
Mid-Term Solutions

Geometry/Topology II

Spring 2015

Do four of the following problems. 25 points each.

The term manifold is used on this exam to mean a manifold without boundary.

1. Let N be a smooth n-manifold, and let L ⊂ N and M ⊂ N be a smoothly
embedded submanifolds of dimensions ` and m, respectively. One says that
L and M are transverse if, at every p ∈ L ∩M , the tangent space of L and
M together span the tangent space of N :

TpL+ TpM = TpN.

If L and M are transverse, prove that L ∩M is a smoothly embedded sub-
manifold of N . What is the dimension of L ∩M?

Given a point p ∈ L ⊂ N , we can find smooth coordinates (x1, . . . , xn) on a
neighborhood U ⊂ N of p in which L ∩ U becomes {(x1, . . . x`, 0, . . . , 0)}. In
other words,

U F−→ Rn−`

(x1, . . . x`, x`+1, . . . xn) 7−→ (x`+1, . . . xn)

is a submersion such that F−1(0) = L ∩ U .
Now suppose that p ∈ L ∩ M , and that TpL + TpM = TpN . Since

ker dFp = TpL, it follows that

dFp(TpM) = dFp(TpN) = T0Rn = Rn−`.

The map
f := F |U∩M : U ∩M → Rn−`
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therefore has maximal rank at p, and therefore has maximal rank on a neigh-
borhood V ⊂M of p ∈M . This means that

f̃ := f |V : V → Rn−`

is a submersion, and an open set of p in L ∩M therefore coincides with the
submanifold f̃−1(0). If L and M are transverse, this shows that L∩M is an
embedded submanifold of M , and that its dimension is m−(n−`) = `+m−n.
Moreover, since L ∩M is a smoothly embedded submanifold of M , and M
is a smoothly embedded submanifold of N , it follows that L ∩M is also a
smoothly embedded submanifold of N .

2. Show that there does not exist an immersion F : T 2 → S2 from the 2-torus
to the 2-sphere. (Hint: First prove that such an immersion would have to
be a covering map.)

If F : Mn → Nn is a smooth immersion between manifolds of the same
dimension, it is necessarily a local diffeomorphism by the inverse function the-
orem. Now suppose that M is compact, and let q ∈ N . The pre-image F−1(q)
of q is then compact and discrete, and therefore is a finite set {p1, . . . pk}; and
moreover, each pj has a neighborhood Uj which is mapped diffeomorphically
to some neighborhood Vj of q. Since M is Hausdorff, we can, by induction,
also assume that these open sets Uj are mutually disjoint. Now since M is
compact, W = N − F (M − ∪jUj) is the complement of a compact set, and
hence open, because N is Hausdorff; and, since every pre-image pj of q be-
longs to ∪jUj, the open setW contains q. If we now set V := V1∩· · ·∩Vk∩W ,
then the pre-image of any q̃ ∈ V is a subset of ∪jUj, and it therefore follows
that F−1(V) is the union of k disjoint open sets F−1(V) ∩ Uj, each of which
is mapped diffeomorphically to V by F . This shows that N is evenly covered
by F , and it follows that F is a covering map if M and N are also both
assumed to be (path-wise) connected.

Since T 2 and S2 are smooth compact connected manifolds of the same
dimension, it follows that any immersion F : T 2 → S2 would have to be a
covering map. In particular, the induced map F# : π1(T

2) → π1(S
2) would

have to be injective. But π1(T
2) ∼= Z ⊕ Z, whereas π1(S

2) = 0, so this is a
contradiction. This shows that a smooth map F : T 2 → S2 can never be an
immersion.
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3. Consider the vector fields V and W on R3 defined by

V = x
∂

∂x
− y ∂

∂y
+ z

∂

∂z

W =
∂

∂x
+

∂

∂y
+

∂

∂z

in the standard coordinate system (x1, x2, x3) = (x, y, z).

(a) Explicitly find the flow generated by V .

(b) Compute the Lie derivative LVW directly from the definition.

(c) Compute the Lie bracket [V,W ] directly from the definition.

(d) How are your answers to (b) and (c) related? Explain.

(a) The flow of V is obtained by solving the system of ordinary differential
equations

dx

dt
= x

dy

dt
= −y

dz

dt
= z

which “decouple,” insofar as all three can be solved separately:

x(t) = etx(0)

y(t) = e−ty(0)

z(t) = etz(0)

Thus, the flow of V is explicitly given by

Φt(x, y, z) = (etx, e−ty, etz).
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(b) Recall that

LVW :=
d

dt
[Φ(−t)∗W ]

∣∣∣∣
t=0

.

On the other hand,

Φ−t(x, y, z) = (e−tx, ety, e−tz)

is a linear map for each t, with differential given by the Jacobian matrix

dΦ−t =

 e−t 0 0
0 et 0
0 0 e−t


relative to the standard basis ∂/∂x, ∂/∂y, ∂/∂z. Thus

Φ(−t)∗W = Φ(−t)∗

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
= e−t

∂

∂x
+ et

∂

∂y
+ e−t

∂

∂z
,

and
d

dt
[Φ(−t)∗W ] = −e−t ∂

∂x
+ et

∂

∂y
− e−t ∂

∂z
.

Hence

LVW =

(
−e−t ∂

∂x
+ et

∂

∂y
− e−t ∂

∂z

)∣∣∣∣
t=0

= − ∂

∂x
+

∂

∂y
− ∂

∂z
.

(c) By definition,

[V,W ]f = V (Wf)−W (V f)

=

(
x
∂

∂x
− y ∂

∂y
+ z

∂

∂z

)(
∂

∂x
+

∂

∂y
+

∂

∂z

)
f

−
(
∂

∂x
+

∂

∂y
+

∂

∂z

)(
x
∂

∂x
− y ∂

∂y
+ z

∂

∂z

)
f

= −
(
∂x

∂x

∂

∂x
− ∂y

∂y

∂

∂y
+
∂z

∂z

∂

∂z

)
f

= −
(
∂

∂x
− ∂

∂y
+

∂

∂z

)
f
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So

[V,W ] = − ∂

∂x
+

∂

∂y
− ∂

∂z
.

(d) The answers to (b) and (c) are identical. This illustrates the theorem
that LVW = [V,W ] for any smooth vector fields V and W .

4. Let A =
[
Akj
]

and B =
[
Bk
j

]
be n×n matrices, and use these matrices to

define the two vector fields

X =
n∑

j,k=1

Akjx
j ∂

∂xk

Y =
n∑

j,k=1

Bk
j x

j ∂

∂xk

on Rn. Prove that [X, Y ] = 0 ⇔ A and B commute under matrix multipli-
cation.

[X, Y ] =

(
n∑

j,k=1

Akjx
j ∂

∂xk

)(
n∑

`,m=1

Bm
` x

` ∂

∂xm

)

−

(
n∑

j,k=1

Bk
j x

j ∂

∂xk

)(
n∑

`,m=1

Am` x
` ∂

∂xm

)

=
n∑

j,k,`,m=1

Akjx
j ∂

∂xk
(
Bm
` x

`
) ∂

∂xm
−

n∑
j,k,`,m=1

Bk
j x

j ∂

∂xk
(
Am` x

`
) ∂

∂xm

=
n∑

j,k,`,m=1

Akjx
jBm

` δ
`
k

∂

∂xm
−

n∑
j,k,`,m=1

Bk
j x

jAm` δ
`
k

∂

∂xm

=
n∑

j,k,m=1

Akjx
jBm

k

∂

∂xm
−

n∑
j,k,m=1

Bk
j x

jAmk
∂

∂xm

=
n∑

j,k,m=1

(
Bm
k A

k
j − Amk Bk

j

)
xj

∂

∂xm
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Thus [X, Y ] = 0 iff ∑
k

Amk B
k
j =

∑
k

Bm
k A

k
j ,

and the latter is equivalent to saying that AB = BA as matrices.

5. Let M be a compact m-manifold, and suppose that F : M → S1 is a
submersion from M to the circle. Let X = ∂/∂θ be the standard unit vector
field on the circle. Show that there exists a vector field V on M such that
(dF )p(Vp) = XF (p) for every p ∈M . Then use the flow of V to prove that, for
any two points q, q̃ ∈ S1, the compact (m− 1)-manifolds F−1(q) and F−1(q̃)
are diffeomorphic.

Since F is a submersion, we can cover M with coordinate domains Uα on
which we have coordinates (x1α, . . . , x

m
α ) in which F takes the form

θ = x1α,

where θ is a local “angle” coordinate on S1. The vector field Vα = ∂/∂x1α
defined on Uα therefore has the property that (dF )(Vα) = ∂/∂θ = X at every
point of Uα. The difficulty, of course, is that the vector fields Vα and Vβ will
general disagree on their common domains of definition.

To get around this difficulty, we now let {φα} be a partition of unity
subordinate to the cover Uα of M , and set

V =
∑
α

φαVα.

This sum is locally finite, and the φαVα is understood to mean the smooth
vector field on all of M given by

(φαVα|)(p) =

{
φα(p)Vα(p) if p ∈ Uα,
0 if p 6∈ Uα.
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Since
∑

α φα ≡ 1, we therefore have

(dF )p(Vp) = (dF )p

(∑
α

φα(p)Vα(p)

)
=

∑
α

φα(p)(dF )p(Vα(p))

=
∑
α

φα(p)XF (p)

=

[∑
α

φα(p)

]
XF (p)

= 1 ·XF (p)

= XF (p),

so V is a smooth vector field on M with the required property.
Since M is compact, V is compactly supported, and its flow Φt : M →M

is defined for all t ∈ R. Similarly, the flow Ψt : S1 → S1 of X is defined for
all t. But since (dF )(V ) = X, we must that

F ◦ Φt = Ψt ◦ F.

In other words, the diffeomorphism Φt : M →M sends F−1(q) to F−1(Ψt(q)),
and its inverse Φ−t similarly sends F−1(Ψt(q)) to F−1(q). The restriction of
Φt therefore gives us a diffeomorphism F−1(Ψt(q)) ≈ F−1(q). But since Ψt

is just the clockwise rotation of S1 through t radians, any q̃ ∈ S1 can be
written as Ψt(q) for some t, and we therefore have F−1(q̃) ≈ F−1(q) for any
q, q̃ ∈ S1, as claimed.

6. Prove that there exists a smooth submersion F : S3 → S2.

By identifying R4 with C2, we can realize the 3-sphere as

S3 = {(z, ζ) ∈ C2 | |z|2 + |ζ|2 = 1}.

This allows us to define a smooth map F : S3 → CP1 by

F (z, ζ) = [z : ζ].
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This map is a submersion, because it has local smooth sections

[1 : u]→ (
eiθ√
|u|2 + 1

,
eiθu√
|u|2 + 1

), or [v : 1] 7→ (
eiθv√
|v|2 + 1

,
eiθ√
|v|2 + 1

)

passing through any given point of S3. Since CP1 ≈ S2, the claim follows.

7. Let p, q ∈ Sn ⊂ Rn+1 be the north and south poles (0, . . . , 0,±1), and
let Φ1 : (Sn − {p}) → Rn and Φ2 : (Sn − {q})) → Rn be the corresponding
stereographic projections. Let F : (Rn − {0}) → (Rn − {0}) be given by
F = Φ2 ◦ Φ−11 . Compute the push-forward vector field F∗(∂/∂x

1). Then use
your computation to show that Sn carries a smooth vector field which only
vanishes at one point.

The map F : (Rn−{0})→ (Rn−{0}) is explicitly given by F (~x) = ~y, where

yj =
xj

(x1)2 + · · ·+ (xn)2
, j = 1, . . . , n.

The chain rule therefore tells us that

F∗(
∂

∂x1
) =

n∑
j=1

∂yj

∂x1
∂

∂yj

=
n∑
j=1

∂

∂x1

[
xj

(x1)2 + · · ·+ (xn)2

]
∂

∂yj

=
n∑
j=1

(
δj1

(x1)2 + · · ·+ (xn)2
− 2x1xj

[(x1)2 + · · ·+ (xn)2]2

)
∂

∂yj

=
n∑
j=1

(
[(y1)2 + · · ·+ (yn)2]δj1 − 2y1yj

) ∂

∂yj

=
[
−(y1)2 + (y2)2 · · ·+ (yn)2

] ∂

∂y1
− 2y1

n∑
j=2

yj
∂

∂yj
.

This vector field extends smoothly across the origin, with value zero there.
It follows that there is a smooth vector field on Sn which vanishes at exactly
one point.
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