related to the Hirzebruch signature theorem. Here the curvatures, norms
|- |, and volume form g are all, of course, those of the same arbitrary Riemannian
metric g on M. In particular,

|7 2

2

(x£30)(00) = 13 [ [2|Wi|2 +o- 3)

s

2
Since the above integrand is non-negative for any Einstein metric, we therefore have
the following celebrated result of Thorpe [19] and Hitchin [20]:

Theorem 3.1 (Hitchin-Thorpe Inequality) If the smooth compact oriented 4-
manifold M admits an Finstein metric g, then

2x(M) = 3|r(M)],
with equality iff the g-induced connection on one of the bundles A* is flat.

In particular, there are [20] simply connected 4-manifolds which do not admit
Einstein metrics.

Example. Since the 4-manifold kCP,#¢CP, has x = 2+ k+£and 7 = k — £, it
cannot admit an Einstein metric if £ > 4 + 5k or k > 4 + 54. &

Now let us define a diffeomorphism invariant of M by
I(M) =inf | s2p,,
() =int [ s,

where the infimum is taken over all Riemannian metrics on M. Referring back to
(3), it is then immediate that the existence of an Einstein metric on M would force

(2x £37)(M) > Z(M).

9672

Thus, we have an apparent improvement on the Hitchin-Thorpe inequality — but
devoid of content until something can be said about the invariant Z!

Intriguingly, Z is determined by the Yamabe invariant of M, according to the
formula [21,22,23]

0
0.

_ 0, ifYPM) >
700 = { iy iy, it pion) <
This is easily proved by considering one conformal class at a time. The good news
is thus that the invariant 7 is related to another invariant we’ve already agreed
plays a natural role in the theory of Einstein metrics. The bad news is that this
still doesn’t help calculate anything!

Seiberg-Witten theory, however, provides us with just the sort of information
we need. This theory captures certain properties of a 4-manifold M which are
invariant under diffeomorphisms, but not generally under homeomorphisms. The
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relevant invariants are calculated by counting solutions to a non-linear version of
the Dirac equation.

While it is not possible to define spinors on an arbitrary 4-manifold, it is always
possible to define rank-2 complex vector bundles V. — M which formally satisfy

Vj: ZSi®L1/2,

where S are the left- and right-handed spin bundles, and where L = A2V, is some
Hermitian complex line bundle on M. After possibly passing to a finite cover of
M, the possible choices of such Vi become determined by knowing the de Rham
class ¢1(L) € Hp (M), represented by 5= times the curvature 2-form F of any
Hermitian connection on L. One then says that c¢; (L) is a spin® structure on M. If
¢1(L) and ¢; (L") are two different spin® structures, their difference is a cohomology
class whose integral on every compact surface is an even integer, and this criterion
completely characterizes the set of spin® structures.

Now given a metric g and a spin® structure ¢; (L) on an oriented 4-manifold M,
the locally defined Dirac operators

D:T(Sy) = T(S_)

do not quite suffice to give one a globally defined Dirac operator. However, the
choice of any Hermitian connection A has been chosen on L — M, there is a
natural Dirac-type operator

Dy:T(Vy) - T(V.).
This allows us to consider the Seiberg- Witten equations

D4d =0 (4)

Fi =io(®) (5)
for a pair (®, 4), consisting of a twisted spinor ® € I'(V}) and a Hermitian con-

nection A on L — M. Here F{ denotes the self-dual part of the curvature 2-form
of A, and o : V, — AT is a natural real-quadratic map arising from the identity
At ®C=e%S,.

The solution space of these equations tends to be very large, because the infinite-
dimensional gauge group of smooth functions M — S! acts on the solution. After
modding out by this action, however, we obtain a moduli space which is compact
and, for a generic metric on a manifold with by (M) # 0, is actually a manifold,
the dimension of which is given by [c1(L)? — (2x + 37)(M)]/4. If by (M) > 1, the
moduli spaces corresponding to different generic metrics are cobordant, and this
allows one to define invariants which force the existence of solutions of (4-5) for
any metric, given only suitable information about just one particular metric on M.
For example, if ¢;1(L)? = (2x + 37)(M), the moduli space is just a set of points.
These can be given orientations in a canonical manner, and the number of points,
counted with signs, is then independent of the metric; if this number is non-zero,
we then deduce that the Seiberg-Witten equations will have solutions, no matter
which metric we choose on M. It is this property alone which will interest us here.

Definition 3.1 If ¢i(L) is a spin® structure on the smooth oriented 4-manifold M,
we will say that ¢, (L) is a monopole class if the Seiberg- Witten equations (4-5) have
at least one solution (®, A) for every smooth Riemannian metric g on M.
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As was realized by Witten [24], the existence of a monopole class can sometimes
be used to show that Z(M) # 0. The reason is that (4-5) imply the Weitzenbock
formula

0=4V4V4d + 5 + |9*D. (6)

From this one may then obtain the inequality

1 s2

_— 90> Z(eh)2
471_2 M24N9—3( )7

Cq

where ¢ denotes the orthogonal projection of ¢;(L) into the cohomology classes
represented by closed self-dual 2-forms. Now a remarkable result of Taubes shows
that symplectic 4-manifolds with by > 1 always have a monopole class, and one
therefore gets many monopole classes on the blow-ups of symplectic 4-manifolds.
this then leads [23] to results of the following type:

Theorem 3.2 (LeBrun) Let X be a symplectic 4-manifold with by > 1. Then
M = X#kCP; does not admit Einstein metrics if k > 2(2x + 37)(X).

In particular, this gives one many simple examples [23] of simply connected
4-manifolds which do not admit Einstein metrics, even though the Hitchin-Thorpe
inequality makes no such prediction.

However, Theorem 3.2 can be significantly improved upon. The reason is that
so far we have only considered the scalar-curvature term in (3). In fact, a more
subtle Weitzenbick argument [25] shows that the existence of a solution of (4-5)
also implies that

i/ AP 452 ) o s 3 (et
a2 J,, T o) e =gl

Using this, together with a recent result of Ozsvath and Szabd [26] concerning
monopole classes of non-simple type, one immediately obtains

Theorem 3.3 Let X be a symplectic 4-manifold with by > 1. Then

M = X#kCPo#£(S* x S3)
does not admit Einstein metrics if k + 4¢ > 3(2x + 37)(X).

While the Hitchin-Thorpe inequality only involves homotopy invariants of the
4-manifold in question, the newer obstructions discussed here strongly depend on
the smooth structure of the manifold. Indeed, these results allow one [27,25] to
find examples of homeomorphic pairs of 4-manifolds where one member does not
admit Einstein metric, but where the homeomorphic partner is known to admit an
Einstein metric by Yau’s solution of the Calabi conjecture [28].

3.2 Uniqueness

Theorem 3.1 gives uniqueness results as well as obstructions. For example, any
Einstein metric on a 4-torus must be flat, since x = 7 = 0 for this manifold; thus
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the picture is similar to that encountered in dimension 3, albeit for highly non-trivial
reasons. It is therefore natural to ask whether the analogy extends to 4-manifolds
which admit metrics of constant curvature. When the curvature is negative, the
affirmative answer is supplied [10] by the following remarkable result:

Theorem 3.4 (Besson-Courtois-Gallot) Let M* be a smooth compact quotient
of hyperbolic 4-space H* = SO(4,1)/SO(4), and let go be its standard metric of
constant sectional curvature. Then every Finstein metric g on M is of the form
g = Ap*go, where ¢ : M — M is a diffeomorphism and X > 0 is a constant.

If one knew that the standard metric minimized [ s?u, this would follow from

(3). Unfortunately, however, this L? estimate is only a conjecture [22] at present.
However, an entropy argument can be used to prove [10] that the standard metric
minimizes (inf 7)2V, and when restricted to the set of Einstein metrics this amounts
to the same inequality anyway. This entropy-comparison technique can also be
used to prove the non-existence of Einstein metrics on certain manifolds of large
fundamental group [29].

Instead of considering manifolds of constant sectional curvature, one might
consider manifolds for which the curvature tensor is covariantly constant: VR =
0. Spaces of this type are called locally symmetric. In dimension 4, a compact
irreducible locally symmetric space with non-constant sectional curvature is either
CP, with a multiple of its standard metric, or else is covered by the so-called complex
hyperbolic plane CH, with a multiple of its standard metric. Concretely, CH, may
be realized as the unit ball in C? with the so-called Bergmann metric.

One then has the following result [30]:

Theorem 3.5 (LeBrun) Let M = CHy /T be a compact complez-hyperbolic 4-
manifold, and let go be its tautological metric. Then every Einstein metric g on M
is of the form g = p*cgo, where ¢ : M — M is a diffeomorphism and ¢ > 0 is a
constant.

In this case, Seiberg-Witten theory tells us that the standard metric minimizes
J $*11, and the result then follows from (3).

One might naively hope that it would be as easy to classify solutions of Ein-
stein’s equations on S* and CP» as on their negative-curvature analogs. But
the simplicity of an Einstein manifold and the simplicity of its Einstein mod-
uli space are largely unrelated. In fact, there is essentially only one other 4-
manifold for which the Einstein moduli space is completely known, namely K3.
The Hitchin-Thorpe inequality tells us that every Einstein metric on K3 is one
of the hyper-K&hler metrics constructed by Yau [28]. While these metrics can-
not themselves be written down in closed form, the algebraic geometry allows us
[31] to canonically identify their moduli space with the locally symmetric space
[0(3,19) N GL(22,Z)]\ O(3,19)/[0(3) x O(19)].

3.3 Supreme Finstein Metrics

We have seen that Seiberg-Witten theory gives rise to certain estimates concerning
the scalar curvature. These estimates are actually sharp, and are precisely saturated
by the Kahler-Einstein metrics:

Theorem 3.6 Let M be a smooth 4-manifold which admits a Kdhler-Einstein met-
ric g of scalar curvature < 0. Then g is a supreme FEinstein metric. Conversely,
every other supreme FEinstein metric on M is Kdhler-Einstein.
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For a large class of 4-manifolds, this and Yau’s solution [28] of the Calabi
conjecture allow one to identify the moduli space of supreme Einstein metrics with
a finite union of connected components of the moduli space of non-singular complex
algebraic surfaces in CPs.

What about Kihler-Einstein manifolds with s > 0?7 The standard Seiberg-
Witten invariants vanish for such spaces, and thus shed no light at all on the story.
However, a perturbed version of the Seiberg-Witten equations can be used [32] to
prove

Theorem 3.7 The Fubini-Study metric on CPs is a supreme Einstein metric. In

particular, P(CP3) = 124/2r.

It might thus seem that the story is really independent of the sign of the Einstein
constant A. However, Tian’s Kihler-Einstein metrics [33] on CP,#kCP,, 3 < k <8,
turn out not to be supreme!

Proposition 3.8 While the 4-manifolds CP>#kCPs, k = 1,3,4,5,6,7,8 admit
Einstein metrics, they do not admit supreme Einstein metrics.

Proof. By a pioneering result of Osamu Kobayashi [g],

Y(My),D(Mz) > 0 = Y(M1#M;) > min[Y(M,),Y(M3)].

Since the Yamabe invariant is independent of orientation, this tells us that

9 (CPy#kCP2) > P(CP,) = 122

On the other hand, a beautiful Weitzenbock argument of Matthew Gursky [34]
shows that any positive-scalar-curvature metric on a 4-manifold M with by # 0
must satisfy

ﬁ

/M W4 P> T (2x+ 37) ().

If the metric is Einstein, (3) allows us to rewrite this as

/ 2 < 3272 (2x + 37) (M),
M
so that

S(g) < 4Am\/2(2x + 37)(M).

For CP2#kCP,, we have 2x + 37 = 9 — k, so this assertion would become

S(g) < 4m/2(9 — k < 12v21 < Y(CP,#kCTP,),

showing that the Einstein metric is not supreme.
On the other hand, these spaces actually do admit Einstein metrics by the work
of Page [35] and Tian [33], so the result follows. |
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While this argument shows, in particular, that Tian’s metrics are not supreme,
it also shows, incidentally, that these metrics do correspond to the highest critical
value of &. This weaker conclusion also holds for the standard product metric on
S2 x 82, and inspection of the Hessian of & at this metric indicates that 52 x S?
does not admit a supreme Einstein metric, either.

3.4 Yamabe Invariants

The Seiberg-Witten estimates can also be used, in conjunction with appropriate
direct geometric arguments, to calculate the Yamabe invariants of many other 4-
manifolds. For example, one has [25]

Theorem 3.9 (LeBrun) Let M be a complex surface of general type, and let X
be its minimal model. Then

D(M) =D(X) = —4n/2(2x + 37)(X).
Moreover, M does not admit a supreme Einstein metric if M # X.

Here one says that X is a minimal model of M if M can be obtained by
blowing up X at some finite number of points, but X is not itself the blow-up
of another complex surface [31]. A surface M is said to be of general type if
its Kodaira dimension Kod(M) equals 2. The invariant Kod(M) of a complex
surface takes values in {—00,0,1,2}, and is a rough measure of the number of
holomorphic sections of powers of the canonical line bundle. This ostensibly depends
on the particular complex structure J, but actually turns out to instead reflect
the differential topology of the underlying 4-manifold. Indeed, it is related to the
Yamabe invariant, in the following manner:

Theorem 3.10 Let M be the underlying 4-manifold of a complex surface (M, J)
of Kdhler type. Then

D(M) >0 <= Kod(M,J) =—o00
YD(M)=0<= Kod(M,J)=0 orl
D(M) <0 <= Kod(M,J) =2.

Notice that these results give the exact value of the Yamabe invariant for any
complex algebraic surface of Kodaira dimension > 0.

Also notice that we now know that the Yamabe invariant is negative for in-
finitely many simply connected 4-manifolds. Indeed, any complete intersection of
high-degree hypersurfaces in a complex projective space will be both simply con-
nected and of general type, and so has this property.

Leaving the arena of simply connected manifolds, there is a beautiful and simple
way of altering a 4-manifold without changing its Yamabe invariant [36]:

Theorem 3.11 (Petean) If M is any 4-manifold with Y(M) < 0, then

YM#[S' x S°)) = Y(M).

The proof stems from surgical ideas which will be described in the next section.



CLAUDE LEBRUN 341

Corollary 3.12 Let X be any minimal complex surface of general type, and, for
integers k,£ > 0, let M = X#kCP2#4(S* x S3). Then

D(M) =P(X) = —4m/2(2x + 37)(X).

This corollary can also be proved directly from Seiberg-Witten ideas, using the
results of Ozsvath and Szabé [26].

Finally, let us consider 4-manifolds with positive Yamabe invariant. To prove
that Y(M) > 0, all one has to is produce a metric of positive scalar curvature on
M, and examples can therefore easily be produced in great abundance. On the
other hand, Aubin’s argument says that the Yamabe invariant can never be bigger
than that of the sphere. Showing that 0 < 9(M*) < Y(S*) for some particular
M remains, however, is a non-trivial problem. So far, we have seen that this does,
however, actually happen in the case of M = CP;,. There are [37] some other known
examples of this type:

Theorem 3.13 For k = 1,2,3, and any integer £ > 0,

1221 < Y (ECPy#[S* x S%)) < 4716 + 2k.
In particular, these manifolds all have Yamabe invariant < P(S*).

Presumably there are many more 4-manifolds with this property. Whether
there are high-dimensional analogs of these examples remains completely open.

4 High Dimensions

While the work of many people [28,33,38,39,40] has given us a fascinating menagerie
of high-dimensional Einstein manifolds, the high-dimensional arena is notably de-
void of any results regarding the non-existence or uniqueness of Einstein metrics. As
I shall point out here, however, the situation is quite different for supreme Einstein
metrics. My remarks in this direction are inspired, in part, by a paper of Futaki
[41] and some spectacular recent results of my student Jimmy Petean [42,36,43].

4.1  Yamabe Invariants

The Yamabe invariant 2 (M) turns out to be relatively well behaved with respect
to surgeries in high codimension [42]. Recall [44] that if M is any smooth compact
n-manifold, and if S C M is a smoothly embedded ¢-sphere with trivial normal
bundle, we may construct a new n-manifold N by replacing a tubular neighborhood
87 x R"~9 of S with S"~971 x RI*1. One then says N is obtained from M by
performing a surgery in codimension n—q (or dimension ¢). This operation precisely
describes the way that level sets of a Morse function change as one passes a critical
point of index ¢ + 1, and two manifolds are therefore cobordant iff one can be
obtained from the other by such a sequence of surgeries.

Proposition 4.1 (Petean-Yun) Let M be any smooth compact n-manifold, and
let N be obtained from M by performing a surgery in codimension > 3. If P(M) <
0, then

Y(N) = Y(M).
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Proof. Let us consider the invariant Z_(M) = inf, [, |s_g|"/?py, where

S_ =

0,s>0
s, 8 <0.

Assume that n > 3, as otherwise there is nothing to prove. With this assumption,
7_ can be rewritten as

0, M) >0
I-(M) = { D02, (M) < o.

Indeed, if M admits a metric of positive scalar curvature, it also [45] admits a
metric with s = 0, so both sides vanish. If, on the other hand, M does not admit
a metric of positive scalar curvature, both functionals [10] are minimized in each
conformal class by a metric of constant scalar curvature < 0, and the claim is then
an immediate consequence.

Now let g be a metric on M such that

[ sy <) + 5,
M 2

and suppose that S? C M is any embedded sphere of codimension n — g > 3. By
making a conformal change which is trivial outside a small tubular neighborhood of
the sphere, one may produce a conformally related metric § = ug which has positive
scalar curvature along S7, but still satisfies

/ |s,§|"/2,u§ <Z (M)+e.
M

But on the manifold N obtained by surgery on S?, a celebrated local construction
of Gromov-Lawson [46] then gives us a metric § which has positive scalar curvature
in the surgered region, and agrees with § on the set where s < 0. Thus

[ bse gl = [ 5ol < Z-(00) +
N M

so that

Z() =t [ sy <700,
9 JN

and the claim follows. [

Even in dimension 4, this implies Theorem 3.11, since M* and M*#[S* x S?]
are obtainable from each other in codimension > 3. But in dimension > 5, the
consequences are much more startling. Indeed, it implies [43]
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Theorem 4.2 (Petean) Let M be any smooth, simply connected compact n-
manifold, n > 5. Then P(M) > 0.

That is, modulo Conjecture 2.1, the only simply connected manifolds with
P(M) < 0 live in dimension 4 — where they exist in profusion!

To prove the above result, it suffices to show that any simply connected manifold
can be obtained by performing a sequence of codimension > 3 surgeries on some
manifold with ¥ > 0. Using related results of Gromov-Lawson [46] and Stolz
[47], this can be reduced to the problem of generating the spin-cobordism ring
with manifolds for which g > 0. Fortunately, most of the needed generators have
been known for some time, and the last piece of the puzzle is supplied by Joyce’s
construction [38] of 8-manifolds of holonomy Spin(7).

4.2 Supreme Finstein Metrics

It is relatively easy to produce high dimensional examples of supreme Einstein
manifolds. For example, most Calabi-Yau manifolds give us examples:

Proposition 4.3 Let (M, g) be a simply connected Ricci-flat Kidhler manifold. As-
sume that the compler manifold M cannot be expressed as a Cartesian product
of other complex manifolds. Then g is a supreme Einstein metric iff dimc M #
3 mod 4.

Proof. The canonical line bundle of M is trivial, since it is flat and M is simply
connected. It follows [20] that M is spin. For the Kahler metric g, moreover, the
spin bundles are given by

Sy= @ A%,

p even

S_= @ A%,

p odd

and the Dirac operator D : T(S;) — I'(S_) is given by D = v/2(@+9). In
particular, the index of the Dirac operator is just the Todd genus

A(M) = x(M,0) =) _(=1)"h°(M, "),

P

and
dim Ker(D) = Y h°(M,QP).

p even

Now let m denote the complex dimension of M, so that n = 2m is the real
dimension. The index of D is independent of the Riemannian metric, and does not
vanish a priori if n = 0 mod 4. If n = 2 mod 8, the Hitchin invariant

a(M) = dim Ker(D) mod 2
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is similarly metric-independent. If either of these invariants were non-zero, the
Lichnerowicz Weitzenbock formula [48,49,50]

D*D = v*v+§

would preclude the existence of a metric of positive scalar curvature on M, and the
Ricci-flat metric g would be supreme.

Now Bochner observed that a holomorphic form on a Ricci-flat K&hler manifold
must be parallel, and our hypothesis forces M to be holonomy irreducible [40]. If
m is odd, Berger’s holonomy classification predicts that M must have holonomy
SU(m), so the only parallel holomorphic forms are in dimensions 0 and m, so that

a(M) = dim Ker(D) =1 mod 2

if dimg M = 1 mod 4. If, on the other hand, m = 2k is even, the holonomy could
be either SU(m) or Sp(k), but in either case every parallel form would be of even
degree, and we would have x(M) > 0. Thus g is a supreme Einstein metric if
m Z 3 mod 4.

On the other hand, any simply connected compact manifold with dimension
= 6 mod 8 admits metrics of positive scalar curvature by a cobordism argument of
Gromov-Lawson [46] and Stolz [47]. A supreme Einstein metric would thus have to
have s > 0, and g is therefore not supreme in this case. [

If M is an arbitrary simply connected Calabi-Yau manifold, it can be written
as a product
M= M x---x M,

of simply connected irreducible factors. A Ricci-flat Kdhler metric on M will thus
be supreme iff none of the factors has complex dimension = 3 mod 4.

Similar reasoning can also be applied to the Ricci-flat manifolds of exotic holon-
omy constructed by Joyce [38]. Thus any compact Einstein 8-manifold of holonomy
Spin(7) is supreme. On the other hand, a compact 7-manifolds with holonomy Gs
is mever supreme.

We now come to the problem of constructing manifolds which do not admit
supreme Einstein metrics. These are particularly easy to construct when the di-
mension is = 1 mod 8.

Proposition 4.4 Let M be any smooth, simply connected, compact spin manifold
of dimension n = 9,17,25,33,... Then M is homeomorphic to a smooth manifold
N which does not admit a supreme Einstein metric.

Proof. If the Hitchin invariant (M) € Zs is non-zero, set N = M. Otherwise, let
Y. be an exotic n-sphere with a(X) # 0, and let N be the connected sum M#X. In
either case, N is then homeomorphic to M and has non-trivial a invariant. Since
N is simply connected, Petean’s result then tells us that Y(N) = 0.

Now suppose that there were a supreme Einstein metric ¢ on N. Since
YD(N) = 0, g would then have to be Ricci-flat. On the other hand, since N is
simply connected, the de Rham lemma tells us that we can express it as a Rieman-
nian product N = Nj X --- Ng, where each of the factors is holonomy irreducible,
and since (N, g) is Ricci-flat, simply connected, and has non-trivial a invariant, the
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same is true of each factor. But because N has odd dimension, so must at least
one of the factors, say N;j. Since Nj is simply connected, it cannot have dimen-
sion 1, and its holonomy irreducibility and Ricci-flatness would therefore force it,
by Berger’s classification, to be a 7-manifold with holonomy G5. But since the a
invariant is trivial in dimension 7, this is a contradiction. Thus N does not admit
a supreme Einstein metric, and the claim follows. [

The situation is similar when the dimension is = 2 mod 8.

Proposition 4.5 Let M be any smooth, compact, 2-connected manifold of dimen-
sion n = 10,18,26,34,... Then M is homeomorphic to a smooth manifold N which
does not admit a supreme FEinstein metric.

Proof. Any such manifold has H?(M,Zs) = 0, and so is spin. By again taking
the connected sum of M and a suitable exotic sphere ¥, we can again construct a
manifold N = M#X which is homeomorphic to M and has non-trivial a invariant.
As before, a supreme Einstein metric g on N would therefore have to be Ricci-flat.
Now assume that such a metric exists, and consider the holonomy decomposition
N = Ny x ---Nj, of (N,g). Each factor N; must be 2-connected, so none can be
Kéahler. Also, each has non-zero a invariant, and so has special holonomy. This
eliminates all possible holonomy groups for the factors except Spin(7), and N is
therefore a product of 8-manifolds. But since dim N = 2 mod 8, this is a contradic-
tion, and it follows that N cannot carry a supreme Einstein metric. [

Similar reasoning also shows

Proposition 4.6 There are simply connected 8-manifolds which admit Kdhler-
FEinstein metrics with A < 0, but which nonetheless do not admit supreme Einstein
metrics.

Proof. Let m be a positive integer, and let M be the non-singular complex hy-
persurface of degree 2m + 6 in CPj; for concreteness, we could thus take M to be
defined by the homogeneous equation
27 A6 pamAe L 2m e =,

The adjunction formula then tells us that the canonical line bundle of M is then
given by K = O(2m)|y, and it follows that M is spin. For any Ké&hler metric
g on M, the kernel and cokernel of the Dirac operator can be identified with the
Dolbeault cohomology spaces

P H?(M,0(m)) and P HP(M,0(m)),

p even » odd

respectively, and the fact that

A(M) = 20°(CP5, O(m)) = 2 (m ; 5)
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can therefore be read off directly from the algebraic geometry without needlessly
invoking the index theorem. In particular, the underlying simply connected 8-

dimensional spin manifold has A(M) # 0, so that 9(M) = 0 by Petean’s theorem.
It follows that M cannot admit a supreme Einstein metric. Indeed, we have just
seen that 9(M) = 0, and a supreme Einstein metric g on M would therefore have

to be Ricci-flat. Since A(M) = 2(”;5) > 12, there would also have to be at least 12
linearly independent harmonic sections of the spinor bundle S over M, and each
of these would have to be parallel by the Weitzenbock formula. But the maximal
dimension of the space of parallel sections of S, is the rank of this bundle, which
is 8 < 12. This contradictions shows that M does not admit a supreme Einstein
metric.

On the other hand, M certainly does admit non-supreme Einstein metrics. In-
deed, the complex manifold M has ample canonical line bundle K = O(2m)|,r, so
that M therefore admits a K&hler-Einstein metric of negative scalar curvature com-
patible with the given complex structure. Of course, M admits many geometrically
distinct Einstein metrics by the same argument, since for free we get a Kéhler-
Einstein metric for each of the different complex structures obtained by varying the
homogeneous polynomial which defines the hypersurface M C CP5. [

Thus Theorem 3.6 no longer applies when the real dimension is greater than 4.
A more extreme form of this failure is illustrated by [51]

Theorem 4.7 (Catanese-LeBrun) There is a smooth 8-manifold M which ad-
mits a pair of Einstein metrics for which the Einstein constants A\ have opposite
signs. Moreover, one may arrange for both of these Einstein metrics to be Kahler,
albeit with respect to wildly unrelated complex structures.

Indeed, one may take the 8-manifold M to be X x X, where X is the 4-manifold
CP,#8CP,, which admits the Kihler-Einstein metrics with A > 0 constructed by
Tian [33]. However, one can show that this M is diffeomorphic to Z x Z, where
Z is the Barlow surface [52]. By a deformation argument, one can construct [51]
complex structures on Z with ¢; < 0, and Yau’s proof [28] of the Calabi conjecture
thus makes Z into a Kahler-Einstein manifold with A < 0. Taking product metrics
on X x X and Z x Z proves the claim.

Thus the geometry of general Einstein metrics seems rather loosely tied to topol-
ogy in high dimensions. On the other hand, restricting one’s attention to supreme
Einstein metrics would seem to offer a better chance of geometrizing manifolds in a
meaningful way. However, as we have seen in this article, one cannot expect most
manifolds to admit such metrics. The most interesting avenue would thus perhaps
be to try, in the spirit of Anderson’s 3-dimensional program, to break a general
manifold into supreme Einstein pieces and collapsed pieces. The technical obstacles
to doing this are formidable even in low dimensions, however, so the prospects for
such a general scheme remain extremely murky.
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