Mid-Term Solutions

Geometry/Topology II

Spring 2015

Do four of the following problems. 25 points each.
The term manifold is used on this exam to mean a manifold without boundary.

1. Let N be a smooth n-manifold, and let $L \subset N$ and $M \subset N$ be a smoothly embedded submanifolds of dimensions ℓ and m, respectively. One says that L and M are transverse if, at every $p \in L \cap M$, the tangent space of L and M together span the tangent space of N :

$$
T_{p} L+T_{p} M=T_{p} N
$$

If L and M are transverse, prove that $L \cap M$ is a smoothly embedded submanifold of N. What is the dimension of $L \cap M$?

Given a point $p \in L \subset N$, we can find smooth coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on a neighborhood $\mathcal{U} \subset N$ of p in which $L \cap \mathcal{U}$ becomes $\left\{\left(x^{1}, \ldots x^{\ell}, 0, \ldots, 0\right)\right\}$. In other words,

$$
\begin{array}{cl}
\mathcal{U} & \stackrel{F}{\longrightarrow} \mathbb{R}^{n-\ell} \\
\left(x^{1}, \ldots x^{\ell}, x^{\ell+1}, \ldots x^{n}\right) & \longmapsto
\end{array}\left(x^{\ell+1}, \ldots x^{n}\right)
$$

is a submersion such that $F^{-1}(\mathbf{0})=L \cap \mathcal{U}$.
Now suppose that $p \in L \cap M$, and that $T_{p} L+T_{p} M=T_{p} N$. Since ker $d F_{p}=T_{p} L$, it follows that

$$
d F_{p}\left(T_{p} M\right)=d F_{p}\left(T_{p} N\right)=T_{\mathbf{0}} \mathbb{R}^{n}=\mathbb{R}^{n-\ell}
$$

The map

$$
f:=\left.F\right|_{\mathcal{U} \cap M}: \mathcal{U} \cap M \rightarrow \mathbb{R}^{n-\ell}
$$

therefore has maximal rank at p, and therefore has maximal rank on a neighborhood $\mathcal{V} \subset M$ of $p \in M$. This means that

$$
\tilde{f}:=\left.f\right|_{\mathcal{V}}: \mathcal{V} \rightarrow \mathbb{R}^{n-\ell}
$$

is a submersion, and an open set of p in $L \cap M$ therefore coincides with the submanifold $\tilde{f}^{-1} \mathbf{(0)}$. If L and M are transverse, this shows that $L \cap M$ is an embedded submanifold of M, and that its dimension is $m-(n-\ell)=\ell+m-n$. Moreover, since $L \cap M$ is a smoothly embedded submanifold of M, and M is a smoothly embedded submanifold of N, it follows that $L \cap M$ is also a smoothly embedded submanifold of N.
2. Show that there does not exist an immersion $F: T^{2} \rightarrow S^{2}$ from the 2-torus to the 2 -sphere. (Hint: First prove that such an immersion would have to be a covering map.)

If $F: M^{n} \rightarrow N^{n}$ is a smooth immersion between manifolds of the same dimension, it is necessarily a local diffeomorphism by the inverse function theorem. Now suppose that M is compact, and let $q \in N$. The pre-image $F^{-1}(q)$ of q is then compact and discrete, and therefore is a finite set $\left\{p_{1}, \ldots p_{k}\right\}$; and moreover, each p_{j} has a neighborhood \mathcal{U}_{j} which is mapped diffeomorphically to some neighborhood \mathcal{V}_{j} of q. Since M is Hausdorff, we can, by induction, also assume that these open sets \mathcal{U}_{j} are mutually disjoint. Now since M is compact, $\mathcal{W}=N-F\left(M-\cup_{j} \mathcal{U}_{j}\right)$ is the complement of a compact set, and hence open, because N is Hausdorff; and, since every pre-image p_{j} of q belongs to $\cup_{j} \mathcal{U}_{j}$, the open set \mathcal{W} contains q. If we now set $\mathcal{V}:=\mathcal{V}_{1} \cap \cdots \cap \mathcal{V}_{k} \cap \mathcal{W}$, then the pre-image of any $\tilde{q} \in \mathcal{V}$ is a subset of $\cup_{j} \mathcal{U}_{j}$, and it therefore follows that $F^{-1}(\mathcal{V})$ is the union of k disjoint open sets $F^{-1}(\mathcal{V}) \cap \mathcal{U}_{j}$, each of which is mapped diffeomorphically to \mathcal{V} by F. This shows that N is evenly covered by F, and it follows that F is a covering map if M and N are also both assumed to be (path-wise) connected.

Since T^{2} and S^{2} are smooth compact connected manifolds of the same dimension, it follows that any immersion $F: T^{2} \rightarrow S^{2}$ would have to be a covering map. In particular, the induced map $F_{\#}: \pi_{1}\left(T^{2}\right) \rightarrow \pi_{1}\left(S^{2}\right)$ would have to be injective. But $\pi_{1}\left(T^{2}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$, whereas $\pi_{1}\left(S^{2}\right)=0$, so this is a contradiction. This shows that a smooth map $F: T^{2} \rightarrow S^{2}$ can never be an immersion.
3. Consider the vector fields V and W on \mathbb{R}^{3} defined by

$$
\begin{aligned}
V & =x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z} \\
W & =\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}
\end{aligned}
$$

in the standard coordinate system $\left(x^{1}, x^{2}, x^{3}\right)=(x, y, z)$.
(a) Explicitly find the flow generated by V.
(b) Compute the Lie derivative $\mathcal{L}_{V} W$ directly from the definition.
(c) Compute the Lie bracket $[V, W]$ directly from the definition.
(d) How are your answers to (b) and (c) related? Explain.
(a) The flow of V is obtained by solving the system of ordinary differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=x \\
& \frac{d y}{d t}=-y \\
& \frac{d z}{d t}=z
\end{aligned}
$$

which "decouple," insofar as all three can be solved separately:

$$
\begin{aligned}
x(t) & =e^{t} x(0) \\
y(t) & =e^{-t} y(0) \\
z(t) & =e^{t} z(0)
\end{aligned}
$$

Thus, the flow of V is explicitly given by

$$
\Phi_{t}(x, y, z)=\left(e^{t} x, e^{-t} y, e^{t} z\right)
$$

(b) Recall that

$$
\mathcal{L}_{V} W:=\left.\frac{d}{d t}\left[\Phi_{(-t) *} W\right]\right|_{t=0}
$$

On the other hand,

$$
\Phi_{-t}(x, y, z)=\left(e^{-t} x, e^{t} y, e^{-t} z\right)
$$

is a linear map for each t, with differential given by the Jacobian matrix

$$
d \Phi_{-t}=\left[\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{-t}
\end{array}\right]
$$

relative to the standard basis $\partial / \partial x, \partial / \partial y, \partial / \partial z$. Thus

$$
\Phi_{(-t) *} W=\Phi_{(-t) *}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)=e^{-t} \frac{\partial}{\partial x}+e^{t} \frac{\partial}{\partial y}+e^{-t} \frac{\partial}{\partial z},
$$

and

$$
\frac{d}{d t}\left[\Phi_{(-t) *} W\right]=-e^{-t} \frac{\partial}{\partial x}+e^{t} \frac{\partial}{\partial y}-e^{-t} \frac{\partial}{\partial z}
$$

Hence

$$
\mathcal{L}_{V} W=\left.\left(-e^{-t} \frac{\partial}{\partial x}+e^{t} \frac{\partial}{\partial y}-e^{-t} \frac{\partial}{\partial z}\right)\right|_{t=0}=-\frac{\partial}{\partial x}+\frac{\partial}{\partial y}-\frac{\partial}{\partial z} .
$$

(c) By definition,

$$
\begin{aligned}
{[V, W] f=} & V(W f)-W(V f) \\
= & \left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) f \\
& -\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) f \\
= & -\left(\frac{\partial x}{\partial x} \frac{\partial}{\partial x}-\frac{\partial y}{\partial y} \frac{\partial}{\partial y}+\frac{\partial z}{\partial z} \frac{\partial}{\partial z}\right) f \\
= & -\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) f
\end{aligned}
$$

So

$$
[V, W]=-\frac{\partial}{\partial x}+\frac{\partial}{\partial y}-\frac{\partial}{\partial z} .
$$

(d) The answers to (b) and (c) are identical. This illustrates the theorem that $\mathcal{L}_{V} W=[V, W]$ for any smooth vector fields V and W.
4. Let $A=\left[A_{j}^{k}\right]$ and $B=\left[B_{j}^{k}\right]$ be $n \times n$ matrices, and use these matrices to define the two vector fields

$$
\begin{aligned}
X & =\sum_{j, k=1}^{n} A_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}} \\
Y & =\sum_{j, k=1}^{n} B_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}}
\end{aligned}
$$

on \mathbb{R}^{n}. Prove that $[X, Y]=0 \Leftrightarrow A$ and B commute under matrix multiplication.

$$
\begin{aligned}
{[X, Y]=} & \left(\sum_{j, k=1}^{n} A_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}}\right)\left(\sum_{\ell, m=1}^{n} B_{\ell}^{m} x^{\ell} \frac{\partial}{\partial x^{m}}\right) \\
& -\left(\sum_{j, k=1}^{n} B_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}}\right)\left(\sum_{\ell, m=1}^{n} A_{\ell}^{m} x^{\ell} \frac{\partial}{\partial x^{m}}\right) \\
= & \sum_{j, k, \ell, m=1}^{n} A_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}}\left(B_{\ell}^{m} x^{\ell}\right) \frac{\partial}{\partial x^{m}}-\sum_{j, k, \ell, m=1}^{n} B_{j}^{k} x^{j} \frac{\partial}{\partial x^{k}}\left(A_{\ell}^{m} x^{\ell}\right) \frac{\partial}{\partial x^{m}} \\
= & \sum_{j, k, \ell, m=1}^{n} A_{j}^{k} x^{j} B_{\ell}^{m} \delta_{k}^{\ell} \frac{\partial}{\partial x^{m}}-\sum_{j, k, \ell, m=1}^{n} B_{j}^{k} x^{j} A_{\ell}^{m} \delta_{k}^{\ell} \frac{\partial}{\partial x^{m}} \\
= & \sum_{j, k, m=1}^{n} A_{j}^{k} x^{j} B_{k}^{m} \frac{\partial}{\partial x^{m}}-\sum_{j, k, m=1}^{n} B_{j}^{k} x^{j} A_{k}^{m} \frac{\partial}{\partial x^{m}} \\
= & \sum_{j, k, m=1}^{n}\left(B_{k}^{m} A_{j}^{k}-A_{k}^{m} B_{j}^{k}\right) x^{j} \frac{\partial}{\partial x^{m}}
\end{aligned}
$$

Thus $[X, Y]=0$ iff

$$
\sum_{k} A_{k}^{m} B_{j}^{k}=\sum_{k} B_{k}^{m} A_{j}^{k}
$$

and the latter is equivalent to saying that $A B=B A$ as matrices.
5. Let M be a compact m-manifold, and suppose that $F: M \rightarrow S^{1}$ is a submersion from M to the circle. Let $X=\partial / \partial \theta$ be the standard unit vector field on the circle. Show that there exists a vector field V on M such that $(d F)_{p}\left(V_{p}\right)=X_{F(p)}$ for every $p \in M$. Then use the flow of V to prove that, for any two points $q, \tilde{q} \in S^{1}$, the compact ($m-1$)-manifolds $F^{-1}(q)$ and $F^{-1}(\tilde{q})$ are diffeomorphic.

Since F is a submersion, we can cover M with coordinate domains \mathcal{U}_{α} on which we have coordinates $\left(x_{\alpha}^{1}, \ldots, x_{\alpha}^{m}\right)$ in which F takes the form

$$
\theta=x_{\alpha}^{1}
$$

where θ is a local "angle" coordinate on S^{1}. The vector field $V_{\alpha}=\partial / \partial x_{\alpha}^{1}$ defined on \mathcal{U}_{α} therefore has the property that $(d F)\left(V_{\alpha}\right)=\partial / \partial \theta=X$ at every point of \mathcal{U}_{α}. The difficulty, of course, is that the vector fields V_{α} and V_{β} will general disagree on their common domains of definition.

To get around this difficulty, we now let $\left\{\phi_{\alpha}\right\}$ be a partition of unity subordinate to the cover \mathcal{U}_{α} of M, and set

$$
V=\sum_{\alpha} \phi_{\alpha} V_{\alpha}
$$

This sum is locally finite, and the $\phi_{\alpha} V_{\alpha}$ is understood to mean the smooth vector field on all of M given by

$$
\left(\phi_{\alpha} V_{\alpha} \mid\right)(p)= \begin{cases}\phi_{\alpha}(p) V_{\alpha}(p) & \text { if } p \in \mathcal{U}_{\alpha} \\ 0 & \text { if } p \notin \mathcal{U}_{\alpha}\end{cases}
$$

Since $\sum_{\alpha} \phi_{\alpha} \equiv 1$, we therefore have

$$
\begin{aligned}
(d F)_{p}\left(V_{p}\right) & =(d F)_{p}\left(\sum_{\alpha} \phi_{\alpha}(p) V_{\alpha}(p)\right) \\
& =\sum_{\alpha} \phi_{\alpha}(p)(d F)_{p}\left(V_{\alpha}(p)\right) \\
& =\sum_{\alpha} \phi_{\alpha}(p) X_{F(p)} \\
& =\left[\sum_{\alpha} \phi_{\alpha}(p)\right] X_{F(p)} \\
& =1 \cdot X_{F(p)} \\
& =X_{F(p)}
\end{aligned}
$$

so V is a smooth vector field on M with the required property.
Since M is compact, V is compactly supported, and its flow $\Phi_{t}: M \rightarrow M$ is defined for all $t \in \mathbb{R}$. Similarly, the flow $\Psi_{t}: S^{1} \rightarrow S^{1}$ of X is defined for all t. But since $(d F)(V)=X$, we must that

$$
F \circ \Phi_{t}=\Psi_{t} \circ F .
$$

In other words, the diffeomorphism $\Phi_{t}: M \rightarrow M$ sends $F^{-1}(q)$ to $F^{-1}\left(\Psi_{t}(q)\right)$, and its inverse Φ_{-t} similarly sends $F^{-1}\left(\Psi_{t}(q)\right)$ to $F^{-1}(q)$. The restriction of Φ_{t} therefore gives us a diffeomorphism $F^{-1}\left(\Psi_{t}(q)\right) \approx F^{-1}(q)$. But since Ψ_{t} is just the clockwise rotation of S^{1} through t radians, any $\tilde{q} \in S^{1}$ can be written as $\Psi_{t}(q)$ for some t, and we therefore have $F^{-1}(\tilde{q}) \approx F^{-1}(q)$ for any $q, \tilde{q} \in S^{1}$, as claimed.
6. Prove that there exists a smooth submersion $F: S^{3} \rightarrow S^{2}$.

By identifying \mathbb{R}^{4} with \mathbb{C}^{2}, we can realize the 3 -sphere as

$$
S^{3}=\left\{\left.(z, \zeta) \in \mathbb{C}^{2}| | z\right|^{2}+|\zeta|^{2}=1\right\} .
$$

This allows us to define a smooth map $F: S^{3} \rightarrow \mathbb{C P}_{1}$ by

$$
F(z, \zeta)=[z: \zeta] .
$$

This map is a submersion, because it has local smooth sections

$$
[1: u] \rightarrow\left(\frac{e^{i \theta}}{\sqrt{|u|^{2}+1}}, \frac{e^{i \theta} u}{\sqrt{|u|^{2}+1}}\right), \quad \text { or } \quad[v: 1] \mapsto\left(\frac{e^{i \theta} v}{\sqrt{|v|^{2}+1}}, \frac{e^{i \theta}}{\sqrt{|v|^{2}+1}}\right)
$$

passing through any given point of S^{3}. Since $\mathbb{C P}_{1} \approx S^{2}$, the claim follows.
7. Let $p, q \in S^{n} \subset \mathbb{R}^{n+1}$ be the north and south poles $(0, \ldots, 0, \pm 1)$, and let $\Phi_{1}:\left(S^{n}-\{p\}\right) \rightarrow \mathbb{R}^{n}$ and $\left.\Phi_{2}:\left(S^{n}-\{q\}\right)\right) \rightarrow \mathbb{R}^{n}$ be the corresponding stereographic projections. Let $F:\left(\mathbb{R}^{n}-\{0\}\right) \rightarrow\left(\mathbb{R}^{n}-\{0\}\right)$ be given by $F=\Phi_{2} \circ \Phi_{1}^{-1}$. Compute the push-forward vector field $F_{*}\left(\partial / \partial x^{1}\right)$. Then use your computation to show that S^{n} carries a smooth vector field which only vanishes at one point.

The map $F:\left(\mathbb{R}^{n}-\{0\}\right) \rightarrow\left(\mathbb{R}^{n}-\{0\}\right)$ is explicitly given by $F(\vec{x})=\vec{y}$, where

$$
y^{j}=\frac{x^{j}}{\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}}, \quad j=1, \ldots, n
$$

The chain rule therefore tells us that

$$
\begin{aligned}
F_{*}\left(\frac{\partial}{\partial x^{1}}\right) & =\sum_{j=1}^{n} \frac{\partial y^{j}}{\partial x^{1}} \frac{\partial}{\partial y^{j}} \\
& =\sum_{j=1}^{n} \frac{\partial}{\partial x^{1}}\left[\frac{x^{j}}{\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}}\right] \frac{\partial}{\partial y^{j}} \\
& =\sum_{j=1}^{n}\left(\frac{\delta_{1}^{j}}{\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}}-\frac{2 x^{1} x^{j}}{\left[\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\right]^{2}}\right) \frac{\partial}{\partial y^{j}} \\
& =\sum_{j=1}^{n}\left(\left[\left(y^{1}\right)^{2}+\cdots+\left(y^{n}\right)^{2}\right] \delta_{1}^{j}-2 y^{1} y^{j}\right) \frac{\partial}{\partial y^{j}} \\
& =\left[-\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2} \cdots+\left(y^{n}\right)^{2}\right] \frac{\partial}{\partial y^{1}}-2 y^{1} \sum_{j=2}^{n} y^{j} \frac{\partial}{\partial y^{j}}
\end{aligned}
$$

This vector field extends smoothly across the origin, with value zero there. It follows that there is a smooth vector field on S^{n} which vanishes at exactly one point.

