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A called Einstein constant.

Has same sign as the scalar curvature
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Proof. Bianchi identity = V. = (% — %)ds
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e signature:

T(M) = b4 (M) = b—(M)
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) >0,

with equality if and only if, up to covering, (M, g)
15 Ricei-flat and Kahler.

Reversing orientation, get companion inequality:

Theorem. If smooth compact oriented M* ad-
mits Einstein metric g, then

(2x — 37)(M) > 0.

with equality if and only if, up to covering, (M, g)
15 Ricci-flat and reverse-oriented Kahler.
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No such obstruction is known when dimension # 4.
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If M any smooth oriented 4-manifold,

(2x+-37) (M4 CPot - - - #CPy) = (2x+37)(M)—k
)3
so Hitchin-Thorpe = not Einstein if £ > 0.

M simply connected ~~ simply connected examples.
K 3#kCPs not Einstein for any & > 0.

CIP>#kCP> not Einstein for any & > 8.

Kahler geometry = last two statements are sharp!

Yau, Tian-Yau, Chen-LeBrun-Weber. . .
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Donaldson 2011: try to find smooth Kahler-Einstein
metrics by first studying singular metrics.

Y

Transverse Picture:

Brendle, Chen, Jeffres, Li, Mazzeo, Rubinstein, Sun. . .
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g = dp* + B2p*(d + ujdz’)? + wjj.dx’ da”

Edge-cone metric with cone angle 27 5:

e smooth metric on M — X

e ncar any point of >, for some € > 0,

g=g+p h
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>, C M codimension 2.

Local coordinates 7 on ¥,
polar coordinate p, 6 in normal directions.

Prototypical metric with cone angle 27 :

g = dp* + B2p*(d + ujdz’)? + wjj.dx’ da”

Edge-cone metric with cone angle 27 5:

e smooth metric on M — X

e ncar any point of >, for some € > 0,

g=g+p"ch

where h has infinite conormal regularity:.

Einstein will mean Einstein on M — ..
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Theorem. Let (M, 33) be smooth compact 4-manifold
with smoothly embedded compact oriented sur-
face. If (M,Y) admits Finstein edge-cone met-

ric g of cone angle 23, then

(2x = 37)(M) > (1 - 8) (2x(¥) — (1 + B)[?)

with equality <= g 1s Ricci-flat and, up to cov-
erings, 1s reverse-oriented Kahler.
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For (M S ) almost-complex, > C M pseudo-holomorphic,

(01 (8- 1) [2])2 >0

c1+ (B —1) [¥] is edge-cone analog of Chern class.
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For (M S ) almost-complex, > C M pseudo-holomorphic,

2
(e +(B=1)[3]) >0
if (M,>2) admits Einstein ¢ of cone-angle 270

Equality <= ¢ is Ricci-flat Kéhler (mod covers).
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Example. > C CPy smooth quintic curve.

CPy
Brendle:

(CIPy, ¥0) carries Ricci-flat Kéahler g with § = 2/5.

(c1+(B—1) [X)*=0

Theorem == unique Ricci-flat metric, up to scale.
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M blow-up at k& > 1 points of CIPy — >..

CIPy

(c1 + (B — 1) [2])2_952—k<01f5<g.

By contrast, when k& = 0, Einstein for all 5§ < 1.

Berman, Li-Sun, ...
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Example. > C X smooth complex curve.

M blow-up at k points of X — ..

For any 8 > 0,

(c1+ (B = 1) [Z)* (M) = (c1 + (8= 1) [£])° (X)—k

so (M, ¥) does not admit Einstein if £ > 0.

Nothing analogous known in other dimensions.
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On oriented (M4, g),

A= AT @A™
where A* are (£1)-eigenspaces of
%1 A% — A2,
w =1

AT self-dual 2-forms.
A7 anti-selt-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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Weyl curvature:

W:W+—|—W_
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(M*, g) smooth compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

(M) = 1/ = =Y,
XA = o 24 5 |

for Euler-characteristic x (M) = Z(—l)j bi(M).
J
Norm conventions:

1 :
W = W W

= 7"



(M*, ) smooth compact oriented Riemannian.



(M*, ) smooth compact oriented Riemannian.

4-dimensional Thom-Hirzebruch signature formula



(M*, ) smooth compact oriented Riemannian.

4-dimensional Thom-Hirzebruch signature formula

1
1272 S

(M) (1w ) d



(M*, g) smooth compact oriented Riemannian.

4-dimensional Thom-Hirzebruch signature formula

1
1272 S

(M) (W2 = W) du



(M*, g) smooth compact oriented Riemannian.

4-dimensional Thom-Hirzebruch signature formula

1
(M) = —= [ (W4 = W) du
™ JM

for signature 7(M) = by (M) — b_(M).
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For (M*, g) smooth compact oriented Riemannian

Euler characteristic

o= | S e =Y,
XN =82 [\ T -

Signature

1

=177 [ (17 = W) dn

T(M)

What about edge-cone metrics?
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Taking linear combinations, <= two formulee

(2x +37)(M) + 2(8 — 1)x(¥) + (8% — 1)[3]?

(2x — 37)(M) + 2(8 — D)x(Z) — (8% — 1)[3]

1 5° ) |
- — | [Z+ow_ P-4
4m? M<24+ W= ) dng

Second is just orientation of first.

So suffices to prove first.
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Einstein case:
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Einstein case:
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Theorem (A-L). Let (M, Y) be smooth compact
4-manafold with smoothly embedded compact ori-
ented surface. If (M,>) admits Finstein edge-
cone metric g of cone angle 2w, then

(2x +37)(M) > (1= B) (2x(2) + (1 + B)[5?)

with equality <= g 1s Ricci-flat Kahler up to
covers.

Theorem. Let (M, 33) be smooth compact 4-manifold
with smoothly embedded compact oriented sur-
face. If (M,Y) admits Finstein edge-cone met-

ric g of cone angle 23, then

(2x = 37)(M) > (1 - 8) (2x(¥) — (1 + B)[?)

with equality <= g 1s Ricci-flat and, up to cov-
erings, 1s reverse-oriented Kahler.



