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Abstract. This paper gives geometric characterizations of the Weil-Petersson
class of rectifiable quasicircles, i.e., the closure of the smooth planar curves in the
Weil-Petersson metric on universal Teichmüller space defined by Takhtajan and
Teo. Although motivated by the planar case, many of our characterizations make
sense for curves in Rn and remain equivalent in all dimensions. We prove that
Γ is Weil-Petersson if and only if it is well approximated by polygons in a pre-
cise sense, has finite Möbius energy or has arclength parameterization in H3/2(T).
Other results say that a curve is Weil-Petersson if and only if local curvature is
square integrable over all locations and scales, where local curvature is measured
using various quantities such as Peter Jones’s β-numbers, nonlinearity of confor-
mal weldings, Menger curvature, the “thickness” of the hyperbolic convex hull of
Γ, and the total curvature of minimal surfaces in hyperbolic space. Finally, we
prove that planar Weil-Petersson curves are exactly the asymptotic boundaries of
minimal surfaces in H3 with finite renormalized area.
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1. Introduction

This paper gives several geometric characterizations of the Weil-Petersson class of

rectifiable quasicircles. This collection of planar closed curves has close connections

to geometric function theory, operator theory and certain random processes such

as Schramm-Loewner evolutions (SLE). Our new characterizations will also link it

to various ideas in harmonic analysis and geometric measure theory (e.g., Sobolev

spaces, knot energies, β-numbers, biLipschitz involutions, Menger curvature) and

hyperbolic geometry (e.g., convex hulls, minimal surfaces, isoperimetric inequalities,

renormalized area). Moreover, most of our characterizations extend to curves in Rn

and remain equivalent there, defining new classes of curves that may be of interest

in analysis and geometry. The name “Weil-Petersson class” comes from work of

Takhtajan and Teo [120] defining a Weil-Petersson metric on universal Teichmüller

space. The same collection of curves was earlier studied by Guo [63] and Cui [35]

using the terms “integrable Teichmüller space of degree 2” and “integrably asymptotic

affine maps” respectively.

A quasicircle is the image of the unit circle T under a quasiconformal mapping f of

the plane, e.g., a homeomorphism of the plane that is absolutely continuous on almost

all lines, conformal outside the unit disk D, and whose dilatation µ = fz/fz belongs

to B∞1 , the open unit ball in L∞(D). The collection of planar quasicircles (modulo

similarities) corresponds to universal Teichmüller space T (1) and the usual metric is

defined in terms of ‖µ‖∞. Motivated by ideas in string theory to apply Hilbert space

methods to spaces of loops (e.g. [23], [24]), Takhtajan and Teo [120] defined a Weil-

Petersson metric on universal Teichmüler space T (1) that makes it into a Hilbert

manifold. This topology on T (1) has uncountably many connected components, but

one of these components, denoted T0(1), is exactly the closure of the smooth curves;

this is the Weil-Petersson class. Takhtajan and Teo proved these curves are precisely

the images of T under quasiconformal maps with dilatation µ ∈ L2(dAρ)∩B∞1 , where

Aρ is hyperbolic area on D. Thus, roughly speaking, Weil-Petersson quasicircles are

to L2 as general quasicircles are to L∞.

Takhtajan and Teo give an alternate characterization in terms of the conformal

mapping f : D → Ω, where Ω is the domain bounded by Γ. They show Γ is Weil-

Petersson if and only if log f ′ ∈ W 1,2 i.e., (log f ′)′ = f ′′/f ′ ∈ L2(D, dxdy). By
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the Sobolev trace theorem, the boundary values of log f ′ are in the Sobolev space

H1/2(T). We will prove that this implies the arclength parameterization of Γ is in

the space H3/2(T) and that this characterizes Weil-Petersson curves.

Theorem 1.1. Γ is Weil-Petersson iff it is chord-arc and the arclength parameteri-

zation is in the Sobolev space H3/2(T).

A rectifiable curve Γ is called chord-arc if for all x, y ∈ Γ we have `(γ) = O(|x−y|)
where γ ⊂ Γ is the shortest sub-arc with endpoints x, y. The definition of H3/2(T)

will be given in Section 3, as will the simple proof of necessity. Sufficiency of H3/2

follows from other characterizations of the Weil-Petersson class given in this paper.

This was first observed by David Mumford, who conjectured Theorem 1.1 based on

an earlier draft of this paper. Takhtajan and Teo had proven that T0(1) is topological

group, and Mumford also pointed out that this identification makes Jordan curves

in H3/2 into a topological group, extending known results for Hs(T), s > 3/2 (the

group structure is obtained by identifying closed curves with circle homeomorphisms

via conformal welding, as described in Sections 2 and 3). See also [30], [68] and the

remarks following Definition 6.

It has been an open problem to give a “geometric” characterization of the Weil-

Petersson class, as opposed to the known “function theoretic” characterizations. See

Remark II.1.2 of [120]. Theorem 1.1 is our first step in this direction, and it will

lead to a variety of more purely geometric characterizations. Like being an H3/2

curve, most of these conditions also make sense for curves in Rn, n ≥ 2 and we will

prove that they remain equivalent in higher dimensions. For example, one immediate

consequence of Theorem 1.1 is:

Theorem 1.2. Γ is Weil-Petersson iff it has finite Möbius energy, i.e.,

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|x− y|2
− 1

`(x, y)2

)
dxdy <∞.(1.1)

Möbius energy is one of several “knot energies” introduced by O’Hara [91], [92],

[93]. It blows up when the curve is close to self-intersecting, so in the special case of

curves in R3, continuously deforming a curve to minimize the Möbius energy should

lead to a canonical “nice” representative of each knot type. This was proven for

irreducible knots by Freedman, He and Wang [64], who also showed that Möb(Γ) is
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Möbius invariant (hence the name), that finite energy curves are chord-arc, and in

R3 they are topologically tame (there is an ambient isotopy to a smooth embedding).

Theorem 1.2 follows from Theorem 1.1 by a result of Blatt [20] (we sketch a proof

in Section 3). The connection to Weil-Petersson curves indicates Möbius energy may

also be interesting in dimensions other than 3.

Theorem 1.2 has several different reformulations. For example, it is essentially the

same as the “Jones Conjecture” stated independently in [54]. We will explain the

connection in Section 3. Another variation is rather elementary to state, using only

the definition of arclength. If a closed Jordan curve Γ has finite length `(Γ), choose

a base point z0
1 ∈ Γ and for each n ≥ 1, let {znj }, j = 1, . . . , 2n be the unique set

of ordered points with zn1 = z0
1 that divides Γ into 2n equal length intervals (called

the nth generation dyadic subintervals of Γ). Let Γn be the inscribed 2n-gon with

these vertices. See Figure 1. Clearly `(Γn) ↗ `(Γ) and the Weil-Petersson class is

characterized by the rate of this convergence.

Theorem 1.3. With notation as above, a curve Γ is Weil-Petersson if and only if
∞∑
n=1

2n [`(Γ)− `(Γn)] <∞(1.2)

with a bound that is independent of the choice of the base point.

Figure 1. Inscribed dyadic polygons. Γ is Weil-Petersson if and only
if its length is rapidly approximated using such polygons.

A more technical looking consequence of Theorem 1.1 involves Peter Jones’s β-

numbers: given a curve Γ ⊂ R2, and a square Q in the plane let

βΓ(Q) = inf
L

sup
z∈Γ∩3Q

dist(z, L)

diam(Q)
,
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where the infimum is over all lines hitting 3Q, the square concentric with Q and with

3 times the side length (β = 0 if Γ ∩ 3Q = ∅). See Figure 2.

Q

3Q

Q

3Q

Figure 2. β-numbers measure how close Γ is to a line near Q. On
the left β is small; on the right is it close to 1.

Theorem 1.4. A Jordan curve Γ is Weil-Petersson if and only if∑
Q

β2
Γ(Q) <∞,(1.3)

where the sum is over all dyadic squares in the plane.

Dyadic squares and cubes will be defined in Section 4. This theorem is our funda-

mental “Γ is Weil-Petersson iff curvature is square integrable over all locations and

scales” result. All of our other criteria can be formulated in an analogous way, using

different measures of local curvature (even Theorems 1.2 and 1.3, although they do not

immediately look like L2 curvature conditions). Other versions involve Schwarzian

derivatives, Menger curvature, and the Gauss curvatures of minimal surfaces; these

all measure deviation from flatness in different, but closely related, ways.

Peter Jones [71] introduced the β-numbers in his famous “traveling salesman theo-

rem” that characterizes subsets of rectifiable curves in the plane. In the special case

of a Jordan curve Γ, his result says that

`(Γ) ' diam(Γ) +
∑
Q

β2
Γ(Q)diam(Q),(1.4)

where the sum is over all dyadic squares in R2. Thus (1.3) is a strengthening of

Jones’s condition (1.4). Analogs of Jones’s theorem are known in Rn [94], Hilbert

space [111], and some other metric spaces [36], [50], [77], [78]. For curves in Rn,

n ≥ 3, we will prove that (1.3) is equivalent to the conditions in Theorems 1.1, 1.2

and 1.3, using the following refinement of Jones’s theorem proven in [17].
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Theorem 1.5. If Γ ⊂ Rn is a Jordan arc, then

`(Γ) = crd(Γ) +O

(∑
Q

β2
Γ(Q)diam(Q)

)
,(1.5)

where the sum is over all dyadic cubes in Rn.

Here crd(Γ) = |z − w| denotes the distance between the endpoints z, w of Γ. The

point of Theorem 1.5 is that the diam(Γ) term in (1.4) can be replaced by the smaller

value crd(Γ), and that this term is only multiplied by “1” in the estimate (1.5).

For the rest of the introduction we return to the planar case n = 2 where the

statements are simplest; in higher dimensions some changes are needed due to tech-

nicalities that arise, e.g., a minimal surface in H3 must be replaced by a minimal

current or flat chain in Hn+1. These changes will be discussed in Section 6.

The hyperbolic upper half-space is defined as H3 = R3
+ = {(x, t) : x ∈ R2, t > 0},

with the hyperbolic metric dρ = ds/t. The hyperbolic convex hull of Γ ⊂ R2, denoted

CH(Γ), is the smallest convex set in H3 that contains all (infinite) hyperbolic geodesics

with both endpoints in Γ. Except when Γ is a circle, CH(Γ) has non-empty interior

and two boundary surfaces (both with asymptotic boundary Γ), called the “domes”

of either side of Γ. See Figure 3 for the domes of a square and its complement. For

z ∈ CH(Γ), we define δ(z) to be the maximum of the hyperbolic distances from z

to the two boundary components of CH(Γ). See Figure 9. This function serves as a

Möbius invariant version of the β-numbers.

Our hyperbolic Weil-Petersson criteria will involve integrating some quantity such

as δ over points (x, t) on some surface S ⊂ H3 that has Γ ⊂ R2 as its asymptotic

boundary; usually S will be one of the two connected components of ∂CH(Γ), the

cylinder Γ × (0, 1], or a minimal surface contained in CH(Γ). Suppose S ⊂ H3 is

a 2-dimensional, properly embedded sub-manifold that has an asymptotic boundary

that is a closed Jordan curve in R2. The Euler characteristic of S will be denoted

χ(S), i.e., χ(S) = 2 − 2g − h if S is a surface of genus g with h holes. We let K(z)

denote the Gauss curvature of S at z. The hyperbolic metric dρ = ds/2t was chosen

so that H3 has constant Gauss curvature −1. If the principle curvatures of S at z are

κ1(z), κ2(z), then K(z) = −1 +κ1(z)κ2(z) (this is the Gauss equation). The norm of

the second fundamental form is given by |K(z)|2 = κ1(z)2 + κ2(z)2. The surface S is
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Figure 3. The domes of a square and its complement. The convex
hull of the boundary is the region between these two surfaces. The
dome on the left is a hemisphere over the inscribed disk with four half-
cones attached, each with a vertex at a corner of the square. The dome
on the right is the hemisphere over the circumscribed disk, cut by four
vertical planes over the sides of the square.

called a minimal surface if κ1 = −κ2 (the mean curvature H = (κ1 + κ2)/2 is zero).

In this case we will write κ = |κj|, j = 1, 2 and so K(z) = −1− κ2(z).

Michael Anderson [7] has shown that every closed Jordan curve on R2 bounds a

simply connected minimal surface in H3, but there may be other minimal surfaces

with boundary Γ that are not disks. See Figure 4.

Figure 4. A planar curve from Anderson’s paper [7] illustrating that
a curve Γ ⊂ R2 can be the boundary of multiple minimal surfaces. The
first is topologically a disk; the second is topologically a torus with a
hole removed.

However, every minimal surface S with asymptotic boundary Γ is contained in

CH(Γ) and the principle curvatures of S at a point z satisfy |κj(z)| = O(δ(z)), (see

Lemma 19.1). Let Aρ denote hyperbolic area and Lρ hyperbolic length.
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Theorem 1.6. For a closed curve Γ ⊂ R2, the following are equivalent:

(1) Γ ⊂ R2 is a Weil-Petersson curve.

(2) Γ asymptotically bounds a surface S ⊂ H3 so that∫
S

|δ(z)|2dAρ(z) <∞.

(3) Γ asymptotically bounds a surface S ⊂ H3 so that |K(z)| → 0 as z → R2 =

∂H3 and ∫
S

|K(z)|2dAρ(z) <∞.

(4) Every minimal surface S asymptotically bounded by Γ has finite Euler char-

acteristic and finite total curvature, i.e.,∫
S

|κ(z)|2dAρ(z) =

∫
S

|K(z) + 1|dAρ(z) <∞.

(5) There is some minimal surface S with finite Euler characteristic and asymp-

totic boundary Γ so that S is the union of a nested sequence of compact Jordan

subdomains Ω1 ⊂ Ω2 ⊂ . . . with

lim sup
n→∞

[Lρ(∂Ωn)− Aρ(Ωn)] <∞.

In 1993 Geraldo de Oliveira Filho (Theorem B, [37]) showed that a complete, im-

mersed minimal disk in Hn having finite total curvature has an asymptotic boundary

Γ that is rectifiable, and he asked if Γ must be C1. By Part (4) above, the answer

is no, since Theorem 1.4 implies that Weil-Petersson curves need not be C1. The

curve γ(t) = t · exp(i/| log 1/t|) satisfies β(Q) ' 1/n if 0 ∈ Q and diam(Q) = 2−n,

and one can check that (1.3) is satisfied even though γ has an infinite spiral at 0.

Weil-Petersson curves can have spirals at a dense set of points, but they are “almost”

C1 in the sense that Hs ⊂ C1,s−3/2 ⊂ C1 for all s > 3/2, e.g., Lemma 8.2 of [38].

The isoperimetric difference in Part (5) of Theorem 1.6 is also known as the renor-

malized area of S, at least in the special case that Ω is the truncation of S ⊂ H3 at

a fixed height above the boundary. More precisely, set

St = S ∩ {(x, y, s) ∈ H3 : s > t}, ∂St = S ∩ {(x, y, s) ∈ H3 : s = t}

and define the renormalized area of S to be

RA(S) = lim
t↘0

[Aρ(St)− Lρ(∂St)]
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when this limit exists and is finite. We will show that these truncations satisfy the

last part of Theorem 1.6 and hence

Corollary 1.7. For any closed curve Γ ⊂ R2 and for any minimal surface S ⊂ H3

with finite Euler characteristic and asymptotic boundary Γ, we have

RA(S) = −2πχ(S)−
∫
S

κ2(z)dAρ,(1.6)

In other words, either Γ is Weil-Petersson and both sides are finite and equal, or Γ

is not Weil-Petersson and both sides are −∞.

Proposition 3.1 of Alexakis and Mazzeo’s paper [5] gives a version of (1.6) for sur-

faces in the setting of n-dimensional Poincaré-Einstein manifolds (that formula also

contains a term involving the Weyl curvature), but they use the additional assump-

tion that Γ is C3,α. However, as noted earlier, Weil-Petersson curves need not be even

C1, in general. Corollary 1.7 shows that the Alexakis-Mazzeo result holds without

any conditions on Γ, at least in the case of H3.

Our proof of Corollary 1.7 will show that the exact method of truncation in the

definition of renormalized area is not important.

Corollary 1.8. Suppose S = ∪nKn ⊂ H3 is a minimal surface where K1 ⊂ K2 ⊂ . . .

are nested compact sets such that S \Kn is a topological annulus for all n. Then

RA(S) = lim
n→∞

sup
Ω⊃Kn

[Aρ(Ω)− Lρ(∂Ω)]

where the supremum is over compact domains Kn ⊂ Ω ⊂ S bounded by a single

Jordan curve. As above, either both terms are finite and equal, or both are −∞.

Renormalized area has strong motivations arising from string theory. Maldacena

[80] proposed that the expectation value of the Wilson loop operator (a precursor of

string theory) should be the area of a minimal surface with asymptotic boundary Γ.

It was pointed out by Hennington and Skenderis [66], and by Graham and Witten

[62], that area should be renormalized area. More recently, it has been suggested

that renormalized area be used to measure the entanglement entropy of regions in

conformal field theory, in a way that is analogous to how the entropy of a black hole is

measured by the area of its event horizon, e.g., [90], [107], [119]. See the introduction
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of [5] for further details and references. Also see [102], where the authors argue that

Weil-Petersson curves are the correct setting for 2-dimensional conformal field theory.

The Weil-Petersson class also arises in computer vision: see the papers of Sharon

and Mumford [113], Feiszli, Kushnarev and Leonard [48], and Feiszli and Narayan

[49]. The latter paper computes geodesics for the Weil-Petersson metric as optimal

“morphing” paths between different shapes, and such calculations lead naturally to

the question of identifying the closure of the smooth curves in this metric.

Indeed, the problem of geometrically characterizing Weil-Petersson curves was orig-

inally suggested to me by David Mumford in December of 2017. However, I did not

work seriously on Mumford’s question until attending an IPAM workshop in January

of 2019 on the geometry of random sets. Motivated by SLE, Yilin Wang and Steffen

Rohde [105] had previously defined the Loewner energy of a closed loop, and Wang

subsequently proved that it is finite if and only if the curve is Weil-Petersson. See

[125] and Definition 24 in Appendix A. Her lecture at IPAM contained a summary

of results from the Takhtajan-Teo paper [120], including the characterization of the

Weil-Petersson curves in terms of log f ′ ∈ W 1,2. In [18], Peter Jones and I had charac-

terized curves for which log f ′ ∈ BMO (bounded mean oscillation), so this alternative

definition provided a useful starting point for me.

I thankfully acknowledge discussions with Kari Astala, Martin Chuaqui, Blaine

Lawson, Pekka Koskela, Dragomir Saric, Raanan Schul, Leon Takhtajan, Dror Varolin,

Fredrik Viklund, Rongwei Yang, Yilin Wang, and Michel Zinsmeister. I am grateful

to Atul Shekhar for pointing me to the paper [54] by Gallardo-Gutiérrez, González,

Pérez-González, Pommerenke and Rättyä. I thank Jack Burkart and Maŕıa González

for reading various early drafts and providing many helpful comments and corrections.

I am deeply appreciative to Mike Anderson, Claude LeBrun, Rafe Mazzeo and Andrea

Seppi for very enlightening discussions of curvature, minimal surfaces, renormalized

area and Willmore energy, to John Morgan for explaining the Smith Conjecture, and

especially to David Mumford for sharing his perspective on these problems and his

thoughtful and continued encouragement of this work.

The next five sections state various definitions of the Weil-Petersson class: known

function theoretic ones, new criteria involving Sobolev smoothness, new conditions

involving the β-numbers, and finally new characterizations using hyperbolic geometry,
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first in H3 and then in higher dimensions. Some of the easier implications are proven

in these initial sections; more involved proofs are left for later. For the convenience

of the reader, Table 1 in Section 7 summarizes all the definitions and Figure 11

shows a directed graph indicating the implications that are proven in this paper and

where to find the corresponding proofs. An appendix describes some other known

characterizations of the Weil-Petersson class, giving 26 equivalent definitions in all.

A 27th was recently announced by Viklund and Wang in [122].

2. Function theoretic characterizations

A quasiconformal (QC) map h of a planar domain Ω is a homeomorphism of Ω to

another planar domain Ω′ that is absolutely continuous on almost all lines and whose

dilatation µ = hz/hz is satisfies ‖µ‖∞ ≤ k < 1. See [3] or [75] for the basic properties

of such maps. We say the h is a planar quasiconformal map if Ω = Ω′ = R2. The

measurable Riemann mapping theorem says that given such a µ, there is a planar

quasiconformal map h with this dilatation. If µ is supported on the unit disk, D, then

there is a quasiconformal h : D→ D with this dilatation. A quasiconformal map h is

called K-quasiconformal if its dilatation satisfies ‖µ‖∞ ≤ k = (K−1)/(K+1). More

geometrically, at almost every point h is differentiable and its derivative (which is a

real linear map) send circles to ellipses of eccentricity at most K.

A quasicircle Γ = f(T) is the image of the unit circle T under a planar quasi-

conformal map. Such curves have a well known geometric characterization: Γ is

a quasicircle if and only if for all subarcs γ ⊂ Γ with diam(γ) ≤ diam(Γ)/2 we

have diam(γ) = O(|z − w|), where z, w are the endpoints of γ (this is one of about

thirty equivalent conditions given in [60]). Weil-Petersson curves are quasicircles by

definition, but they are also rectifiable and satisfy even more stringent conditions.

Suppose Γ is a closed curve in the plane and let f be a conformal map from the

unit disk D = {z : |z| < 1} to Ω, the bounded complementary component of Γ. If f

is conformal on D, then f ′ is never zero, so Φ = log f ′ is a well defined holomorphic

function on D. Recall that the Dirichlet class is the Hilbert space of holomorphic

functions F on the unit disk such that |F (0)|2 +
∫
D |F

′(z)|2dxdy < ∞. In other

words, the Dirichlet space consists of the holomorphic functions in the Sobolev space

W 1,2(D) (functions with one derivative in L2(dxdy)).



WEIL-PETERSSON CURVES, β-NUMBERS, AND MINIMAL SURFACES 11

Definition 1. Γ is a quasicircle and Γ = f(T), where f is conformal on D and log f ′

is in the Dirichlet class.

This definition immediately provides some geometric information about the curve

Γ. For a Jordan arc γ, let `(γ) denote its arclength and let crd(γ) = |z − w| where

z, w are the endpoints of γ. If log f ′ is in the Dirichlet class, then log f ′ ∈ VMOA

(vanishing mean oscillation; see Chapter VI of [56]). The John-Nirenberg theorem

(e.g., Theorem VI.2.1 of [56]) then implies f ′ is in the Hardy space H1(D), so Γ is

rectifiable. Even stronger, a theorem of Pommerenke [100] implies that Γ is asymp-

totically smooth, i.e., `(γ)/crd(γ)→ 1 as `(γ)→ 0. Thus a Weil-Petersson curve has

“no corners”, e.g., no polygon is Weil-Petersson. Asymptotic smoothness implies Γ

is chord-arc; a fact observed in [54] (see also Theorem 2.8 of [101], but there is a gap

due to the non-standard definition of “quasicircle” in a result quoted from [45].)

An estimate of Arne Beurling [13] (simplified and extended by Alice Chang and

Don Marshall in [31] and [83]) says that log |f ′| being in the Dirichlet class implies∫
exp(α log2 |f ′|2)ds < ∞ for all α ≤ 1. In particular, |f ′| ∈ Lp(T) for every p < ∞

(but examples show |f ′| need not be bounded). Thus f is almost, but not quite,

Lipschitz. We shall describe its precise smoothness later.

It is easy to prove using power series (e.g., Lemma 10.2 of [16]) that for any

holomorphic function F on D

|F (0)|2 +

∫
D
|F ′(z)|2dxdy <∞

if and only if

|F (0)|2 + |F ′(0)|2 +

∫
D
|F ′′(z)|2(1− |z|2)2dxdy <∞.

Applying this to F = log f ′, we see that∫
D
|(log f ′)′|2dxdy =

∫
D

∣∣∣∣f ′′f ′
∣∣∣∣2 dxdy <∞.(2.1)

could be replaced by the condition∫
D

∣∣∣∣∣
(
f ′′′

f ′

)
−
(
f ′′

f ′

)2
∣∣∣∣∣
2

(1− |z|2)2dxdy <∞.(2.2)
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This integrand is reminiscent of the Schwarzian derivative of f given by

S(f) =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.(2.3)

The quantities in (2.2) and (2.3) are very similar, except that a factor of 1 has been

changed to 3/2. However, this represents a non-linear change, and it is difficult to

compare the two quantities directly. Nevertheless, for conformal maps into bounded

quasidisks, the integrals of these two quantities are simultaneously finite or infinite.

Definition 2. Γ is quasicircle and Γ = f(T), where f is conformal on D and satisfies∫
D
|S(f)(z)|2(1− |z|2)2dxdy <∞.(2.4)

Proposition 1 of Cui’s paper [35] says that Definitions 2 and 1 are equivalent. See

also Theorem II.1.12 of [120] and Theorem 1 of [99]. If f is univalent on D then

sup
z∈D
|S(f)(z)|(1− |z|2)2 ≤ 6.(2.5)

See Chapter II of [76] for this and other properties of the Schwarzian. If f is holo-

morphic on the disk and satisfies (2.5) with 6 replaced by 2, then f is injective, i.e., a

conformal map. If 2 is replaced by a value t < 2, then f also has a K-quasiconformal

extension to the plane, where K depends only on t. This is due to Ahlfors and Weill

[2], who gave a formula for the extension and its dilatation

f(w) = f(z) +
(1− |z|2)f ′(z)

z − 1
2
(1− |z|2)(f ′′(z)/f ′(z))

(2.6)

µ(w) = −1

2
(1− |z|2)2S(f)(z)(2.7)

where w ∈ D∗ and z = 1/w ∈ D. See Section 4 of [34], Formula (3.33) of [96], and

Equation (9) of [103]. Equation (2.7) suggests the following definition.

Definition 3. Γ = f(T) where f is a quasiconformal map of the plane that is con-

formal on D∗ and whose dilatation µ on D satisfies satisfies∫
D

|µ(z)|2

(1− |z|2)2
dxdy <∞.(2.8)

This is equivalent to Definition 2 by Theorem 2 of [35], and (2.8) is the same as∫
D
|µ(z)|2dAρ <∞,(2.9)
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where dAρ denotes integration against hyperbolic area; this was one of the definitions

of the Weil-Petersson class mentioned in the introduction.

Another variation on this theme is to consider the map R(z) = f(1/f−1(z)). This

is an orientation reversing quasiconformal map of the sphere to itself that fixes Γ

pointwise, exchanges the two complementary components of Γ and whose dilatation

satisfies ∫
Ω∪Ω∗

|µ(z)|2dAρ(z) <∞,(2.10)

where dAρ is hyperbolic area on each of the domains Ω,Ω∗. This version is sometimes

easier to check, and we will use it interchangeably with Definition 3. The map R is

called a quasiconformal reflection across Γ. Definition 13 gives a biLipschitz variation

of Definition 3.

A circle homeomorphism ϕ : T → T is called a conformal welding if ϕ = f−1 ◦ g
where f, g are conformal maps from the two sides of the unit circle to the two sides

of a closed Jordan curve Γ. There are many weldings associated to each Γ, but they

all differ from each other by compositions with Möbius transformations of T. Not

every circle homeomorphism is a conformal welding, but weldings are dense in all

circle homeomorphisms in various senses; see [55].

A circle homeomorphism is called M -quasisymmetric if it maps adjacent arcs of

equal length to arcs whose length differ by a factor of at most M ; we call ϕ quasisym-

metric if it is M -quasisymmetric for some M . The quasisymmetric maps are exactly

the circle homeomorphisms that can be continuously extended to quasiconformal self-

maps of the disk, and are also exactly the conformal weldings of quasicircles. See [3].

If I ⊂ T is an arc, let m(I) denote its midpoint. For a homeomorphism ϕ : T → T
and an arc I ⊂ T, define

qs(ϕ, I) =
|ϕ(m(I))−m(ϕ(I))|

`(ϕ(I))
.

A quasisymmetric homeomorphism ϕ is called symmetric if qs(ϕ, I)→ 0 as |I| → 0.

Pommerenke [100] proved such weldings characterize curves where log f ′ is in the

little Bloch space (|(log(f ′)′|(1− |z|) = o(1)); see also [55] by Gardiner and Sullivan

and [117] by Strebel. We will prove that ϕ corresponds to a Weil-Petersson curve if

and only if qs(ϕ, I) ∈ `2.
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Definition 4. Γ is closed Jordan curve whose welding map ϕ satisfies∑
I

qs2(ϕ, I) ≤ C <∞,(2.11)

where the sum is over any dyadic decomposition of T and C is independent of the

choice of the decompoisition.

Weil-Petersson weldings were first characterized by Yuliang Shen [114] in terms of

the Sobolev space H1/2. We will describe his result in the next section.

3. Sobolev conditions

We start by recalling some standard notation. Given two quantities A,B that both

depend on a parameter, we write A . B if there is a constant C so that A ≤ CB

holds independent of the parameter. We write A & B if B . A, and we write A ' B

if both A . B and A & B hold. The notation A . B means the same as the “big-Oh”

notation A = O(B).

Definition 1 can be interpreted in terms of Sobolev spaces. The space H1/2(T) ⊂
L2(T) is defined by the finiteness of the seminorm

D(f) =

∫∫
D
|∇u(z)|2dxdy

=
1

8π

∫ 2π

0

∫ 2π

0

∣∣∣∣f(eis)− f(eit)

sin 1
2
(s− t)

∣∣∣∣2 dsdt ' ∫
T

∫
T

|f(z)− f(w)|2

|z − w|2
|dz||dw|.

where u is the harmonic extension of f to D. The equality of the first and second

integrals is called the Douglas formula, after Jesse Douglas who introduced it in his

solution of the Plateau problem [40]. See also Theorem 2.5 of [4] (for a proof of the

Douglas formula) and [106] (for more information about the Dirichlet space). For

s ∈ (0, 1) we define the space Hs(T) using∫
T

∫
T

|f(z)− f(w)|2

|z − w|1+2s
|dz||dw| <∞.

See [1] and [38] for additional background on fractional Sobolev spaces. Also [89]

by Nag and Sullivan; in the authors’ words its “purpose is to survey from various

different aspects the elegant role of H1/2 in universal Teichüller theory” (a role we

seek to explore in this paper too).
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Shen [114] proved Γ is Weil-Petersson iff its welding map ϕ satisfies logϕ′ ∈ H1/2.

One direction is easy. If Γ is Weil-Petersson, then log f ′, log g′ have boundary values

in H1/2(T), where f, g are the conformal maps from the two sides T to the two sides

of Γ. See [120]. A simple computation shows logϕ′(x) = − log f ′(ϕ(x)) + log g′(x).

Beurling and Ahlfors [12] proved H1/2(T) is invariant under pre-compositions with

quasisymmetric circle homeomorphisms, so logϕ′ ∈ H1/2(T). The converse is harder;

in [16], I provide a geometric alternative to Shen’s operator theoretic approach.

Note that log f ′(z) = log |f ′(z)| + i arg f(z) ∈ W 1,2(D) if and only if the radial

limits log |f ′| and arg(f ′) are both in H1/2(T). Since arg(f ′) can be unbounded, it is,

perhaps, surprising that this is also equivalent to f ′/|f ′| ∈ H1/2.

Definition 5. Γ = f(T) is chord-arc and exp(i arg f ′) = f ′/|f ′| ∈ H1/2(T).

It is easy to deduce this from Definition 1. Since arg f ′ ∈ H1/2(T), using |eix−eiy| ≤
|x− y| and the Douglas formula we get∫

T

∫
T

∣∣∣∣ei arg f ′(x) − ei arg f ′(y)

x− y

∣∣∣∣2 dxdy ≤ ∫
T

∫
T

∣∣∣∣arg f ′(x)− arg f ′(y)

x− y

∣∣∣∣2 dxdy <∞.
Thus exp(i arg f ′) ∈ H1/2(T). A direct function theoretic proof of the converse is

given in [16]; it also follows from a chain of implications proven later in this paper.

Let a : T → Γ be an orientation preserving arclength parameterization (i.e., a

multiplies the arclength of every set by `(Γ)/2π). For z ∈ Γ, let τ(z) be the unit

tangent direction to Γ with its usual counterclockwise orientation. Then τ(a(x)) =

a′(x)2π/`(Γ), where a′ = da
dθ

on T. Thus a′ = exp(i arg f ′) ◦ ϕ where ϕ = a−1 ◦ f is

a circle homeomorphism. We shall prove in Section 8 that this map ϕ is quasisym-

metric (and hence so is its inverse). As noted above, pre-composing with such maps

preserves H1/2(T), so Definition 5 is equivalent to saying a′ ∈ H1/2(T). Every ar-

clength parameterization is Lipschitz, hence absolutely continuous, and therefore the

distributional derivative of a equals its pointwise derivative a′. Thus, for arclength

parameterizations, a′ ∈ H1/2(T) is the same as a ∈ H3/2(T). Therefore Definition 5

is equivalent to

Definition 6. Γ is chord-arc and the arclength parameterization a : T→ Γ is in the

Sobolev space H3/2(T).
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Proving this is equivalent to Definition 1 gives Theorem 1.1. Previous to Shen’s

result described earlier, Gay-Balmaz and Ratiu [58] had proved that if Γ is Weil-

Petersson, then ϕ ∈ Hs(T) for all s < 3/2, but Shen [114] gave examples not in

H3/2(T) or Lipschitz. Thus Theorem 1.1 implies that having an H3/2 arclength

parameterization is not the same as having an H3/2 conformal welding. These are

equivalent conditions for s > 3/2. For such weldings the Sobolev embedding theorem

implies that ϕ′ is Hölder continuous, which implies that the conformal mappings

f, g have non-vanishing, Hölder continuous derivatives (e.g.,[73]), and therefore ϕ is

biLipschitz. This implies Γ has an Hs arclength parameterization (copy the argument

following Definition 5, using the fact that biLipschitz circle homeomorphisms preserve

Hs(T) for 1/2 < s < 1, e.g., [22]).

When identified with quasisymmetric circle homeomorphisms, elements of the uni-

versal Teichmüller space T (1) form a group under composition. It is not a topological

group under the usual topology because left multiplication is not continuous (e.g.,

Theorem 3.3 in [76] or Remark 6.9 in [70]). However, Takhtajan and Teo [120] proved

T0(1) is a topological group with its Weil-Petersson topology. So even though H3/2-

diffeomorphisms of the circle are not a group, Theorem 1.1 shows the set of H3/2

Jordan curves can be identified with a group via conformal welding, namely T0(1).

Circle diffeomorphisms in Hs(T) with s > 3/2 also form a group, e.g., [68], [114],

and by the previous paragraph this means Hs curves are identified with a topological

group via conformal welding. Thus our result gives the “endpoint” result of this pre-

viously known fact. See [11], [58], [85], [86] for related discussions of groups, weldings,

Sobolev embeddings and immersions.

Next we consider some consequences of Definition 6. Since Γ is chord-arc,

1

C
≤ |a(x)− a(y)|

|x− y|
≤ 1, x, y ∈ T,

so setting z = a(x), w = a(y), we have∫
Γ

∫
Γ

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw| =

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

a(x)− a(y)

∣∣∣∣2 dxdy
=

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y
· x− y
a(x)− a(y)

∣∣∣∣2 dxdy
'

∫
T

∫
T

∣∣∣∣a′(x)− a′(y)

x− y

∣∣∣∣2 dxdy
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Thus Definition 6 is equivalent to:

Definition 7. Γ is chord-arc and

∫
Γ

∫
Γ

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw| <∞.
This characterization of the Weil-Petersson class was independently discovered by

Shen and Wu [115]. They prove that Γ is a Weil-Petersson curve iff τ(a(x)) = a′(x) =

exp(ib(x)) for some b ∈ H1/2(T). Since

|τ(a(x))− τ(a(y))| = O(|b(x)− b(y)|),

it is easy to check that τ ◦ a ∈ H1/2, which gives Definition 7.

In Section 9 we will prove Definition 7 is equivalent to:

Definition 8. Γ has finite Möbius energy, i.e,

Möb(Γ) =

∫
Γ

∫
Γ

(
1

|z − w|2
− 1

`(z, w)2

)
dzdw <∞.

As mentioned in the introduction, Blatt [20] proved directly that Definition 6 is

equivalent to Definition 8 (but there is a typo in Theorem 1.1 of [20]: it is stated that

s = (jp− 2)/(2p), but this should be s = (jp− 1)/(2p), as given in the proof).

A Jordan curve with a H3/2 arclength parameterization is chord-arc (Lemma 2.1 of

[20]), because this assumption prevents bending on small scales, but there is no quan-

titative bound on the chord-arc constant: Jordan curves with H3/2 parameterizations

can come arbitrarily close to self-intersecting (think of a smooth, Jordan approxima-

tion to a figure “8”). However, such a bound is possible in terms of Möb(Γ). This is

Lemma 1.2 of [64], but for the reader’s convenience, we sketch a proof here.

If |z−w| ≤ ε, but `(z, w) ≥Mε, let σk, σ
′
k ⊂ γ(z, w) be arcs of length 2kε that are

path distance (on Γ) 2kε from z and w respectively, for k = 1, . . . , K = blog2(M)c−4.

Then σk ∪ σ′k has diameter at most ε(1 + 2k+1) in Rn, but these two arcs are at least
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distance (M − 2k+2)ε ≥Mε/2 apart on Γ. Thus∫
σk

∫
σ′k

(
1

|z − w|2
− 1

`(v, w)2

)
dzdw ≥

[
1

(2k+2ε)2
− 1

(M/2)2

]
(2kε)(2kε)

≥ 1

16
− 22K+2

M2

≥ 1

16
− 2−6 >

1

32

Summing over k shows Möb(Γ) ≥ K/32 & logM , so we have proven that Möb(Γ) <

∞ implies Γ is chord-arc.

Using the fact that Γ is chord-arc, we now get

Möb(Γ) =

∫
Γ

∫
Γ

`(z, w)2 − |z − w|2

|z − w|2`(z, w)2
dzdw

=

∫
Γ

∫
Γ

(`(z, w)− |z − w|)(`(z, w) + |z − w|)
|z − w|2`(z, w)2

dzdw

'
∫

Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

.

Thus Definition 8 holds iff

Definition 9. Γ is chord-arc and satisfies∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| <∞.(3.1)

In [54], Gallardo-Gutiérrez, González, Pérez-González, Pommerenke and Rättyä

claim that (3.1) follows from Definition 1, but their proof contains a small error. They

state the converse as a conjecture of Peter Jones; our results prove both directions.

Definition 9 does not immediately look like a “curvature is square integrable”

criterion, but it can easily be put in this form. Set

k(z, w) =
√

24 ·

√
`(z, w)− |z − w|
|z − w|3

.

If Γ is smooth, then it is easy to check that k(x) = limy→x k(x, y), is the usual

Euclidean curvature of Γ at x. Thus (3.1) can be rewritten as∫
Γ

∫
Γ

k2(z, w)|dz||dw| <∞,(3.2)

and this has much more of a “L2-curvature” flavor.
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4. β-numbers

A dyadic interval I in R is one of the form (2−nj, 2−n(j+ 1)] for j, n ∈ Z. A dyadic

cube in Rn is the product of n dyadic intervals of equal length. This common length

is called the side length of Q and is denoted `(Q). Note that diam(Q) =
√
n`(Q).

For a positive number λ > 0, we let λQ denote the cube concentric with Q but with

diameter λdiam(Q), e.g., 3Q is the “triple” of Q, a union of Q and 3n − 1 adjacent

copies of itself.

A multi-resolution family in a metric space X is a collection of sets {Xj} in X such

that there is are N,M <∞ so that

(1) For each r > 0, the sets with diameter between r and Mr cover X,

(2) each bounded subset of X hits at most N of the sets Xk with diam(X)/M ≤
diam(Xk) ≤Mdiam(X).

(3) any subset of X with positive, finite diameter is contained in at least one Xj

with diam(Xj) ≤Mdiam(X).

Dyadic intervals are not a multi-resolution family, e.g., X = [−1, 1] ⊂ R is not

contained in any dyadic interval, violating (3). However, the family of triples of all

dyadic intervals (or cubes) do form a multi-resolution family. Similarly, if we add

all translates of dyadic intervals by ±1/3, we get a multi-resolution family. This is

sometimes called the “1
3
-trick”, [94]. The analogous construction for dyadic squares

in Rn is to take all translates by elements of {−1
3
, 0, 1

3
}n.

During the course of this paper, we will deal with functions α that map a collection

of sets into the non-negative reals, and we will wish to decide if the sum
∑

j α(Xj) over

some multi-resolution family converges or diverges. We will frequently use the follow-

ing observation to switch between various multi-resolution families without comment.

Lemma 4.1. Suppose {Xj}, {Yk} are two multi-resolution families on a space X

and that α is a function mapping subsets of X to [0,∞) that satisfies α(E) . α(F ),

whenever E ⊂ F and diam(F ) . diam(E). Then

∑
j

α(Xj) '
∑
k

α(Yk).
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Proof. By Condition (3) above, each Xj is contained in some set Yk(j) of comparable

diameter. Hence α(Xj) . α(Yk(j)) by assumption. Each Yk is contained in a com-

parably sized Xm, and Xm can contain at most a bounded number of comparably

sized subsets Xj. Thus each Yk is only chosen boundedly often as a Yk(j). Thus∑
j α(Xj) .

∑
k α(Yk). The opposite direction follows by reversing the roles of the

two families. �

For a Jordan arc γ with endpoints z, w recall that crd(γ) = |z − w| and define

∆(γ) = `(γ)− crd(γ). In Section 10 we will prove Definition 9 is equivalent to:

Definition 10. Γ is chord-arc and∑
j

∆(Γj)

`(Γj)
<∞(4.1)

for some (hence every) multi-resolution family {Γj} of arcs on Γ.

Condition (4.1) is just a reformulation of (1.2), since if `(Γ) = 1 and {Γj} corre-

sponds to a dyadic decomposition of Γ we have∑
n

2n[`(Γ)− `(Γn)] =
∑
j

∆(γj)/`(γj).(4.2)

Thus proving that Definition 10 is equivalent to being Weil-Petersson essentially

proves Theorem 1.3. There is a slight gap here because Definition 10 uses a sum

over a multi-resolution family and Theorem 1.3 is stated in terms of dyadic intervals.

However, the theorem assumes a bound that is uniform over all dyadic decomposi-

tions, and this includes the ±1
3
-translates of a single dyadic family, and the union of

these three families these form a multi-resolution family (the “1
3
-trick” from above).

Conversely, Corollary 10.3 will show that ∆(γ) ≤ ∆(3γ), so the dyadic sum can be

bounded by the sum over dyadic triples, a multi-resolution family. Thus (4.1) for any

multi-resolution family is equivalent to (4.2) with a uniform bound over all dyadic

decompositions of Γ.

Given a set E ⊂ Rn and a dyadic cube Q, define Peter Jones’s β-number as

β(Q) = βE(Q) =
1

diam(Q)
inf
L

sup{dist(z, L) : z ∈ 3Q ∩ E},

where the infimum is over all lines L that hit 3Q. See the left side of Figure 5. Peter

Jones invented the β-numbers as part of his traveling salesman theorem (TST) [71],



WEIL-PETERSSON CURVES, β-NUMBERS, AND MINIMAL SURFACES 21

that estimates the length of the shortest curve containing a set E. When E = Γ is a

Jordan curve itself, the TST gives

`(Γ) ' diam(Γ) +
∑
Q

βΓ(Q)2diam(Q),(4.3)

where the sum is over all dyadic cubes Q in Rn. Our main geometric characterization

of Weil-Petersson curves is to simply drop the “diam(Q)” term from (4.3).

Definition 11. Γ is a closed Jordan curve that satisfies∑
Q

βΓ(Q)2 <∞,(4.4)

where the sum is over all dyadic cubes.

This is not very surprising (in retrospect). In the 1990’s Peter Jones and I proved

(Lemma 3.9 of [18], or Theorem X.6.2 of [57]) that if Γ is an M -quasicircle, then

`(Γ) ' diam(Γ) +

∫∫
|f ′(z)||S(f)(z)|2(1− |z|2)3dxdy(4.5)

with constants depending only on M . By Koebe’s distortion theorem

|f ′(z)|(1− |z|2) ' dist(f(z), ∂Ω),

and thus the factor on the left is analogous to the diam(Q) term in Jones’s β2-

sum. Dropping this term from (4.5) gives exactly the integral in Definition 2. Thus

dropping diam(Q) from (4.3) “should” also characterize Weil-Petersson curves (but

proving this will require some work).

Our results characterize H3/2 curves in terms of β-numbers. Xavier Tolsa pointed

out that related results for graphs of Besov functions (which include Hs as a special

case) are given in [39].

It will be convenient to consider several equivalent formulations of condition (4.4)

For x ∈ R2 and t > 0, define

βΓ(x, t) =
1

t
inf
L

max{dist(z, L) : z ∈ Γ, |x− z| ≤ t},

where the infimum is over all lines hitting the disk D = D(x, t) and let β̃Γ(x, t)

be the same, but where the infimum is only taken over lines L hitting x. Since

this is a smaller collection, clearly β(x, t) ≤ β̃(x, t) and it is not hard to prove that

β̃(x, t) ≤ 2β(x, t) if x ∈ Γ. See the center picture in Figure 5.
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3Q

x

t

Q

Figure 5. Three equivalent versions of the β-numbers.

Given a Jordan arc γ with endpoints z, w we let

β(γ) =
max{dist(z, L) : z ∈ γ}

|z − w|
,

where L is the line passing through z and w. See the right side of Figure 5.

Lemma 4.2. If Γ is a closed Jordan curve or a Jordan arc in Rn such that (4.4)

holds, then Γ is a chord-arc curve. For chord-arc curves, (4.4) holds if and only if

any of the following conditions holds:∫ ∞
0

∫∫
Rn
β2(x, t)

dxdt

tn+1
<∞,(4.6)

∫ ∞
0

∫
Γ

β̃2(x, t)
dsdt

t2
<∞,(4.7)

∑
j

β2(Γj) <∞,(4.8)

where dx is volume measure on Rn, ds is arclength measure on Γ, and the sum in

(4.8) is over a multi-resolution family {Γj} for Γ. Convergence or divergence in (4.6)

and (4.7) is not changed if
∫∞

0
is replaced by

∫M
0

for any M > 0.

The equivalence of these conditions is fairly standard, and a proof can be found as

Lemma B.2 [17]. Since β(x, t) ' β̃(x, t) if x ∈ Γ, the integral in (4.7) is finite iff it is

finite with β replacing β̃. However, putting β̃ into (4.6) gives a divergent integral for

every closed Jordan curve Γ.

The Menger curvature of three points x, y, z ∈ Rn is c(x, y, z) = 1/R where R is

the radius of the circle passing through these points. The perimeter of this triangle

with vertices x, y, z is denoted by `(x, y, x) = |x− y|+ |y − z|+ |z − x|.
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Definition 12. Γ is chord-arc and satisfies∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2

`(x, y, z)
|dx||dy||dz| <∞.(4.9)

Again, this is not unexpected in hindsight. It is known that the conditions∫
Γ

∫
Γ

∫
Γ

c(x, y, z)2|dx||dy||dz| <∞.(4.10)

∑
Q

β2
Γ(Q)`(Q) <∞,(4.11)

are equivalent, and the analog of dropping the length term from (4.11), would be to

divide by a term that scales like length in (4.10), which gives (4.9). Indeed, to prove

that Definitions 11 and 12 are equivalent, we will simply indicate how to modify the

proof of the equivalence of (4.10) and (4.11) in Pajot’s book [98].

Recall that a Whitney decomposition of an open set W ⊂ Rn is a collection of

dyadic cubes Q with disjoint interiors, whose closures cover W and which satisfy

diam(Q) ' dist(Q, ∂W ).

The existence of such decompositions is a standard fact (e.g., for each z ∈ W , take

the maximal dyadic cube Q so that z ∈ Q ⊂ 3Q ⊂ W . See Section I.4 of [57]).

Suppose U is a neighborhood of Γ ⊂ Rn and R : U → U ′ ⊂ Rn is a homeomorphism

fixing each point of Γ. For each Whitney cube Q for W = Rn \Γ, with Q ⊂ U , define

ρ(Q) to be the infimum of values ρ > 0 so that R is (1 + ρ)-biLipschitz on Q and

dist( z+R(z)
2

,Γ) ≤ ρ · diam(Q) for z ∈ Q (the latter condition ensures R(z) is on the

“opposite” side of Γ from z). R is called an involution if R(R(z)) = z.

Definition 13. There is homeomorphic involution R defined on a neighborhood of Γ

that fixes Γ pointwise, and so that∑
Q

ρ2(Q) <∞.(4.12)

The sum is over all cubes of a Whitney decomposition of Rn \ Γ that lie inside U .

We will prove later (Lemma 14.1) that a map R satisfying Definition 13 is biLip-

schitz in U . We can also extend R to be a biLipschitz involution on the sphere Sn,

except in the case when Γ is knotted in R3; the solution of the Smith conjecture

implies the fixed set of an orientation preserving diffeomorphic involution of S3 is an
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unknotted closed curve. See [88]. So, except for knotted curves in R3, we can say that

Weil-Petersson curves are exactly the fixed point sets of biLipschitz involutions of Sn

that satisfy (4.12). Although the Smith conjecture was stated for diffeomorphisms,

John Morgan explains on page 4 of [88] that its proof extends to homeomorphisms

when the fixed point set is locally flat (locally ambiently homeomorphic to a seg-

ment). This holds in our case by Theorem 4.1 of [64] (finite Möbius energy implies

tamely embedded), and the fact that Definition 13 implies Definition 8.

Next, we give a variation of the β-numbers where Γ must avoid a “fat torus” instead

of being contained in a “thin cylinder”. We start with the definition in the plane.

Given a dyadic square Q let εΓ(Q) be the infimum of the ε ∈ (0, 1] so that 3Q hits

a line L, a point z and a disk D so that D has radius `(Q)/ε, z is the closest point

of D to L and neither D nor its reflection across L hits Γ. See Figure 6. If no such

line, point and disk exist, we set εΓ(Q) = 1. It is easy to see that βΓ(Q) = O(εΓ(Q)),

but the opposite direction can certainly fail for a single square Q. Nevertheless, we

will see that that the corresponding sums over all dyadic squares are simultaneously

convergent or divergent.

Q
diam(Q)

ε diam(Q)

Γ

ε

Figure 6. The left side illustrates the definition of εΓ(Q) in the plane:
Γ passes between two large, almost touching disks. In R3 the definition
says Γ passes through the hole of a “thick torus”, as on the right.

Definition 14. Γ is chord-arc and satisfies∑
Q

ε2
Γ(Q) <∞(4.13)

where the sum is over all dyadic squares Q that hit Γ and satisfy diam(Q) ≤ diam(Γ).
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In higher dimensions the disk D is replaced by a ball B of radius diam(Q)/ε that

attains its distance ε from L at z ∈ Q, and so that the full rotation of B around L

does not intersect Γ. Thus Γ is surround by a “fat torus”. The centers of the balls

form a (n− 2)-sphere that lies in a (n− 1)-hyperplane perpendicular to L.

5. Hyperbolic conditions for planar curves

We start by recalling the basic definitions and then discuss Weil-Petersson curves

in the plane. In the next section we describe the changes that have to be made for

curves in Rn, n ≥ 3.

The hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D or in

the n-dimensional ball Bn is given by integrating

dρ =
ds

1− |z|2
,

along the curve. In the upper half-space Hn+1 = {(x, t) : x ∈ Rn, t > 0} we inte-

grate dρ = ds/t. Note that this definition differs by a factor of 2 from that given in

some sources; we have made our choice so that hyperbolic space has constant Gauss

curvature −1. The hyperbolic distance between two points is given by taking the infi-

mum of all hyperbolic lengths of paths connecting the points. In the ball, hyperbolic

geodesics are either diameters or subarcs of circles perpendicular to the boundary.

In half-space model Hn+1, hyperbolic geodesics are either vertical rays or semi-circles

centered on the boundary.

Given a closed curve Γ ⊂ Rn, the hyperbolic convex hull, denoted CH(Γ), is the

convex hull in Hn+1 of all infinite geodesics that have both endpoints in Γ. The

complement of the convex hull is a union of hyperbolic half-spaces. Each such half-

space intersects Rn in an open Euclidean ball (or half-space or exterior of a ball) that

does not hit Γ.

A planar curve Γ divides R2 into two components and the boundary of CH(Γ)

has two corresponding connected components (unless Γ is a circle) called the domes

of the two sides of Γ. Each dome meets R2 exactly along Γ and inside H3 they

are disjoint, expect when Γ is circle, in which case they coincide. The dome of the

bounded complementary component Ω of Γ is the upper boundary of the union of

all hemispheres whose base disk is in Ω. The hemispheres that touch the dome are

exactly those whose base disks touch ∂Ω at two distinct points. Such disks are called
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medial axis disks and their centers form the medial axis of Ω, a well studied object

in computational geometry. See Figure 7; the figure on the right was drawn by first

computing the medial axis shown on the left and then taking the upper envelope of the

corresponding hemispheres. The dome of the unbounded complementary component

can be defined by inverting around a point in Ω. Figure 8 shows a picture of both

domes.

Figure 7. A smooth domain, its medial axis and its dome.

Figure 8. Domes for both sides of the curve in Figure 7; the convex
hull of Γ is the region between the two surfaces.
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For a point z ∈ CH(Γ) we define δ(z) = max(distρ(z, S1), distρ(z, S2)), i.e., δ(z) is

the hyperbolic distance to the farther of the two boundary components of CH(Γ). See

Figure 9. For z inside the convex hull, δ(z) measures the “thickness” of the convex

hull of Γ near z. We will show that Definition 14 implies

Definition 15. Γ is a closed Jordan curve such that∫
∂CH(Γ)

δ2(z)dAρ(z) <∞,(5.1)

where dAρ denotes hyperbolic surface area on ∂CH(Γ).

We have integrated over all of ∂CH(Γ), but the proof will show that if the integral

over one component is finite, then so is the integral over the other one.

If Γ is a quasicircle, then each point z of one boundary component is within a

uniformly bounded hyperbolic distance δ(z) of the other boundary component, i.e.,

if Γ is a quasicircle then δ(z) ∈ L∞(∂CH(Γ), dAρ). This holds because both comple-

mentary components of a quasicircle are uniform domains [84], and thus for every

x ∈ Γ and 0 < r ≤ diam(Γ), both complementary components contain disks of

diameter ' r inside D(x, r). The converse is not true, since non-quasicircles may

also have δ(z) ∈ L∞. Definition 15 says that the Weil-Petersson class corresponds

to δ(z) ∈ L2(∂CH(Γ), dAρ). The condition δ(z) ∈ L1(∂CH(Γ), dAρ) is equivalent to

CH(Γ) having finite hyperbolic volume. For a closed curve, this is always either zero

(for lines and circles) or infinite (everything else); we leave this as an exercise.

For planar closed curves Γ, the two boundary surfaces of CH(Γ) ⊂ H3 each meets

R2 exactly along Γ and each is isomorphic to the hyperbolic unit disk when given its

hyperbolic path metric. These surfaces are pleated surfaces, i.e., each is a disjoint

union of non-intersecting infinite geodesics for B3 (possibly uncountably many) and

at most countably many regions lying on hyperbolic planes, each region bounded

by disjoint hyperbolic geodesics. Roughly speaking, each surface is a copy of the

hyperbolic disk that has been “bent” along a collection of disjoint geodesics, and

there is an associated bending measure that gives the amount of bending on each

geodesic. For more about convex hulls and pleated surfaces, see [42] by Epstein and

Marden (or the revised version [43]). For an overview of domes and convex hulls
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δ(  )z

CH(   )Γ
z

Figure 9. A “side view” of the convex hull. The line a the bottom
represents R2 and region above it represents H3. δ(z) is the thickness
of the convex hull near z. For quasicircles δ is uniformly bounded; a
curve is Weil-Petersson curves iff δ ∈ L2 with respect to hyperbolic
area on the boundary of the convex hull.

see Marden’s paper [82]; also his book [81] for a discussion related to hyperbolic 3-

manifolds. Hyperbolic domes and convex hulls have been extensively studied, e.g.,

[14], [15], [25], [26], [27], [44], [47].

In general the bending measure may have both atoms and continuous parts, e.g.,

the dome of two overlapping disks has a definite angle along an infinite geodesic where

two hemi-spheres meet. But for Weil-Petersson curves the bending measure cannot

have an atom; this would violate Definition 15 because δ would be bounded away

from zero on a fixed neighborhood of an infinite geodesic. For the dome of a planar

domain bounded by a Weil-Petersson curve, the amount of bending, B(z), that lies

within unit distance of z ∈ S1 is O(δ(z)). Indeed,∫
S

B2(z)dAρ <∞(5.2)

gives another characterization of Weil-Petersson curves.

If we think of the bending measure as a type of curvature, the following seems

reasonable (we prove it by smoothing the convex hull boundary).

Definition 16. Γ ⊂ R2 is the boundary of a smooth surface S ⊂ H3 such that

κ1(z), κ2(z)→ 0 as z tends to the boundary of hyperbolic space and∫
S

(
κ2

1(z) + κ2
2(z)

)
dAρ(z) <∞,(5.3)
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where κ1, κ2 are the principle curvatures.

In Section 18 we use a result of Charles Epstein [41], relating curvature, the Gauss

map and quasiconformal reflections to show that this implies Definition 3.

We can take the surface in Definition 16 to be minimal. A result of Michael

Anderson [7] shows that any closed Jordan curve Γ ⊂ R2 is the asymptotic boundary

of some minimal disk in H3. An estimate of Andrea Seppi (see Lemma 19.1) says

max(|κ1(z)|, |κ2(z)|) = O(δ(z)), x ∈ S ⊂ CH(Γ).(5.4)

This implies S has finite total curvature if Definition 15 holds.

Definition 17. Γ is a quasicircle that is the asymptotic boundary of an embedded

minimal surface that is topologically a disk and satisfies
∫
S
κ2dAρ <∞.

As noted earlier, the Gauss curvature of S satisfies K(z) = −1 − κ2(z) ≤ −1, so

for a compact Jordan sub-domain Ω of S with area A and boundary length L, the

isoperimetric equality for such surfaces (e.g., (4.30) of [97]) implies

L2 ≥ 4πAχ+ A2,

where χ = χ(Ω) is the Euler characteristic of Ω. A short manipulation gives

L− A ≥ 4πAχ

L+ A
≥ 4πχ.

Conversely, we shall prove L− A is bounded above iff Γ is Weil-Petersson.

Definition 18. Γ is a closed Jordan curve and is the asymptotic boundary of a

minimal surface S ⊂ H3 that has finite Euler characteristic and can be written as the

nested unions of compact subsets Ω1 ⊂ Ω2 ⊂ . . . such that

lim sup
n

[Lρ(∂Ωn)− Aρ(Ωn)] <∞.

A special case of such compact nested subdomains is given by simply truncating

the surface S at Euclidean height t above the boundary of H3. Define

St = S ∩ {(x, y, s) ∈ H3 : s > t}, and ∂St = S ∩ {(x, y, s) ∈ H3 : s = t}.

The renormalized area of S is defined as

RA(S) = lim
t↘0

[Aρ(St)− Lρ(∂St)] ,

and we shall prove the limit always exists (possibly −∞):
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Definition 19. Γ is a closed Jordan curve that is the asymptotic boundary of a

minimal surface S ⊂ H3 with finite Euler characteristic and finite renormalized area.

There is a discrete version of renormalized area that illustrates the connection

between our Euclidean and hyperbolic conditions. Define the “dyadic cylinder”

X =
∞⋃
n=1

Γn × [2−n, 2−n+1),

where {Γn} are the dyadic polygonal approximations to Γ, as in Theorem 1.3. See

Figures 10 and 13. X has holes, but we shall describe in Section 12 how to fill them to

form a triangulated, simply connected “dyadic dome”, that will work too. Theorem

1.3 is equivalent to finite renormalized area for these discrete surfaces:

Definition 20. Γ is a closed Jordan curve and the corresponding dyadic cylinder X

has finite renormalized area.

Figure 10. The dyadic cylinder and dyadic dome (same curve as
Figure 7).

Although the statement of the definition is in terms of hyperbolic quantities, the

proof will be mostly Euclidean.

6. Hyperbolic conditions in higher dimensions

Next we discuss how the definitions presented in the previous section have to be

changed for curves Γ ⊂ Rn. Definition 20 needs no change; the construction of the

dyadic cylinder and dome is exactly the same and the proof that they have finite
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renormalized area iff Γ satisfies Definition 11 is valid in all dimensions. Definition 16

is also unchanged. Instead of smoothing a boundary component of the convex hull,

we can smooth the dyadic dome instead. The proof that it implies Definition 3 using

a theorem of Charles Epstein on quasiconformality of Gauss maps will be replaced

by a construction of a biLipschitz involution fixing Γ and implying Definition 13.

If Γ ⊂ Rn is the asymptotic boundary of a minimal 2-surface in Hn+1, then Def-

initions 17, 18 and 19 remain the same as before. In general, this need not be the

case, and they each require a change of terminology, but not of concept. Anderson’s

result for H3 in [7] is replaced by his result from [6] for smooth curves in Rn giving

the existence of a minimal 2-current. This is extended to the existence of minimal

2-chain by Fang-Hua Lin in [79] for C1 curves, and his proof extends to H3/2 curves.

For definitions of currents see Federer’s comprehensive text [46] or the more accessi-

ble [116] by Leon Simon. Brian White’s paper [126] summarizes the basic definitions

and results, and [87] by Frank Morgan starts with a very informative example.

In general, one cannot control the global topology of a minimal current or chain,

but in [79] Lin proves that if Γ is C1 then there is a minimal 2-chain with asymptotic

boundary Γ that agrees with a smooth surface in a neighborhood of the boundary.

His proof of this only uses the C1 assumption to deduce that near the boundary, the

2-chain is close to a vertical 2-plane, and this implication also holds for the curves

Γ ⊂ Rn satisfying Definition 14. He proves that this surface is locally a Lipschitz

graph with small norm with respect to this plane, and this also holds under our

assumptions. Moreover, this surface is topologically an annulus and is asymptotic to

the dyadic dome of Γ. Note that Lin’s proof only gives that Γ is the boundary of some

such 2-chain, not that every chain with asymptotic boundary Γ has this property.

Definition 17 will thus be replaced by: Γ ⊂ Rn is a closed Jordan curve that is the

asymptotic boundary of a minimal 2-chain so that in {(x, t) ∈ Hn+1 : 0 < t < t0}
agrees with an annular surface that has finite total curvature.

Definitions 18 and 19 are both changed in the obvious way, replacing the minimal

surface by a minimal 2-chain or current which agrees with a surface S near the

boundary. In Definition 18, we take Ωn to be a smooth topological annulus contained

in S∗t = S∩{(x, s) ∈ Hn+1 : s < t} for t > 0 small enough. Definition 19 is unchanged,
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except that it suffices to consider the area of S between heights 0 < s < t for t fixed

and s tending to zero and show the corresponding limit exists.

Finally, Definition 15 needs to be changed, because in higher dimensions the hy-

perbolic convex hull of Γ has a single boundary component and so it does not make

sense to measure the thickness of the convex hull by the hyperbolic distance between

the two boundary components. However, given a point z ∈ CH(Γ) and a tangent

vector v at z it does make sense to ask how far it is from z to the boundary of CH(Γ)

following a geodesic in direction v. We let δ(z, v) denote this distance. The thickness

of CH(Γ) will be the supremum of these distances over different directions, but we

need to avoid moving vertically or parallel to Γ. Therefore we want

δ(z) = inf
P

sup
v⊥P

δ(z, v),

where the infimum is over all tangent 2-planes at z generated by the vertical direction

and one horizontal direction; the infimum will be attained when the horizontal direc-

tion is approximately parallel to Γ. With this definition, we have δ(z) = O(εΓ(Q))

where z = (x, t) and Q is a dyadic cube in Rn with x ∈ Q and diam(Q) ' t.

In Definition 15 we no longer integrate δ2(z) over the boundary of the convex hull

(the hyperbolic (n− 1)-measure of a unit ball will be approximately δn−1 instead of

' 1), but we have to integrate over some appropriate 2-surface, such as the minimal

2-chain or current described above, or the dyadic dome. In the latter case, we don’t

know that the dyadic dome is contained inside CH(Γ)), so δ(z) as given above is

not defined there, but it suffices to integrate δ2(R(z)) over the dome, where R :

Hn+1 → CH(Γ) is the nearest point retraction. We can also state the condition as∑
Q δ

2(Q) <∞, where the sum is over dyadic cubes in Rn and δ(Q) is defined as the

maximum of δ(z) over CH(Γ) ∩ T(Q), where T (Q) = Q× [1
2
`(Q), `(Q)] ⊂ Hn+1.

7. Summary of definitions

For the reader’s convenience, Table 1 gives a summary of the definitions from the

preceding sections, as well as some definitions that are briefly discussed in Appendix

A, but do not play a role our proofs. The graph in Figure 11 has vertices representing

definitions and edges representing proofs; the edge labels say where the corresponding

proof may be found.
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Definition Description

1 log f ′ in Dirichlet class

2 Schwarzian derivative

3 QC dilatation in L2

4 conformal welding

5 exp(i log f ′) in H1/2

6 arclength parameterization in H3/2

7 tangents in H1/2

8 finite Möbius energy

9 Jones conjecture

10 good polygonal approximations

11 β2-sum is finite

12 Menger curvature

13 biLipschitz involutions

14 ε2-sum is finite

15 δ-thickness in L2

16 finite total curvature surface

17 minimal surface of finite curvature

18 additive isoperimetric bound

19 finite renormalized area

20 dyadic cylinder

21 closure of smooth curves in T0(1)

22 P−ϕ is Hilbert-Schmidt

23 double hits by random lines

24 finite Loewner energy

25 large deviations of SLE(0+)

26 Brownian loop measure

Table 1. For curves in R2, Definitions (1)-(20) are equivalent. For
curves in Rn, n ≥ 3, Definitions (6)-(20), properly modified, are all
equivalent. The definitions above the first double line are the previously
known function theoretic definitions. The second group are the new
definitions proven in this paper. The third group consists of some
other known characterizations of the Weil-Petersson class that are not
used in this paper; these are briefly described in Appendix A.
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Figure 11. A diagram of the implications between the definitions.
Each number inside a square refers to a definition given in the text and
Table 1. The dashed arrows are only valid for n = 2, either because
one of the definitions only makes sense there, or we only give the proof
in that case. Numbers on an arrow indicate which section the corre-
sponding implication is proven in; unlabeled dashed edges are proven in
[16] and unlabeled solid edges are immediate from the definitions. The
shaded blocks group definitions based on conformal maps (left), Eu-
clidean geometry (upper right) and hyperbolic geometry (lower right).

8. (5) ⇒ (6), (7) ⇒ (11): From function theory to β-numbers

Lemma 8.1. Definition 5 implies Definition 6.

Proof. Suppose f is a conformal map from D to the bounded complementary compo-

nent of Γ. Let a : T→ Γ be an orientation preserving arclength parameterization and

let ϕ = a−1 ◦ f : T→ T. We claim this circle homeomorphism is quasisymmetric. To

prove this, consider to adjacent arcs I, J of the same length. Since Definition 5 states

Γ is chord-arc, and chord-arc curves are quasicircles, the conformal map f from D
to the bounded complementary has a quasiconformal extension to the whole plane.

Hence f is also a quasisymmetric map on T and this implies that f(I) and f(J)

have comparable diameters. See [59] or Section 4 of [65]. Since Γ is chord-arc, this
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implies that f(I) and f(J) have comparable lengths, hence ϕ(I) and ϕ(J) also have

comparable lengths, since a preserves arclength. This implies ϕ is quasisymmetric.

Note that a′ = exp(i arg f ′) ◦ ϕ. Beurling and Ahlfors proved in [12] that H1/2

is invariant under composition with a quasisymmetric homeomorphism of T. Thus

a′ ∈ H1/2 iff exp(i arg f) ∈ H1/2. Since a is Lipschitz, it is also absolutely continuous,

so its weak derivative agrees with its pointwise derivative a′. Hence a ∈ H3/2(T). �

A direct proof of the converse is given in [16]. A more roundabout proof uses the

implications (6) ⇒ (7) ⇒ (11) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (5). The first two and last

implications are proven in this paper, and the other three are proven in [16].

By our remarks in Section 3, we already know that Definition 6 is equivalent to

Definition 7, so we need only prove:

Lemma 8.2. Definition 7 implies Definition 11.

Proof. Let U be the torus T×T minus the diagonal. Take a Whitney decomposition

of U , i.e., a covering of U by squares Q with disjoint interiors and the property that

diam(Q) ' dist(Q, ∂U). We will think of T as [0, 1] with its endpoints identified, and

use dyadic squares in [0, 1]2 as elements of our decomposition. See Figure 12. Each

element Wj of the decomposition can be written as Wj = γj×γ′j where γj∪γ′j = Γj\Γ′j
and all these arcs have comparable lengths (in fact, γj and γ′j have the same length).

For each Whitney piece Wj = γj × γ′j, choose a w0 ∈ γ′j so that

`(γ′j)

∫
γj

|τ(z)− τ(w0)|2|dz| ≤ 2

∫
γ′j

∫
γj

|τ(z)− τ(w)|2|dz||dw|.

(We can do this because a positive measurable function must take a value that is less

than or equal to twice its average.) Let L be the line through one endpoint of γ′j in

direction τ(w). Then the maximum distance d that γj can attain from L satisfies

d .
∫
γj

|τ(z)− τ(w0))||dz| ≤

(∫
γj

|τ(z)− τ(w0)|2|dz|

)1/2

`(γj)
1/2.
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Figure 12. On the left is the obvious packing of [0, 1]2 minus the
diagonal by maximal dyadic squares, but this is not a Whitney de-
composition, since some squares touch the diagonal. However, if we
recursively subdivide each of these squares into four sub-squares and
keep the three not touching the diagonal (shaded on left), we generate
the Whitney decomposition on the right.

Therefore (using the fact that γ is chord-arc),

β2(γj) ' d2/diam(γj) .
1

`(γj)

∫
γj

|τ(z)− τ(w0)|2|dz|

≤ 2

`(γj)2

∫
γj

∫
γ′j

|τ(z)− τ(w)|2|dz||dw|

.
∫
γj

∫
γ′j

∣∣∣∣τ(z)− τ(w)

z − w

∣∣∣∣2 |dz||dw|.
Summing over all Whitney pieces proves that the β2-sum is finite when taken over

all arcs of the form {γj}. By construction (see Figure 12), every dyadic interval in

[0, 1] (except for [0, 1
2
], [1

2
, 1] and [0, 1]) occurs as a γj at least once and at most three

times, so this bounds the sum of β2(γ) over all dyadic subintervals of Γ for a fixed

base point, with an estimate independent of the basepoint. Thus it holds for some

multi-resolution family of arcs (recall the 1
3
-trick for making such a family from three

translates of the dyadic family). Because of Lemma 4.2, this proves the lemma. �

9. (7) ⇔ (8): tangent’s control Möbius energy

The following proof is similar to an argument in [20].

Lemma 9.1. Definition 7 is equivalent to Definition 8.
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Proof. We want to show

Möb(Γ) =

∫
Γ

∫
Γ

1

|z − w|2
− 1

`(z, w)2
|dz||dw| <∞,(9.1)

if and only if ∫
Γ

∫
Γ

|τ(x)− τ(y)|2

|x− y|2
|dx||dy| <∞.(9.2)

First we collect a few relevant formulas about rectifiable arcs.

Suppose γ is rectifiable with endpoints z, w, and let τ(x) denote the unit tangent

vector at x ∈ γ (well defined almost everywhere on γ; we assume γ is oriented from

w to z). Then

u =
z − w
|z − w|

=
1

|z − w|

∫
γ

τ(y)|dy|,

is the unit vector in direction z − w and hence

|z − w|2 = |z − w|
∫
γ

〈τ(x), u〉|dx| =
∫
γ

∫
γ

〈τ(x), τ(y)〉|dy||dx|.(9.3)

Next, using |τ | = 1, we get∫
γ

∫
γ

|τ(x)− τ(y)|2|dx||dy| =

∫
γ

∫
γ

〈τ(x)− τ(y), τ(x)− τ(y)〉|dx||dy|

=

∫
γ

∫
γ

(
|τ(x)|2 − 2〈τ(y), τ(x)〉+ |τ(y)|2

)
|dx||dy|

= 2`(γ)2 − 2

∫
γ

∫
γ

〈τ(x), τ(y)〉|dx||dy|.

Let γ = γ(z, w) ⊂ Γ be the shorter sub-arc with end points z, w. Combining the

equality above with (9.3) and the assumption that Γ is chord-arc, we get

Möb(Γ) =

∫
Γ

∫
Γ

`(z, w)2 − |z − w|2

`(z, w)2|z − w|2
|dz||dw|

'
∫

Γ

∫
Γ

`(z, w)2 −
∫
γ

∫
γ
〈τ(x), τ(y)〉|dx||dy|
|z − w|4

|dz||dw|

=
1

2

∫
Γ

∫
Γ

∫
γ

∫
γ
|τ(x)− τ(y)|2|dx||dy|
|z − w|4

|dz||dw|

Given x, y ∈ Γ with `(x, y) ≤ 1
8
`(Γ), set σ(x, y) = {(z, w) ∈ Γ×Γ : x, y ∈ γ(z, w)}.

If, in addition, 0 < t < `(Γ)/2, let σ(x, y, t) ⊂ Γ be the arc of length t with one
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endpoint x that is disjoint from the arc γ(x, y). Using the fact that Γ is chord-arc, it

is not hard to show that if m ≥ 2, t ∈ [`(x, y), diam(Γ/8)], and w ∈ σ(y, x, t), then∫
σ(x,y,t)

|dz|
|z − w|m

' 1

|x− w|m−1
(9.4)

(hint: divide the integral using the annuli {z : 2n|w − x| < |z − w| ≤ 2n+1|w − x|}).
Set s = `(Γ)/2 and set t = `(Γ)/8. Note that

`(x, y) ≤ t, w ∈ σ(y, x, t), z ∈ σ(x, y, t) ⇒ (z, w) ∈ σ(x, y)

`(x, y) ≤ t, (z, w) ∈ σ(x, y) ⇒ z ∈ σ(x, y, s) and w ∈ σ(y, x, s).

Let Σ(t) = {(x, y) ∈ Γ × Γ : `(x, y) ≤ t}. By the first implication and Fubini’s

theorem, ∫∫
Γ×Γ

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y)

|dz||dw|
|z − w|4

|dx||dy|

≥
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y)

|dz||dw|
|z − w|4

|dx||dy|

&
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
z∈σ(x,y,t)

∫
w∈σ(y,x,t)

|dz||dw|
|z − w|4

|dx||dy|

and using (9.4),

'
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
w∈σ(y,x,t)

|dw|
|x− w|3

|dx||dy|

'
∫∫

Σ(t)

|τ(x)− τ(y)|2

|x− y|2
|dx||dy|.

This proves that Definition 8 implies Definition 7, since the integral over (Γ×Γ)\Σ(t)

is obviously bounded (depending on t) since pairs of points (x, y) in this set are

separated by distance & t.

To prove the opposite implication, we want to show Möb(Γ) is finite if the τ -integral

is. As above, it suffices to evaluate the energy integral (9.1) over Σ(t). A calculation
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similar to the one above gives∫∫
Σ(t)

|τ(x)− τ(y)|2
∫∫

(z,w)∈σ(x,y))

|dz||dw|
|z − w|4

|dx||dy|

.
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
z∈σ(x,y,s)

∫
w∈σ(y,x,s)

|dz||dw|
|x− w|4

|dx||dy|

'
∫∫

Σ(t)

|τ(x)− τ(y)|2
∫
w∈σ(y,x,s)

|dw|
|x− w|3

|dx||dy|

'
∫∫

Σ(t)

|τ(x)− τ(y)|2

|x− y|2
|dx||dy|.

This proves that Definitions 8 and 7 are equivalent. �

10. (9) ⇔ (10): continuous and discrete asymptotic smoothness

Lemma 10.1. Definition 9 is equivalent to Definition 10.

Proof. Without loss of generality we may rescale Γ so that is has length 1. We identify

Γ× Γ with the torus T2 = [0, 1]2, let U be the torus minus the diagonal, and take a

Whitney decomposition of U by dyadic squares {Qj} as in the proof of Lemma 8.2.

Elements of the decomposition are denoted {Wj}, and each is a product of dyadic

arcs Wj = γj × γ′j. For each Wj, we can write γj ∪ γ′j = Γj \Γ′j for arcs Γj,Γ
′
j so that

all four arcs have comparable lengths.

Recall that crd(γ) = |z − w| where z, w are the endpoints of γ and that ∆(γ) ≡
`(γ)−crd(γ). We sometimes write ∆(z, w) for ∆(γ) when γ has endpoints z, w, and it

is clear from context which arc connecting these points we mean. We say two subarcs

of Γ are adjacent if they have disjoint interiors, but share a common endpoint.

Lemma 10.2. If γ, γ′ ⊂ Γ are adjacent, then ∆(γ) + ∆(γ′) ≤ ∆(γ ∪ γ′).

Proof. Note that `(γ ∪ γ′) = `(γ) + `(γ′), and crd(γ ∪ γ′) ≤ crd(γ) + crd(γ′), so

∆(γ ∪ γ′) = `(γ ∪ γ′)− crd(γ ∪ γ′)

≥ `(γ) + `(γ′)− crd(γ)− crd(γ′) = ∆(γ) + ∆(γ′). �

Corollary 10.3. If γ ⊂ γ′ then ∆(γ) ≤ ∆(γ′).

Now, fix j and consider the Whitney box Wj = γj × γ′j. If γ ⊂ Γj is any arc with

one endpoint in γj and the other in γ′j then Γ′j ⊂ γ ⊂ Γj, and hence ∆(Γ′j) ≤ ∆(γ) ≤
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∆(Γj). Because Γ is chord-arc, if z ∈ γ′j and w ∈ γj, then |z − w| & `(Γ′j) ' `(Γj).

We can therefore write the integral from Definition 9 as∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| =
∑
j

∫
Wj

∆(z, w)

|z − w|3
|dz||dw|

.
∑
j

∆(Γj)

`(Γj)3
`(Γj)

2 =
∑
j

∆(Γj)

`(Γj)
.

Thus Definition 10 implies Definition 9.

Reversing the argument, now assume Γ′j is some dyadic subinterval of Γ and let

γj, γ
′
j be the equal length dyadic arcs adjacent to Γ′j.∫

γj

∫
γ′j

`(z, w)− |z − w|
|z − w|3

|dz||dw| &
∆(Γ′j)

`(Γ′j)
.

The squares Wj = γj × γ′j arising in this way have bounded overlap, so∫
Γ

∫
Γ

`(z, w)− |z − w|
|z − w|3

|dz||dw| &
∑
j

∆(Γ′j)

`(Γ′j)
,

where the sum is over all dyadic subintervals of Γ. This works for any dyadic decom-

position {Γj} of Γ, and hence for a multi-resolution family. This gives the equivalence

of Definitions 9 and 10. �

11. (11) ⇒ (10): β2-sum implies asymptotic smoothness

The following is where we use Theorem 1.5, the strengthening of Peter Jones’s

traveling salesman theorem (TST) mentioned in the introduction. The proof given in

[17] is somewhat involved, so the following implication is actually the most difficult

one in Figure 11.

Lemma 11.1. Definition 11 implies Definition 10.

Proof. We continue using the notation from the previous section. Let {Γj} be a

dyadic decomposition of Γ. For each j, choose a dyadic cube Qj that hits Γj and has

diameter between diam(Γj) and 2 · diam(Γj). Note that any such dyadic square can

only be associated to a uniformly bounded number of arcs Γj in this way, because

there are only a bounded number of arcs Γj that have the correct size and are close
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enough to Qj; this uses the fact that Γ is chord-arc. Also because Γ is chord-arc,

diam(Γj) ' `(Γj) ' diam(Qj). Therefore, by the strengthened TST (1.5)

∆(Γj) '
∑
Q⊂3Qj

β2
Γj

(Q)`(Q).

Since βΓj(Q) ≤ βΓ(Q), we get∑
j

∆j

`(Γj)
'

∑
j

∑
Q⊂3Qj

β2
Γj

(Q)
`(Q)

`(Qj)

.
∑
j

∑
Q⊂3Qj

β2
Γ(Q)

`(Q)

`(Qj)
'
∑
Q

β2
Γ(Q) ·

∑
j:Q⊂3Qj

`(Q)

`(Qj)
.

Note that for each Q with diam(Q) ≤ diam(Γ) and Q ∩ Γ 6= ∅, there is a cube of

the form Qj from above, that has diameter comparable to diam(Q) and such that

Q ⊂ 3Qj. Moreover, there there can only be a uniformly bounded number of dyadic

squares Qj of a given size so that 3Qj contains Q, so each Qj can only be chosen a

bounded number of times. Thus the sum over the j’s in the last line above is bounded

by a multiple of a geometric series and so is uniformly bounded. Therefore∑
j

∆(Γj)

`(Qj)
.
∑
Q

β2
Γ(Q). �(11.1)

12. (10) ⇔ (20): dyadic cylinders and domes

If Γ ⊂ Rn is rectifiable and Y = Γ× (0, 1] ⊂ Hn+1, then

Aρ(Yt) =

∫ 1

t

∫
Γ

dsdt

t2
= `(Γ)(

1

t
− 1) = `(Γt)(

1

t
− 1) = Lρ(Γt)−O(1).

Thus the vertical cylinder Y has finite renormalized area for any rectifiable curve.

Roughly speaking, we expect renormalized area to measure how orthogonal the sur-

face is to the boundary. The cylinder is perfectly vertical; a minimal surface with the

same boundary curve necessary deviates from vertical over regions where Γ has some

curvature. We can make this vague idea precise using a discrete analog a minimal

surface.

Define a “dyadic cylinder” associated to Γ by X =
⋃∞
n=0 Γn × (2−n−1, 2−n], where

Γn is the 2n-gon inscribed in Γ corresponding to a dyadic decomposition of Γ into

subarcs of length 2−n`(Γ). Note that is depends on a choice of base point for the

dyadic decomposition.
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Each “layer” of X between heights 2−n and 2−n+1 consists of 2n Euclidean rectan-

gles (or “panels”) in vertical planes that meet along vertical edges (called “hinges”).

See Figure 12.1. Alternate vertices of the top edge of one layer agree with the bottom

vertices of the next layer up, but there are triangular horizontal “holes” between the

layers.

Figure 13. The dyadic cylinder and dome of a circle and snowflake;
the first has finite renormalized area and the second does not.

If desired, these holes can be eliminated as followed. Suppose [z, w] is an edge

segment of Γn and let a1, a2 ∈ H3 be the points of height 2−n and 2−n−1 above z.

Similarly b1, b2 above w. Let v be the vertex of Γn+1 between z and w and let c2

be the point at height 2−n−1 above v. The rectangular face of the dyadic cylinder

X with corners a1, a2, b2, b1 is replaced by the three Euclidean triangles with vertices

(a1, b1, c2), (c2, b2, b1) and (a1, c2, b1). Doing this for every edge of Γn and adding the

interior of the polygon Γ2 raised to height 1/4 defines a closed surface Y that we will

call a dyadic dome of Γ. See Figure 13 for two examples of dyadic cylinders and the

corresponding domes.
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Lemma 12.1. If Γ a closed rectifiable Jordan curve, then Γ is Weil-Petersson if and

only if every corresponding dyadic cylinder X has finite renormalized area, with a

bound independent of the choice of base point.

Proof. First we show that the Weil-Petersson condition implies finite renormalized

area. A simple calculation as above shows that the part of X between heights 2−n

and 2−n+1 has hyperbolic area 2n−1`(Γn). Similarly, if 2−n−1 ≤ t ≤ 2−n, then

Aρ(Xt) =
n∑
k=0

2k−1`(Γk) + (
1

t
− 2n)`(Γn+1).

and hence

Aρ(Xt)−
1

t
`(Γ) = Aρ(Xt)− (

1

t
− 2n + 1 +

n∑
k=1

2k−1)`(Γ)

= −`(Γ)−
n∑
k=1

2k[`(Γ)− `(Γk)] + (
1

t
− 2n)(`(Γ)− `(Γn+1)

= −`(Γ)−
n∑
k=1

2k[`(Γ)− `(Γk)] +O(2n[`(Γ)− `(Γn+1)])

→ −`(Γ)−
∞∑
k=1

2k[`(Γ)− `(Γk)]

since the infinite series is convergent when Γ is Weil-Petersson by (1.2). Finally, for

2−n−1 ≤ t ≤ 2−n, note that `(∂Xt) = `(Γn+1)/t, so

1

t
[`(∂Xt)− `(Γ)] ≤ 2n+1[`(Γn+1)− `(Γ)]→ 0,

since these are terms of a summable series. Thus Aρ(Xt)−Lρ(∂Xt) has a finite limit

and X has finite renormalized area.

Next we consider the converse: finite renormalized area implies Γ is Weil-Petersson.

Suppose RA(X) <∞. First we deduce that Γ is rectifiable. If t = 2−n, then

Aρ(Xt)− Lρ(∂Xt) =

(
n∑
k=1

2k−1`(Γk)

)
− 2n`(Γn) = O(1),

or equivalently,

`(Γn) =
1

2
`(Γn) +

1

4
`(Γn−1) + · · ·+ 2−n`(Γ1) +O(2−n),
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and hence (since {`(Γn)} is non-decreasing),

`(Γn) =
1

2
`(Γn−1) +

1

4
`(Γn−2) + · · ·+O(2−n)

≤ 1

2
`(Γn−1) +

1

4
`(Γn−1) + · · ·+O(2−n)

≤ `(Γn−1) +O(2−n)

which clearly implies `(Γ) <∞. To show that Γ is Weil-Petersson, note that

Aρ(Xt)− Lρ(∂Xt) =

(
n∑
k=1

2k−1`(Γk)

)
− 2n`(Γn)

=

(
n∑
k=1

2k−1`(Γk)

)
− (1 + 1 + 2 + . . . 2n−1)`(Γn)

= −1

2

n∑
k=1

2k[`(Γn)− `(Γk)]− `(Γn).

By the Monotone Converge Theorem (for counting measure on N), this tends to

−1
2

∑∞
k=1 2k[`(Γ)− `(Γk)]− `(Γ).

Thus if Aρ(Xt)− Lρ(∂Xt) is bounded below, then

∞∑
k=1

2k[`(Γ)− `(Γk)] <∞,

with a bound independent of the choice of the dyadic decomposition. Hence finite

renormalized area implies Γ is Weil-Petersson by Theorem 1.3. �

It is not hard to show that the dyadic dome has finite renormalized area iff the

dyadic cylinder does, by considering a horizontal projection between the surfaces

that changes hyperbolic area and lengths by at most a bounded additive factor. A

similar argument will be used in Section 22 to show that Weil-Petersson curves bound

minimal surfaces with finite renormalized area, so we leave the details until then.

13. (11) ⇔ (12): β’s and Menger curvature are equivalent

In this section we prove that Definitions 11 and 12 are equivalent. The necessary

estimates are similar to estimates contained in Pajot’ book [98]; we will just indicate

where to find them and how to modify the proof given there.
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We start with bounding Menger curvature by the β’s. This is similar to the proof

of Theorem 31 of [98]. In our proof, we will take µ to be arclength measure on Γ; this

satisfies the linear growth condition of Theorem 31 in [98] because Γ is chord-arc.

Pajot defines

c2(µ) =

∫
Γ

∫
Γ

∫
Γ

c2(x, y, z)dµ(x)dµ(y)dµ(z),

and on the bottom of page 37 notes that

c2(µ) ≤ 3c2(µ)(13.1)

where

c2(µ) =

∫
A

c2(x, y, z)dµ(x)dµ(y)dµ(z),

A = {(x, y, z) ∈ Γ× Γ× Γ : |x− z| ≤ |x− y|, |y − z| ≤ |x− y|}.

He states that

c2(µ) ≤
∑
Q

∫
(x,z)∈3Q

(∑
R⊂Q

∫
x,y∈R̃

c2(x, y, z)dµ(y)

)
dµ(x)dµ(z).

where the inner sum is over dyadic sub-cubes R ⊂ Q and

R̃ = {(x, y) ∈ 3R : |x− y| ≥ diam(R)/3}.

Recall that `(x, y, z) = |x− y|+ |y − z|+ |z − y| is defined as the perimeter of the

triangle with vertices (x, y, z), and it is comparable to the longest of the three sides.

Note that for (x, y, z) ∈ A and (x, y) ∈ R̃, we have `(x, y, z) ' |x − y| ' diam(R).

Thus we can replace (13.1) by∫
Γ

∫
Γ

∫
Γ

c2(x, y, z)

`(x, y, z)
dµ(x)dµ(y)dµ(z)

.
∑
Q

∫
x,z∈3Q

(∑
R⊂Q

∫
x,y∈R̃

c2(x, y, z)

`(x, y, z)
dµ(y)

)
dµ(x)dµ(z)

'
∑
Q

∫
x,z∈3Q

(∑
R⊂Q

∫
x,y∈R̃

c2(x, y, z)

diam(R)
dµ(y)

)
dµ(x)dµ(z).

We now follow the rest of the proof on page 38, replacing the factor diam(R)−2 that

occurs throughout by diam(R)−3. At the end we obtain∫
Γ

∫
Γ

∫
Γ

c2(x, y, z)

`(x, y, z)
dµ(x)dµ(y)dµ(z) .

∑
Q

β2(Q).
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Thus Definition 11 implies Definition 12, as desired.

Next we deal with the opposite inequality: bounding
∑
β2 in terms of the Menger

curvature. The relevant estimates are given in the proof of Theorem 38 of [98]. On

the bottom of page 43 Pajot gives the inequality

β2
Γ(Q)diam(Q) .

∑
P⊂Q

∫
P ∗

∫
c2(x, y, z)dµ(x)dµ(y)dµ(z)

(
diam(P )

diam(Q)

)1/2

,

where

P ∗ = {(x, y, z) ∈ (3P )3 : |x− y| ' |x− z| ' |y − z| ' diam(P )}.

Divide both sides by diam(Q) and note that for (x, y, z) ∈ P ∗ we have `(x, y, z) '
diam(P ). This gives

β2
Γ(Q) .

∑
P⊂Q

∫
3P

∫
c2(x, y, z)

diam(Q)
dµ(x)dµ(y)dµ(z)

(
diam(P )

diam(Q)

)1/2

.
∑
P⊂Q

∫
3P

∫
c2(x, y, z)

`(x, y, z)
dµ(x)dµ(y)dµ(z)

(
diam(P )

diam(Q)

)1/2

On the top of the next page, this modified expression leads to∑
S⊂Q

β2
Γ(S) .

∫
Q

∫
Q

∫
Q

c2(x, y, z)

`(x, y, z)
dµ(x)dµ(y)dµ(z).

Since dµ is arclength measure, this shows Definition 12 implies Definition 11.

14. (13) ⇒ (11): reflections control β’s

Next we show that Definition 13 implies Definition 11, i.e., if Γ is the fixed point

set of a involution R defined on a neighborhood U of Γ, and whose distortion satisfies

certain L2 estimates, then the β2-sum for Γ is finite. We start by showing that such

an involution is a biLipschitz map.

Lemma 14.1. A map R : U → U ′ satisfying Definition 13 is biLipschitz on U .

Proof. Suppose z, w ∈ U , and and |z − w| ≤ 3 max(dist(z,Γ), dist(w,Γ)). Without

loss of generality we may assume dist(z,Γ) ≥ dist(w,Γ). Let S be the segment

between z and w. Then |R(z) − R(w)| ≤ `(R(S)). The segment S may hit Γ, but

R is the identity at such points, and S \ Γ consists of at most countably many open
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subsegments, each covered by its intersection with Whitney cubes Q for Rn \ Γ. The

length of each such intersection is increased by at most a factor of ρ(Q). Therefore,

|R(z)−R(w)| − |z − w| .
∑

Q∩S 6=∅

ρ(Q)diam(Q)),

where the sum is over all Whitney cubes that hit S. By the Cauchy-Schwarz inequal-

ity, the right side is less than

.

 ∑
Q∩S 6=∅

ρ2(Q)diam(Q)

1/2 ∑
Q∩S 6=∅

diam(Q)

1/2

.

`(S)
∑

Q∩S 6=∅

ρ2(Q)diam(Q)

1/2

.

(
`(S)

∑
Q⊂3Q′

ρ2(Q)diam(Q)

)1/2

.

Let Q′ be the minimal dyadic cube containing w with `(Q′) ≥ 6dist(z,Γ) and define

P (Q′) =

(
1

diam(Q′)

∑
Q⊂3Q′

ρ2(Q)diam(Q)

)1/2

,(14.1)

where we sum over Whitney cubes inside 3Q′. This gives

|R(z)−R(w)| − |z − w| . P (Q′)diam(Q′),

and since P (Q′) ≤ (
∑

Q ρ
2(Q))1/2 < ∞, we get |R(z) − R(w)| = O(|z − w|) for all

z, w ∈ U with |z − w| ≤ 3dist(z,Γ). Reversing the roles of z and w gives the same

estimate when |z − w| ≤ 3dist(w,Γ). When |z − w| ≥ 3 max(dist(z,Γ), dist(w,Γ) we

can choose z′, w′Γ, with |z − z′| = dist(z,Γ) and similarly for w,w′ and since z′, w′

are fixed by R we have

|R(z)−R(w)| ≤ |R(z)− z′|+ |z′ − w′|+ |w′ −R(w)| . |z − w|.

Thus R is Lipschitz. Since R = R−1 is an involution, it is automatically biLipschitz.

�

Lemma 14.2. Definition 13 implies Definition 11.
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Proof. For n = 2, it is clear that Definition 13 implies Definition 3, which in turn

implies Definition 11 by known results (e.g., [16]) and implications proven earlier in

this paper. Thus we may assume n ≥ 3.

First note that that if P is as defined in (14.1), then

∑
Q′

P 2(Q′) =
∑
Q′

∑
Q⊂3Q′

ρ2(Q)
diam(Q)

diam(Q′)

=
∑
Q

ρ2(Q)
∑

Q′:Q⊂3Q′

diam(Q)

diam(Q′)
.
∑
Q

ρ2(Q),

since the sum over Q′ only involves O(1) cubes of each size. Thus it suffices to show

that β(Q′) = O(P (Q′)). Normalize so `(Q′) = 1. Choose two points p, q ∈ Γ ∩ 3Q′

with |p−q| ' 1 and let L be the line through p and q. Choose w ∈ Γ∩3Q′ Now choose

w to maximize the distance on Γ∩3Q′ from L. Let β = dist(w,L). It suffices to show

that β = O(P (Q′)). We may fix a large M <∞ and assume that P (Q′) ≤ 1/M2 and

MP (Q′) ≤ β ≤ 1/M , for otherwise there is nothing to do. We will show this gives a

contradiction if M is large enough.

Let w′ be the closest point on L to w and let z be the point on the ray from w′

through w so that dist(z, L) = 1
2
`(Q′). Let Q be the Whitney square for Rn \ Γ

containing z and let z′ = R(z). Note that the p, q, w, w′, z, z′ all lie in a three

dimensional sub-space, so, without loss of generality, we may assume L is the z-axis

in R3, w′ = 0, w = (β, 0, 0), and z = (1, 0, 0). The points p, q satisfy |p| ' |q| '
|p − q| ' 1. Since z and z′ are the same distance from each of these points, up to

a factor of O(P (Q′)), we deduce z′ lies inside a O(P (Q′)) neighborhood of the circle

x2 + y2 = 1 in the xy-plane. See Figure 14.

Similarly, since z and z′ are equidistant from w, up to a factor of O(P (Q′)), the

points z′ lies within a O(P (Q′)) neighborhood of the sphere of radius 1 − β around

z. However, since P (Q′) � β � 1, these two regions only intersect in the half-

space {x > 0} and thus z′ also lies in this half-space. Thus q = (z + z′)/2 has

x-coordinate ≥ 1/2 and, by the definition of ρ, it is within ρ(Q) of a point q′ ∈ Γ.

But ρ(Q) . P (Q′)� 1, since it is one of the cubes in the sum defining P (Q′). This

implies there is a point q′ of Γ that is about unit distance from L, contradicting the

assumption that the maximum distance was β ≤ 1/M � 1.
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z

z

p

q

w w

L

Figure 14. Proof that β = O(P ). The two points z, z′ cannot be
almost equidistant from p, p′ and w without their average being far
from from L, contradicting how these points were all chosen.

This contradiction implies β(Q′) ≤ M · P (Q′), as desired, so we have proven that

Definition 13 implies Definition 11. �

15. (11) ⇔ (14): βΓ is equivalent to εΓ

Recall that for a dyadic cube Q, εΓ(Q) is the infimum of ε ∈ (0, 1] so that 3Q hits

a line L, a ball B of radius diam(Q)/ε, that B attains its minimum distance ≤ ε from

L at a point z ∈ Q, and so that every rotation of B around L is disjoint from Γ.

Lemma 15.1. Definition 11 is equivalent to Definition 14.

Proof. It is easy to see that βΓ(Q) . εΓ(Q), so one direction is clear. It is also easy

to find examples where βΓ(Q) = 0 but εΓ(Q) > 0, so the opposite direction is not as

obvious. However, we shall prove that εΓ can be bounded by a weighted sum of βΓ’s

over a sequence of larger squares and this will imply the sum of ε2
Γ(Q) over all dyadic

cubes is bounded if the corresponding sum of β2
Γ(Q) is also bounded.

Fix x ∈ Γ and a dyadic cube Q0 containing x with diam(Q0) ≤ diam(Γ), for some

N ≥ 10. Renormalize so diam(Q0) = 1. For k ≥ 1, let Qk be the dyadic cube

containing Q0 and satisfying diam(Qk) = 2kdiam(Q0). Let

ε = 2A
∞∑
k=1

2−kβΓ(Qk) = 2A
∑

Q′:Q⊂Q′
βΓ(Qk)

diam(Q)

diam(Q′)
,

where the constant 0 < A <∞ will be chosen later. I claim that εΓ(Q) . ε.
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Let L be a line through x that minimizes in the definition of βΓ(Q0). Let L⊥ be

the perpendicular hyperplane through x and let z ∈ L⊥ be distance 1/ε from x. Let

B = B(z, r) where r = (1/ε)− ε. We claim that B is disjoint from Γ (and so are all

its rotations around L).

Note that dist(B,L) = ε. For 0 ≤ n ≤ N = blog2
1
ε
c, simple trigonometry shows

that dist(B\3Qn, L) ≥ C1ε2
2n (we can do the calculation in the plane generated by L

and z; see Figure 15 and recall that diam(Q0) = 1). On the other hand, the distance

between Γ ∩ 3Qn and L is ≤ C2

∑n
k=0 βΓ(Qk)2

k, because the angle between the best

approximating lines for Qk and Qk+1 is O(βΓ(Qk+1)). Therefore B and Γ∩ 2QN will

be disjoint, if for every 0 ≤ n ≤ N we have
n∑
k=0

βΓ(Qk)2
k < (C1/C2)ε22n.

Note that

max
0≤n≤N

2−2n

n∑
k=0

βΓ(Qk)2
k ≤

N∑
n=0

2−2n

n∑
k=0

βΓ(Qk)2
k

≤
N∑
k=0

βΓ(Qk)2
k

N∑
n=k

2−2n ≤
N∑
k=0

βΓ(Qk)2
−k = ε/(2A) = (C1/C2)ε,

if we take A = 1
2
C2/C1. This holds for every choice of z in L⊥ that is distance 1/ε

from L, so we have proven that εΓ(Q) . ε, as claimed.

2
k

Q

k−1
2 Q

Q

θ

ε 2
2k

Figure 15. The part of the ball of radius diam(Q)/ε(Q) that lies in
2kQ \ 2k+1Q makes angle θ ' ε2k with the perpendicular ray from
L to z and hence (since we are assuming diam(Q) = 1) is distance
approximately ε−1(1− cos(θ)) ' εθ2 = ε22k from the line L.
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Summing over all dyadic cubes gives

∑
Q

ε2
Γ(Q) .

∑
Q

[ ∑
Q′:Q⊂Q′

βΓ(Q′)
diam(Q)

diam(Q′)

]2

.
∑
Q

[ ∑
Q′:Q⊂Q′

βΓ(Q′)

(
diam(Q)

diam(Q′)

)3/4(
diam(Q)

diam(Q′)

)1/4
]2

and by Cauchy-Schwarz we get

.
∑
Q

[ ∑
Q′:Q⊂Q′

β2
Γ(Q′)

(
diam(Q)

diam(Q′)

)3/2
]
·

[ ∑
Q′:Q⊂Q′

(
diam(Q)

diam(Q′)

)1/2
]
.

The second term is dominated by a geometric series, hence bounded. Thus∑
Q

ε2
Γ(Q) .

∑
Q′

β2
Γ(Q′)

∑
Q:Q⊂Q′

diam(Q)3/2

diam(Q′)3/2
.

Since Definition 11 implies Γ is chord-arc, the number of dyadic cubes inside Q′ of

size diam(Q′)2−k and hitting Γ is at most O(2k). Thus the right side is bounded by

.
∑
Q′

β2
Γ(Q′)

∞∑
k=0

O(2k)2−3k/2 .
∑
Q′

β2
Γ(Q′)

∞∑
k=0

2−k/2 .
∑
Q′

β2
Γ(Q′)

and so the ε2-sum is finite if the β2-sum is finite, as desired. �

It is sometimes convenient to assume that the balls in the definition of εΓ are small

compared to diam(Γ). This is easy to obtain if we replace εΓ(Q) by

ε̃Γ(Q) = max(εΓ, (diam(Q)/diam(Γ))α)

for some 1/2 < α < 1. Then only balls of diameter . diam(Γ) · diam(Q)1−α are

needed to bound ε̃Γ(Q). Clearly εΓ(Q) ≤ ε̃Γ(Q), and∑
Q:Q∩Γ6=∅

ε̃2
Γ(Q) .

∑
Q

ε2
Γ(Q) +

∑
Q

(
diam(Q)

diam(Γ)

)2α

where the second sum is finite for chord-arc curves because α > 1/2 the number of

dyadic squares of size ' 2−n hitting Γ is O(2n). Thus bounding
∑
ε̃2Γ is equivalent

to bounding
∑
ε2Γ for chord-arc curves. This is helpful if one wants to control εΓ(Q)

in terms of the local behavior of Γ.
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16. (14) ⇔ (15): εΓ is equivalent to δ

Recall that each ball B ⊂ Rn is the boundary of a hyperbolic half-space H in Hn+1,

and two balls are disjoint iff the corresponding half-spaces are disjoint.

Lemma 16.1. Suppose B1, B2 ⊂ Rn are disjoint balls of radius r that are distance ε

apart. Then the hyperbolic distance between the corresponding half-spaces is '
√
ε/r.

Proof. The nearest points on the half-spaces will occur over the line connecting the

centers of B1 and B2, so it suffices to do this calculation in the copy of the hyperbolic

upper half-plane lying above this line; this is a simple calculus exercise. We can

normalize so the balls both have have radius 1 and the distance between them is

η = ε/r. The intersection of the hemispheres with this plane are two half-circles.

At height t above R2, these circles are Euclidean distance η + O(t2) apart, hence

hyperbolic distance ' t+ η/t apart. This is minimized when t =
√
η =

√
ε/r. �

Lemma 16.2. If z ∈ CH(Γ), then δ(w) = O(δ(z)) for all w ∈ CH(Γ) ∩ Bρ(z, 1).

Proof. The point is that if H1, H2 are two disjoint hyperbolic half-planes that both

within distance δ of a point z, then their boundaries remain within distance O(δ) of

each other inside Bρ(z, 1) (imagine z = 0 in the ball model). �

Lemma 16.3. Definition 14 implies Definition 15.

Proof. Lemmas 16.1 and 16.2 imply that if εΓ(Q) is small (say less than 1/100), then

δ(z) . εΓ(Q) for every point z ∈ T (Q) = Q × [`(Q)/2, `(Q)] ⊂ Hn+1. This gives

Definition 15. �

In the higher dimensional version of Definition 15 we can either sum δ2(Q), or we

can integrate δ2 over any surface with Aρ(S∩T (Q)) = O(1), e.g., the dyadic dome of

Γ, or a smoothed version of the dyadic dome, or a minimal surface with asymptotic

boundary Γ, or (in the case n = 2) a boundary component of the hyperbolic convex

hull of Γ.

Lemma 16.4. Definition 15 implies Definition 14.

Proof. If Γ ⊂ R2 is a circle, then δ(z) vanishes everywhere but εΓ does not. Thus

εΓ(Q) cannot be bounded using δ alone; there must also be some dependence on size of
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Q. Without loss of generality, we assume diam(Γ) = 1, diam(Q) ≤ 1/100, and δ(z) <

1/100 for z in CH(Γ) ∩ T(Q) (T (Q) ⊂ Hn+1 are the points that project vertically

into Q have have height between `(Q)/2 and `(Q)). For z ∈ T (Q) and each normal

direction at z that is perpendicular to an optimal plane in the definition of δ(z),

there are a pair of disjoint hyperbolic half-spaces H and H∗ connected by a geodesic

segment of hyperbolic length at most O(δ) running through z and perpendicular to

each half-space. These half-spaces intersect Rn in disjoint regions B,B∗ that do not

hit Γ and are bounded by spheres.

If both regions are bounded balls then they are separated a (n − 1)-plane, which

extends to a vertical n-plane in Hn+1 which separates the hyperbolic half-spaces

and thus comes within O(δ) of the point z. This implies B,B∗ each have radius

& δ(z) · diam(Q). Otherwise one region, say B, is a bounded ball and the other

region B∗ is the exterior of a ball. Since B∗ doesn’t hit Γ, its boundary sphere must

have diameter ≥ 1, and therefore it makes angle of at most O(diam(Q)) with the

vertical near z. Since the other half-space H is also within O(δ) of z, it makes and

angle of at most θ = O(δ(z))+O(diam(Q)) with the vertical, and hence B has radius

& diam(Q)/(δ(z) + diam(Q)).

In either case we have ε2
Γ(Q) = O(δ2(z)) + O(diam2(Q)). The δ2-sum is bounded

by assumption. This assumption also implies that given δ0 = 2−m > 0, all but

finitely many terms of the δ sum are less than δ0. Assume we are at a scale below

which all cubes satisfy this. Given such a cube Q, Γ ∩ 3Q can hit only O(1/δ0)

sub-dyadic-cubes of 3Q of size δ0diam(Q). Iterating, we see that Γ hits at most

O(Ckδk) = O(2(m+log2 C)k) dyadic cubes of size & 2−mk. Thus
∞∑
k=0

∑
Q:2−m(k+1)<`(Q)≤2−mk,Q∩Γ6=∅

diam2(Q) ≤
∑
k

2(m+log2 C−2m)k <∞

if m > log2C, which occurs if δ0 is small enough. This proves the lemma. �

17. (15) ⇒ (16): δ controls surface curvature

Lemma 17.1. Definition 15 implies Definition 16.

Proof. In both n = 2 and higher dimensions we create a triangulated surface where

adjacent triangles are very close to parallel, and smooth this surface to obtain a

surface with small principle curvatures. In dimensions ≥ 2, the discrete surface can be
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the dyadic dome, introduced in Section 12, and the principle curvatures are controlled

by the β-numbers. In the special case n = 2, we can also use a discretization of the

usual hyperbolic dome of one side of Γ. Since this case is of particular interest, we

describe it first.

Suppose S is one component of ∂CH(Γ). It is known that S, with its hyperbolic

path metric, is isomorphic to the hyperbolic disk (e.g., [43], [82], [81]). The hyperbolic

unit disk can be triangulated by geodesic triangles with hyperbolic diameters ' 1

and angles bounded strictly between 0 and π, e.g., take the tesselation corresponding

to a Fuchsian triangle group.

Fix such a triangulation of D and map the vertices to S via the isometry. Each

triple of image vertices corresponding to a triangle on D lies on a hyperbolic plane

and determines a triangle on this plane. Create a new surface S1 by gluing these

triangles together along their edges. Because the vertices lie in CH(Γ), convexity

implies each triangle, and hence all of S1, also lie in CH(Γ).

Consider two triangles T1, T2 in S1 that meet along a common edge e. Normalize

so that one endpoint of e is the origin in the ball model of hyperbolic 3-space, e

lies along the x axis and T1 lies in the xy-plane. Then T2 lies in Euclidean plane

that makes some angle θ with the xy-plane, and by our assumptions, it contains a

point p (e.g., the vertex of T2 not on e) that is hyperbolic distance ' 1 from 0 and

Euclidean distance ' 1 from the x-axis. Then p is Euclidean distance ' θ from the

xy-plane. Because both triangles lie inside CH(Γ) and CH(Γ) is trapped between two

hyperbolic half-planes that each come within hyperbolic distance δ(0) of the origin,

we must have θ . δ(0) (we are using Lemma 16.2).

If T is component triangle of S1, let θ(T ) be the maximum angle T makes with

any of its neighboring triangles, and think of θ(z) as a function on S1 that is constant

on triangles. Since θ(z) can be bounded by a uniform multiple of δ(w) for a point w

that is a uniform hyperbolic distance away, we get∫
S1

θ2(z)dAρ(z) .
∫
S1

δ2(z)dAρ(z) <∞.

The principle curvatures of S1 are zero inside each triangle and a measure along

the edges. However, by smoothing S2 we can obtain a surface S2 so that the principle

curvatures tend to zero as we approach infinity and are bounded by O(maxT ∗ θ(z)),

where T ∗ denotes the union of all component triangles that touch T (including those
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that only touch at a vertex). Then∫
S2

|K|2(z)dAρ(z) .
∫
S1

δ2(z)dAρ(z) <∞.

For n ≥ 2 essentially the same proof works if we take the dyadic dome for our

triangulated surface with asymptotic boundary Γ. The angles between adjacent faces

are easily bounded by the β-numbers of the corresponding arcs of Γ, which, after

smoothing, proves that Definition 11 implies Definition 16. �

18. (16) ⇒ (3): Surface curvature bounds QC reflections.

Lemma 18.1. For n = 2, Definition 16 implies Definition 3.

Proof. For n = 2, this implication is due to Charles Epstein [41]. He proves that for a

surface S ⊂ H3 whose principle curvatures |κ1(p)|, |κ2(p)| are bounded strictly below

1, the Gauss map from the surface to the plane at infinity is quasiconformal. Recall

that the Gauss map sends a point p on S to the endpoint on R2 of the hyperbolic

geodesic ray starting at p that is normal to S. There are actually two Gauss maps

from S to R2 depending on which “side” of S the geodesic ray is in. In the case when

the surface has asymptotic limit Γ, a curve on R2, the composition of one of these

maps with the inverse of the other defines a quasiconformal reflection across Γ. By

Proposition 5.1 of [41], the dilatation of the composed Gauss maps is

D(z) = max

(∣∣∣∣1 + κ1(p)

1− κ1(p)
· 1− κ2(p)

1 + κ2(p)

∣∣∣∣1/2 , ∣∣∣∣1− κ1(p)

1 + κ1(p)
· 1 + κ2(p)

1− κ2(p)

∣∣∣∣1/2
)

= 1 +O(|κ1(p)|+ |κ2(p)|),

where p ∈ S is the point corresponding to z ∈ R2. Therefore the dilatation satisfies

|µ(z)| = O(|κ1(p)|+ |κ2(p)|).

Moreover, on page 121 of [41], Epstein shows that the Jacobian J of this map satisfies

C1|(1∓ κ1)(1∓ κ2)| ≤ J ≤ C2|(1± κ1)(1± κ2)|.

In particular, J ' 1 if |κ1|, |κ2| are both uniformly bounded below 1.

Definition 16 implies that κ1, κ2 are both small outside some compact ball B around

the origin. Thus the Gauss map for S defines a quasiconformal reflection in some
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neighborhood U of Γ and inside this neighborhood∫
U

|µ(z)|2dAρ(z) .
∫
S\B
|K0(z)|2dAρ(z),

where dAρ is the hyperbolic area measure on R2 \ Γ and S respectively and K0 is

the trace-free second fundamental form of S. Extend this reflection to the rest of R2

by some diffeomorphism of one component of R2 \ U to the other that agrees with

the reflection given by the Gauss map on ∂U . This gives a global quasiconformal

reflection across Γ that satisfies (2.10), as desired. �

Next we consider higher dimensions.

Lemma 18.2. For n ≥ 2, Definition 16 implies Definition 13.

Proof. We consider only points z on S that are at height ≤ t0 above Rn where t0 is

chosen so small that that if z = (x, t) ∈ R × (0, t0), then the principle curvatures

at z are all very small, say ≤ 1/100. There is an (n − 1)-sphere of directions in the

tangent space of Hn+1 at z that are perpendicular to S. These directions define a

tangent (n − 1)-dimensional hyperbolic hyper-plane Hz that passes through z, and

the boundary of Hz on Rn is a Euclidean (n − 2)-sphere Sz whose center is within

O(t · supw maxj |κj(w)|) of the point x (the vertical projection of z onto Rn). We

define R on this sphere by taking the antipodal map.

We claim that such spheres foliate a neighborhood U of Γ and that R is Lipschitz.

If so, then R is a biLipschitz involution that fixes Γ. Let Kr = Kr(z) be an upper

bound for max |κj| in a hyperbolic r-ball around z. Given z, w ∈ S that are t < r

apart in the hyperbolic metric, let γ be the geodesic segment in Hn+1 connecting

them. The perpendicular hyperplanes Hz, Hw are both within O(Kr) of orthogonal

to γ and hence the corresponding spheres Sz, Sw are within O(Kr · t) of each other,

but are also at least distance & K · t apart (this is easiest to see in the ball model

of hyperbolic space, setting z = 0 ∈ Bn+1). Thus using the antipodal map on

each boundary sphere preserves the distance between points on the same sphere and

increase the distance between points on different spheres by at most O(K · t). Thus

R is Lipschitz, as desired. Moreover, if two such spheres intersect the same Whitney

cube Q of Rn \ Γ, then then both have radii ' `(Q) and centers that are within

O(`(Q)) of each other. Thus the corresponding points on S are within hyperbolic
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distance O(1) of each other. The argument above implies that ρ(Q) = O(Kr(z)) for

some point z ∈ S and thus
∑

Q ρ
2(Q) is finite if

∫
S
|Kr(z)|2 is. Hence Definition 16

implies Definition 13. �

19. (15) ⇒ (17): Minimal surfaces with finite total curvature (n = 2)

We already know that Γ is Weil-Petersson if and only if it is the boundary of some

surface in Hn+1 that is asymptotically flat and has finite total curvature. Next we

prove this surface can be taken to be minimal if n = 2. First, we need to know

that a minimal surface that is trapped between parallel planes has small principle

curvatures. This is obvious for minimal surfaces in Rn because the coordinates give

harmonic functions, and in hyperbolic 3-space, the corresponding estimate is due to

Andrea Seppi [112]:

Lemma 19.1. Suppose S is an embedded minimal disk in B3 that has an asymptotic

bounding quasicircle Γ ⊂ S2. Suppose 0 ∈ S and that S lies between two disjoint

hyperbolic planes that both at most distance ε from 0, one on either side of the xy-

plane. Then the tangent plane of S at 0 makes angle at most O(ε) with the xy-plane

and the absolute values of the principle curvatures of S at 0 are both bounded by O(ε).

This is essentially Propositions 4.14 and 4.15 of [112]; see Equation (32) in par-

ticular. Given a minimal surface S that is trapped between two hyperbolic planes

P−, P+, Seppi considers the function u(z) = sinh(dist(z, P−)) for z ∈ S and uses the

fact that this satisfies the equation ∆Su− 2u = 0, where ∆S is the Laplace-Beltrami

operator for the surface S. The Schauder estimates for this equation imply that

‖u‖C2(B(x,r/2)) ≤ C‖u‖C0(B(x,r)).

In order to get a uniform bound for C, we must bound the curvature of S, and Seppi

gives an argument for this assuming the boundary of S is a quasicircle (this covers

our application, since Weil-Petersson curves are quasicircles). Finally, the sup norm

of u is bounded in terms of the distance between P− and P+ near z, and that we have

shown is O(δ(z)), e.g. Lemma 16.2. One small technical point is that Seppi requires

the point z to be on a geodesic segment that meets both P− and P+ orthogonally.

However, it is very simple to see that if z is between two disjoint hyperbolic planes
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that each come within ε of z, then there are also two disjoint planes that come within

O(ε) and satisfy the orthogonality condition for z.

The lemma implies that near the boundary of hyperbolic space we have∫
S

(
κ2

1(z) + κ2
2(z)

)
dAρ .

∫
∂CH(Γ)

δ2(z)dAρ <∞,

when Γ is Weil-Petersson. Thus, for n = 2 Definition 15 implies Definition 17.

20. (15) ⇒ (19): renormalized area (n = 2)

As we discussed in Section 1, a 2-surface S ⊂ Hn+1 with boundary curve Γ ⊂ Rn

is said to have finite renormalized area if

RA(S) = lim
t↘0

[Aρ(St)− Lρ(∂St)]

exists and is finite, where

St = {(x, y, s) ∈ S : s ≥ t}, ∂St = {(x, y, s) ∈ S : s = t}.

Lemma 20.1. For n = 2, Definition 15 implies Definition 19.

Proof. Using the Gauss-Bonnet theorem

Aρ(St)− Lρ(∂St) =

∫
St

1dAρ −
∫
∂St

1dLρ

=

∫
St

(1 + κ2)dAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −
∫
St

KdAρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −2πχ(St) +

∫
∂St

κgdLρ −
∫
St

κ2dAρ −
∫
∂St

1dLρ

= −2πχ(St)−
∫
St

κ2dAρ +

∫
∂St

(κg − 1)dLρ

where κt is the geodesic curvature of ∂St in St. Since we are assuming Definition 15

holds, we know from earlier results that the β’s tend to zero and this implies that

near the boundary, any minimal surface is nearly vertical (trapped between nearly

touching hyperbolic planes) and therefore it has finite Euler characteristic.
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The estimate of Seppi discussed in Section 19 shows that∫
St

κ2dAρ = O(

∫
St

δ2dAρ).

Since Γ is Weil-Petersson, our earlier results imply this area integral converges to a

finite limit as t↘ 0.

Therefore it suffices to show the boundary integral tends to zero as t ↘ 0. The

geodesic curvature κg of the boundary curve comes from two components. There is

a vertical component of size 1 due to the curve lying on the horizontal plane. There

is a horizontal component due to the curvature of ∂St in this plane. This component

has size bounded by the principle curvatures of the surface, that by Seppi’s estimate

are bounded by O(δ(z)). The geodesic curvature κg is given by projecting this vector

onto the tangent space of St, and our previous estimates show this tangent space

makes an angle at most O(δ) with the vertical. Thus |κg| = 1 +O(δ2). Hence∫
∂St

(κg − 1)ds = O

(∫
∂St

δ2(z)ds

)
(20.1)

Note that since δ2 has finite integral over the whole surface its integral over the

annulus At = St \ St+1 tends to zero with t. Moreover, Lemma 16.2 implies the

integral of δ2(z) over ∂St is dominated by a multiple of the area integral over At and

hence the boundary integral in (20.1) must tend to zero. This proves the lemma (and

also shows that the formula (1.6) holds.) �

The estimate |κg| = 1 +O(δ2) also follows from from Equation (2.4) of [33]:

κg =
1

∇r
(coth r + 〈K(e, e),∇ ⊥ r〉),

where r is the hyperbolic distance to some fixed point (say the origin in the ball

model), Dr is the gradient of r in Hn+1, ∇r is the projection of Dr onto the tangent

space of S, ∇⊥r is the projection of Dr onto the normal space of S, and K is the

second fundamental form of S.

Seppi’s paper [112] is written for minimal 2-surfaces in H3; extending his bound

on principle curvatures to surfaces in Hn+1, would extend the lemma to this case,

since the rest of this argument is valid in higher dimensions. My reading of his paper

indicates such an extension is true, but it has not yet been written down.
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21. (18) ⇒ (17): isoperimetric inequalities

Suppose that S ⊂ Hn+1 is a minimal surface with asymptotic boundary curve Γ

in Rn. As before, for t > 0 let St = S ∩ {(x, s) ∈ Rn × (t,∞)} be the part of S

above height t and let S∗t = S \ St be the part below height t. We assume that for

t small enough, S∗t is real analytic and a topological annulus. Suppose Ω ⊂ S∗t is a

compact sub-annulus with one boundary component equal to Γt = S ∩Rn×{t}, and

the other boundary component a smooth curve Γ0. Let T = T (Ω) be the distance in

S between Γ and Γt. For 0 ≤ s ≤ T , let

Ω(s) = {z ∈ Ω : dS(z,Γ0) > s}, Γ(s) = {z ∈ Ω : dS(z,Γ0) = s}.

Here dS refers to distance on the surface S. Note that Γ(0) = Γ0 and Ω(0) = Ω. Also

note that χ(Ω) = 0 (it is an annulus) and χ(Ω(s)) ≥ 0 since Ω(s) is the union of a

topological annulus and possibly some disks. Let A(s) be the hyperbolic area of Ω(s)

and L(s) the hyperbolic length of Γ(s) = ∂Ω(s) \ Γt. In particular, A(0) = Aρ(Ω)

and L(0) = Lρ(Γ). The Gauss-Bonnet theorem says that∫
Ω(s)

KdAρ +

∫
∂Ω(s)

κgdLρ = 2πχ(Ω(s))

where κg is the geodesic curvature of ∂Ω in Ω. For points in Γt ⊂ ∂Ω, this is the

negative of κSg , the geodesic curvature of Γt in St. Since ∂Ω(s) = Γt ∪ Γ(s) and

χ(Ω(s)) ≥ 0 , we get

−
∫

Γ(s)

κgdLρ ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ(21.1)

Lemma 21.1. Suppose 2
T
< ε ≤ 1. With notation as above,

Lρ(∂Ω)− Aρ(Ω) ≥ −C(S, t) + (1− ε)
∫

Ω(1/ε)

κ2dAρ,

where

C(S, t) = max

(∫
Γt

κSg dLρ, Lρ(Γt)

)
.

Proof. This follows from known facts about the isoperimetric inequality on negatively

curved surfaces. Our presentation follows that of Chavel and Feldman [32], although

they attribute the basic facts to Faila [51].

As shown in [51], the function A(s) is continuously differentiable and decreasing

on [0, T ], and A′(s) = −L(s) (Theorem 5 of [51]). Similarly, by Theorem 3 of [51],
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L(s) is continuous on [0, T ], analytic except for finitely many points, and (except for

these points)

L′(s) ≤ −
∫

Γ(s)

κgdLρ.

Using (21.1), we get

L′(s) ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ.(21.2)

Thus

L′(s)− A′(s) ≤
∫

Γt

κgdLρ +

∫
Ω(s)

KdAρ + L(s)

=

∫
Γt

κgdLρ −
∫

Ω(s)

(1 + κ2)dAρ + L(s),

which implies

L′(s)− A′(s) ≤ L(s)− A(s) +

∫
Γt

κgdLρ −
∫

Ωs

κ2dAρ.(21.3)

By the isoperimetric inequality for surfaces with K ≤ −1 (e.g., Equation (4.30) of

[97]), we have

Lρ(∂Ω(s))2 = (L(s) + Lρ(Γt))
2 ≥ 4πχ(Ωs)A(s) + A(s)2,

and this implies

L(s)− A(s) ≥ 4πχ(Ωs)A(s)

L(s) + Lρ(Γt) + A(s)
− Lρ(Γt) ≥ −Lρ(Γt)(21.4)

since χ(Ωs) ≥ 0. Assume for the moment that

L(0)− A(0) ≤ −Lρ(Γt) +

∫
Ω(1/ε)

κ2dAρ.(21.5)

Then we claim there must be a s ∈ [0, 1/ε] so that

L′(s)− A′(s) ≥ −ε
∫

Ω1/ε

κ2dAρ.(21.6)

If not, then by integrating and using (21.5) we get

L(
1

ε
)− A(

1

ε
) = L(0)− A(0) +

∫ 1/ε

0

L′(x)− A′(x)dx

< −Lρ(Γt) +

∫
Ω(1/ε)

κ2dAρ +
1

ε

[
−ε
∫

Ω(1/ε)

κ2dAρ

]
= −Lρ(Γt)
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which contradicts (21.4) for s = 1/ε, proving there is at least one such point s.

Let a be the infimum of values s where (21.6) holds. Since we have assumed that

κ is not constant zero, the right side of (21.6) is negative if ε is small enough. Thus

on [0, a] the function L(s) − A(s) has a negative derivative except for finitely many

points. Therefore L(a)− A(a) ≤ L(0)− A(0). Using (21.6) and (21.3) with s = a,

−ε
∫

Ω(1/ε)

κ2dAρ ≤ L′(a)− A′(a)

≤ L(a)− A(a) +

∫
Γt

κgdLρ −
∫

Ω(a)

κ2dAρ

≤ L(0)− A(0) +

∫
Γt

κgdLρ −
∫

Ω(a)

κ2dAρ

This implies

L(0)− A(0) ≥ −
∫

Γt

κgdLρ +

∫
Ωt

κ2dAρ − ε
∫

Ω(1/ε)

κ2dAρ.

Now since 0 ≤ a ≤ 1/ε, we have Ω(1/ε) ⊂ Ω(a), so∫
Ω(a)

κ2dAρ − ε
∫

Ω(1/ε)

κ2dAρ ≥ (1− ε)
∫

Ω(a)

κ2dAρ ≥ (1− ε)
∫

Ω(1/ε)

κ2dAρ

and hence

L(0)− A(0) ≥ −
∫

Γt

κgdLρ + (1− ε)
∫

Ω(1/ε)

κ2dAρ.(21.7)

Thus either (21.5) fails or (21.7) holds. In either case we have proven the lemma. �

Lemma 21.2. Definition 18 implies 17.

Proof. Fix a point z ∈ S and a large disk D = D(z, R) around z. For n large enough,

Ωn contains D(z, 2R) and so Ωn(R) contains D(z,R). So if R is large enough, κ is

as small as we wish in Ω∗n(R) = Ωn \ Ωn(R). Lemma 21.1 with ε = 1/2 then implies∫
D(z,R)

κ2dAρ ≤ 2C(S, t) + 2[Lρ(∂Ωn)− Aρ(Ωn)].

The first term on the right is independent of n, and Definition 18 says the second

term is bounded independent of n. Therefore∫
D(z,R)

κ2dAρ = O(1),

with a bound independent of R. Taking R ↗ ∞ and applying the Monotone Con-

vergence Theorem shows
∫
S∗t
κ2dAρ <∞, as desired. �
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Proof of Corollary 1.8. The inequality

RA(S) ≤ sup{Aρ(Ω)− Lρ(∂Ω)}

is obvious since the truncated surfaces in the definition of RA(S) are among the

domains used in the supremum on the right.

To prove the other direction note that if D(z,R) ⊂ Ω, then χ(S) = χ(Ω) = χ(Ωt)

for all 0 ≤ t ≤ T/2 if R is large enough. Then by Lemma 21.1

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ε)χ(D(z, R/2))− (1− ε)
∫
D(z,R/2)

κ2dAρ.

Taking R↗∞, and applying the Monotone Convergence Theorem, we get

Aρ(Ω)− Lρ(∂Ω) ≤ −(2π ∓ ε)χ(Ω)− (1− ε)
∫
S

κ2dAρ.

Then taking ε↘ 0 gives

lim sup
R↗∞

sup
Ω:Ω⊃D(z,R)

[Aρ(Ω)− Lρ(∂Ω)] ≤ −2πχ(Ω)−
∫
S

κ2dAρ. �

22. (20) ⇒ (19): from dyadic domes to renormalized area

In Section 20 we showed that Definition 15 (δ ∈ L2) implies Definition 19 (RA <

∞) for planar curves by using a result of Seppi [112] that bounds the principle

curvatures at a point z of a minimal surface in terms of δ(z), the local thickness of

the hyperbolic convex hull of Γ. His proof is written for curves in R2 and surfaces

in H3, but it seems very likely that his estimate remains valid for curves in Rn and

minimal currents or chains in Hn+1. However, since I lack an explicit reference for

this extension, I provide an alternate approach for the higher dimensional case. We

will show that Definition 19 follows from Definition 20 using a result from Seppi’s

paper [112], that does easily extend to higher dimensions.

We recall from the discussion of minimal currents and 2-chains in Section 6 that

if Γ satisfies Definition 11, then it is the asymptotic boundary of a minimal 2-chain

whose restriction to Hn+1
t = {(x, s) ∈ Hn+1 : s < t} agrees with a minimal surface

S that is a topological annulus, has one boundary component on Rn × {t}, and

has asymptotic boundary Γ. Lemma 1.4 in Lin’s paper [79] shows that on a unit

hyperbolic neighborhood of any point z ∈ S, S is a Lipschitz graph with respect to a

vertical 2-plane with Lipschitz constant o(1), i.e., it tends to 0 as t↘ 0. In particular,

the path metric on S is comparable to the ambient metric with constant tending to
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1 as t ↘ 0. We want to show that this Lipschitz constant near z = (x, t) ∈ S

bounded by O(εΓ(Q)), where εΓ is as in Definition 14 and Q ⊂ Rn is the dyadic cube

containing x and with t < `(Q) ≤ 2t.

Suppose P is a n-dimensional geodesic plane in Hn+1 and let u(z) = sinh dH(z, P )

where dH denotes the signed distance in Hn+1 from z to P . Then Proposition 2.4 in

[112] proves for n = 2 that

∆Su = 2u,(22.1)

where ∆S = trace(∇S
vu) is the Laplace-Beltrami operator on S. The same proof

works in higher codimension, except that certain terms that give projections onto

the normal vector to S are replaced by the projection into the (multi-dimensional)

space of normal vectors.

Definition 14 says that if z ∈ S and Q are as above, then S is trapped between

disjoint half-spaces that are at most O(εΓ(Q)) apart (in the hyperbolic metric) and

that these half-spaces are separated by a vertical n-plane. Thus, as explained in

[112], the Schauder estimates for elliptic PDE imply that |∇u(z)| = O(εΓ(Q)). The

same estimate holds for (n−1) mutually orthogonal choices of hyperplanes P passing

through z and that are also orthogonal to the vertical direction and direction locally

parallel to Γ. Since the distance function to each of these on S is Lipschitz with

constant O(εΓ(Q)), we see that S can be parameterized by a Lipschitz function

normal to a vertical 2-plane. The Schauder estimates also require that we have

uniform bounds on the curvature of S, but this is standard and explained in [112].

An alternative approach that avoids using the Schauder estimates is to consider

conformal map ϕ from the unit disk into a neighborhood of the point z on S. By

standard potential theory on the disk, Equation (22.1) implies that u◦ϕ can be written

as the sum of a harmonic function U bounded by O(εΓ(Q)) and the convolution V

of log 1/|z| against a function bounded by O(δ). On a strictly smaller disk, |∇U | is

bounded by O(εΓ(Q)) by Harnack’s inequality, and |∇V | satisfies the same estimate

because the gradient is given by convolution of 1/z, which is in L1(dxdy), with a

function bounded by O(εΓ(Q)). Combined with Lin’s estimate showing the intrinsic

path metric and ambient metrics are comparable, this gives an alternate proof that

u restricted to S is Lipschitz with constant O(εΓ(Q)).
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Lemma 22.1. Let X denote the dyadic cylinder associated to Γ. If X has finite

renormalized area, then Aρ(St)− Aρ(Xt) has a finite limit as t↘ 0

Proof. If Definition 20 holds, so does Definition 14. For each vertical rectangle R

making up a side (or a “panel”) of X, we have a Lipschitz map from this panel to a

portion of S that changes area by at most an additive factor of O(ε2
Γ(Q)), where Q

is the dyadic cube associated to the center of R. Due the vertical “hinges” between

adjacent panels, some points of S might be hit twice or not at all by the Lipschitz maps

associated to those panels. However, the angles between these panels are bounded by

O(εΓ(Q)) and hyperbolic distance between S and X is also bounded by O(εΓ(Q)).

Thus the total error is at most O(ε2
Γ(Q)), which is summable over all the panels of

X. Thus the difference between the hyperbolic areas of S and X above height t has

a finite limit t↘ 0. �

Lemma 22.2. With X as above, Lρ(St)− Lρ(Xt) had a finite limit as t↘ 0

Proof. The same argument as in the previous lemma works again: the Lipschitz map

from each panel of X to S, preserves length up to an additive factor of O(ε2
Γ(Q)) and

the errors caused by the corners are bounded by the same magnitude. �

If Definition 20 holds, then limt↘0 Aρ(Xt) − Lρ(∂Xt) exists and is finite. The

preceding lemmas imply the same for S, so it also has finite renormalized area.

We have now proven all the implications in Figure 11.

23. Remarks and questions

• Comparing different quantities: The work of Takhtajan and Teo [120], Rohde

and Wang [105] and Viklund and Wang [121] includes many explicit formulas relating

the Dirichlet norm of log f ′ to the Kahler potential of the Weil-Petersson metric

on universal Teichmuller space and the Loewner energy of the curve Γ. Are there

similar formulas that relate these quantities to quantities discussed in this paper,

e.g., Möbius energy, β2-sums, Menger integrals, the curvature integral of a minimal

surface associated to Γ or the renormalized area of this curve? If there is more than

one such minimal surface, which surface?



66 CHRISTOPHER J. BISHOP

• Other knot energies: There are a variety of other knot energies besides Möbius

energies. For example,

Ej,p(Γ) =

∫
Γ

∫
Γ

(
1

|x− y|j
− 1

`(x, y)j

)p
dxdy,

blows up for self-intersections if jp ≥ 2 and is finite for smooth curves if jp ≤ 2p+ 1.

Sobolev smoothness properties for curves with finite Ej,p energy are studied by Blatt

in [20] (but there is a typo in Theorem 1.1, s should be s = (jp− 1)/(2p)).

Another class of knot energies considered in [118] are the Menger energies

Mp(Γ) =

∫
Γ

∫
Γ

∫
Γ

cp(x, y, z)|dx||dy||dz|,

withM2(Γ) being the usual condition that is equivalent to rectifiability (see Section

4). They show that for p ≥ 3, finite energy curves are Jordan curves and for p > 3

then are even C1,α and establish bounds on the β-numbers. The endpoint case p = 3

seems the most interesting, as this is the only scale-invariant Menger energy. Since

c(x, y, z) . 1/`(x, y, z), M3(Γ) is less restrictive than the Weil-Petersson condition.

What are the corresponding geometric characterizations of these curves?

• Length convergence on minimal surfaces: The estimates in this paper prove

that if Γ is Weil-Petersson, S is a minimal surface with asymptotic boundary Γ and

Γt is the curve on S at height t above the boundary, then∫ 1

0

|`(Γt)− `(Γ)|dt
t2
<∞.

Does the converse hold? The direction stated above follows by writing

|`(Γt)− `(Γ)| ≤ |`(Γt)− `(Γn)|+ |`(Γn)− `(Γ)|,

where Γn is the usual dyadically inscribed polygon with 2−n−1 < t ≤ 2−n. The

second term on the right is integrable by Theorem 1.3, and is controlled using the

β-numbers at scales smaller than t. The first term is controlled by Seppi’s estimate

and the ε-numbers at scale t; these, in turn, are controlled by sums of β-numbers

over scales larger than t. Thus the question is whether `(Γt) can be a much better

approximation to `(Γ) than `(Γn) for some non-Weil-Petersson curves?

• Möbius energy and SLE: As we will discuss briefly in Appendix A, Weil-

Petersson curves are related to the large deviations theory of Schramm-Loewner

evolutions (SLE) as the parameter κ tends to zero. It is intriguing that they are also



WEIL-PETERSSON CURVES, β-NUMBERS, AND MINIMAL SURFACES 67

characterized, via Möbius energy, in terms of the rate of blow-up of a self-repulsive

energy that prevents self-intersections. Is there some more direct connection between

these two ideas? A SLE(κ) curve has Hausdorff dimension 1 +κ/8 for 0 < κ ≤ 8 and

we expect the ε-truncation of the energy integral for an α-dimensional measure and

kernel |x|2−d to grow like ε2−d+α. Do SLE paths have energy that grows like ε−1+κ/8,

and are they, in some sense, optimal among such curves?

Is there something interesting to say regarding hyperbolic convex hulls and minimal

surfaces of an SLE path when κ > 0, e.g. can we compute an “expected curvature” for

the corresponding minimal surface? When κ ≥ 8 the paths become plane filling, but

do the corresponding minimal surfaces still make sense and if so, can we characterize

their properties (e.g., growth rate of renormalized area) in terms of κ? In [122]

Viklund and Wang consider connections between WP curves and SLE(κ) as κ↗∞.

• Renormalized volume of hyperbolic 3-manifolds: Let G be a quasi-Fuchsian

group, M its hyperbolic quotient 3-manifold, R1, R2 the two Riemann surfaces com-

prising the boundary at ∞ of M , and Γ its limit set. There are a variety of papers

that relate the volume CH(Γ), the renormalized volume of M , and the Weil-Petersson

distance between R1 and R2. For example, see [28], [29], [72], [110]. The ideas in

these papers seem very similar to our results characterizing Weil-Petersson curves Γ

in terms of the “thickness” of the hyperbolic convex hull of Γ and the renormalized

area of a surface with boundary Γ. Is there a precise connection between the results

of this paper and the papers mentioned above? In [120], Takhtajan and Teo show

that the usual Weil-Petersson metric for compact surfaces can be recovered from their

Weil-Petersson metric on the universal Teichmüller space. Is this helpful in making

the connection suggested above?

•Detecting Weil-Petersson components of T (1): The Hilbert manifold topology

of Takhtajan and Teo divides the universal Teichmüller space into uncountable many

connected components. Can we geometrically characterize when two curves belong to

the same component? The current paper has done this for the component containing

the unit circle. Perhaps some condition can be given saying that the convex hulls

are quasi-isometric with constants that tend to 1 in a square integrable sense near

the boundary of hyperbolic space. Are Γ1,Γ2 in the same component iff Γ2 = f(Γ1)
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for some planar QC map f whose dilatation is in L2 for hyperbolic area on the

complement of Γ1? This may be known.

A closely related problem is to construct a natural section for universal Teichmüller

space, i.e., a natural choice of one quasicircle from each connected component. A good

starting point might be Rohde’s paper [104] that gives such a choice for quasicircles

modulo biLipschitz images.

• Characterizing subsets of Weil-Petersson curves: Peter Jones’s traveling

salesman theorem characterizes the subsets of the plane that lie on some rectifiable

curve by
∑

Q β
2
E(Q)diam(Q) <∞. Does the analogous sum

∑
W β2

E(Q) <∞ charac-

terize subsets of Weil-Petersson curves? This condition is obviously necessary since

the β2-sum for any such curve would dominate the sum for the set. More generally, if

we define a collection of sets by the convergence of some series involving β-numbers,

is every set in that collection always contained in a curve from that same collection?

• Curves with smoothness between Weil-Petersson and rectifiable: What

can we say about a curve if e.g.,

∑
Q

β2
Γ(Q)diam(Q)s <∞,

a condition interpolating between rectifiability (s = 1) and the Weil-Petersson class

(s = 0)? Are these H(3−s)/2-curves? See Corollary 2 of [48], but β means something

different there and is not directly comparable to our β-numbers. Similar sums occur

in [9] and [10] related to Hölder parameterizations of curves. In [61], Silvia Ghinassi

considers curves for which ∫ 1

0

β2
Γ(x, t)t−2αdt < M <∞,

and shows they have parameterizations that are C1,α, i.e., f ′ is α-Hölder. Definition

11 implies the Weil-Petersson class forms a subset of the α = 1/2 case.

• Angles of inscribed dyadic polygons: Suppose {znj } are a choice of dyadic

points in Γ, as in Theorem 1.3, and

θ(n, k) = arg

(
znj+1 − znj
znj − znj−1

)
,
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be the angles between adjacent nth generation segments. Using Theorems 1.3 and

1.5, it is not hard to show that if Γ is Weil-Petersson, then

∞∑
n=1

2n∑
k=1

θ2(n, k) <∞,

with a uniform bound independent of the choice of dyadic base point. Is the converse

true? What if we also assume Γ is chord-arc? In general, θ can be zero at a point,

even if β is large, e.g., at the center of a spiral. This problem is reminiscent of the

longstanding ε2-conjecture of Carleson, recently proved by Jaye, Tolsa and Villa [69].

• The medial axis: The medial axis MA(Ω) of a domain Ω is the set of centers

of disks D(x, r) ⊂ Ω so that dist(x, y) = r for at least two points y ∈ ∂Ω. See [52]

for its basic properties (it is called the skeleton of Ω there). David Mumford has

asked if Weil-Petersson curves can be characterized in terms of the medial axis of

their complementary domains. This means we know both the set and the distance

function to the boundary, (a line segment, with different distance functions, can be

the medial axis of both WP and non-WP curves). The cleanest statement I am aware

of is the following. The region Ω \MA(Ω) is foliated by directed line segments that

connect each point to its unique nearest point on ∂Ω. For each hyperbolic unit ball

Bρ(w, 1) in Ω we assign the supremum of the difference between directions for the

segments hitting B. Then Γ is Weil-Petersson iff Γ is chord-arc and this function is in

L2(Ω, dAρ). See Figure 16. This says Γ is Weil-Petersson iff the nearest point foliation

is orthogonal to the boundary with an L2 error. Is there a “nicer” characterization

in terms of the medial axis itself?

Figure 16. A medial axis, nearest point foliation and enlargement.
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•New characterizations of old curve families: The function theoretic character-

izations of the Weil-Petersson class are exactly analogous to known characterizations

of other classes, e.g., when log f ′ is in VMO [100] or BMO [8], [18]. See [16] for a

table comparing these results precisely. Do VMO and BMO curves have have other

characterizations analogous to the ones discussed in this paper? Do they extend to

higher dimensions? For example, Zinsmeister has asked if anything interesting can

be said about the domes and minimal surfaces associated to boundaries of BMO

domains.

Appendix A. Other characterizations of Weil-Petersson curves

This appendix lists some further equivalent definitions of the Weil-Petersson class

in the plane; these definitions were never used in our proofs, but I include them to

illustrate the variety of problems in which the Weil-Petersson class naturally occurs.

We start with the Takhtajan and Teo’s definition that gives the class its name.

• Teichmüller theory: Recall that D = {|z| < 1} and D∗ = {|z| > 1}. Let L∞(D∗)1

denote the unit ball of L∞(D∗). By the measurable Riemann mapping theorem, each

µ ∈ L∞(D∗) determines a quasiconformal map wµ of the plane that is conformal

inside D, and satisfies f(0) = f ′′(0) = 0, f ′(0) = 1. We say µ and ν are equivalent

if wµ = wν on T and we define T (1) be L∞(D∗)1 quotiented by this equivalence

relation. This is the universal Teichmüller space, T (1). In [120], Takhtajan and

Teo define a Weil-Petersson metric on universal Teichmüller space T (1), for which

T (1) has uncountably many connected components, and T0(1) denotes the connected

component containing the identity. More concretely, let U be the set of holomorphic

φ on D so that ∫
D∗
|φ(z)|2(1− |z|2)2dxdy <

√
π/3,

and for each φ ∈ U define a dilatation µ on D∗ by

µ(z) = −1

2
(1− |z|2)2φ(1/z)z−4.

Given a fixed dilatation ν on D∗ consider the set of all dilations of the form

λ = ν ∗ µ−1

(
ν − µ
1− µν

)
· (wµ)z

(wµ)z
◦ wµ.

(This just corresponds to composing the corresponding quasiconformal mappings.)

This defines a set Vν ⊂ L∞(D∗)1 that contains ν. Projecting these sets into T (1)
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defines a neighborhood of each point [ν] ∈ T (1) and T0(1) is the connected component

of the identity in this topology.

Definition 21. Γ = f(T), where f is a quasiconformal map of the plane, conformal

inside D and whose dilatation on D∗ represents a point of T0(1).

• Operator theory: Given a circle homeomorphism ϕ we can define an operator

on harmonic functions on the unit disk by pre-composing the boundary values of u

with ϕ, taking the harmonic extension back to the disk, and subtracting the value

at the origin (so the resulting harmonic function Pϕu is zero at the origin. Given an

holomorphic function in the Dirichlet class, we can apply this operator and follow it by

orthogonal projection onto the anti-holomorphic Dirichlet functions and finally apply

f(z)→ f(z̄) to make it holomorphic. Nag and Sullivan [89] proved this operator P−ϕ is

bounded from the Dirichlet class to itself if and only ϕ is quasisymmetric, and Hu and

Shen [67] prove it is Hilbert-Schmidt if and only if ϕ is Weil-Petersson (an operator

T on a Hilbert space is Hilbert-Schmidt if
∑

j ‖Tej‖2 <∞ for any orthonormal basis

{ej}; equivalently TT ∗ is trace class).

Definition 22. P−ϕ is Hilbert-Schmidt on the Dirichlet space.

Another operator theoretic characterization of the Weil-Petersson class is given by

Takhtajan and Teo (Corollary II.2.9, [120]) in terms of Grunsky operators on `2.

• Integral geometry: Another measure of how much Γ deviates from a straight line

can be given in terms of how random lines hit Γ. Suppose we parameterize lines L in

R2 \ {0} by (r, θ) ∈ (0,∞)× (0, 2π] where z = r exp(iθ) is the point of L closest to 0.

It is well known fact from integral geometry (e.g., [109]) that the measure dµ = drdθ

on lines is invariant under Euclidean isometries of the plane, and the measure of the

set of lines hitting a non-degenerate convex set X equals the length of the boundary

of X (for a line segment, it is twice the length of the segment). For a dyadic cube Q

let S(Q,Γ) be the set of lines that hits 3Q also hits both Γ ∩ 5
3
Q and Γ ∩ (3Q \ 2Q).

Definition 23. Any translate of Γ ⊂ R2 satisfies∑
Q

µ(S(Q,Γ))

diam(Q)
<∞.
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The equivalence of Definitions 11 and 23 follows immediately from Theorem 10.2.1

of [19]. Note that 12 diam(Q)/
√

2 is the perimeter of 3Q and hence is the µ measure

of the set of random lines hitting 3Q. Dividing the sum by 6
√

2, each term becomes

the probability that if a line L hits 3Q, then L ∈ S(Q,Γ):∑
Q

P(S(Q,Γ)|3Q) <∞.(A.1)

Roughly speaking, this is the probability that a random line hitting 3Q will hit

Γ∩ 3Q at two points ' `(Q) apart. The particular values 5
3
, 2 and 3 in the definition

of S(L,Γ) are probably not important; just convenient for the proof in [19].

• Loewner energy: Suppose Ω = C \ [0,∞) and suppose that γ ⊂ Ω is a curve

that connects 0 to ∞. Suppose also that this curve corresponds to driving function

W via Loewner’s equation. Then the chordal Loewner energy of γ is defined by Friz

and Shekhar [53] and Wang [125] to be

I(γ) =
1

2

∫ ∞
0

Ẇ (t)2dt.

This was generalized to simple closed curves Γ on the Riemann sphere by Steffen

Rohde and Yilin Wang [105] by choosing two points z, w ∈ Γ and conformally map-

ping the complement of the arc Γz,w from z to w to Ω with z, w mapping to 0,∞
respectively. The image of Γ \ Γz,w is now an arc from 0 to ∞ in Ω, so its energy is

defined as above. The energy of the loop Γ rooted at z is defined as the limit of these

energies as w → z; Rohde and Wang showed this is independent of the choice of z.

Definition 24. Γ has finite Loewner energy.

The equivalence with the earlier definitions was proven by Yilin Wang [125]. She

showed that the Loewner energy equals S1(ϕ)/π where S1(ϕ) is the universal Liouville

action defined by Takhtajan and Teo by

S1(ϕ) =

∫∫
D

∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣2 dxdy +

∫∫
D∗

∣∣∣∣g′′(z)

g′(z)

∣∣∣∣2 dxdy + 4π log
|f ′(0)|
|g′(∞)|

where f : D→ Ω, g : D∗ → Ω∗ are the conformal maps from the two sides of the unit

circle to the two sides of Γ. They also show this function is Kähler potential for the

Weil-Petersson metric.

• Large deviations of Schramm-Loewner evolutions: In [124], Yilin Wang

interprets finite energy curves γ from 0 to ∞ in H2 in terms of large deviations of
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SLE(κ) as κ↘ 0. Roughly speaking, the Loewner energy of γ is equal to

lim
ε→0

[
lim
κ↘0

logP[SLE(κ) ∈ B(γ, ε)]

]
.

In words, this is the probability that SLE stays in an ε-neighborhood of γ decreases

exponentially with decay factor equal to the energy of γ. In fact, Wang’s result is not

stated using Hausdorff neighborhoods, but in terms of sets of curves that pass to the

left or right of a specified finite set of points. A little more precisely, suppose we are

given a finite set Z of points {zn} in the upper half-plane and each point is labeled

with ±1. A curve γ from 0 to ∞ cuts the upper half-plane into simply connected

regions, that we call the “left side” and “right side”. A curve γ is called admissible

for Z (written γ ∈ A(Z)) if every point labeled +1 is on the right side of γ and every

point labeled −1 is on the left side. If γ is admissible for Z, then we say that Z is

consistent with γ and we write Z ∈ Z(γ). Wang shows that given a set Z,

− lim
κ→0

κ logP[SLE(κ) ∈ A(Z)] = inf{I(γ) : γ ∈ A(Z)}.

Thus the Weil-Petersson class can be defined using the condition

Definition 25. supZ∈Z(γ) limκ→0(−κ) logP [SLE(κ) ∈ A(Z)] <∞.

Roughly speaking, a curve in H2 from 0 to ∞ is a (sub-arc of a spherical) Weil-

Petersson curve iff for any finite set of labeled points Z consistent with γ, the proba-

bility that SLE(κ) is also consistent with Z decays at most exponentially quickly as

κ→ 0. See [124] for precise statements and further details.

• Brownian loop soup: The Brownian loop measure, introduced by Greg Lawler

and Wendelin Werner [74] is a measure on closed loops in a domain Ω. It is confor-

mally invariant and if Ω′ ⊂ Ω, then the loop measure on Ω′ is the just the restriction

of the loop measure for Ω to loops that are contained in Ω′. Given disjoint compact

subsets of Ω we define W(A,B; Ω) to be the loop measure of closed curves γ in Ω so

that the outer boundary of γ hits both A and B. Suppose Γr is the image of the circle

{|z| = r} under a conformal map from D to the interior of Γ. Yilin Wang proves in

[123] that the Loewner energy of Γ is 12 times

lim
r→1

[
W(S1, r · S1,C)−W(Γ,Γr,C)

]
.

Thus being a Weil-Petersson curve is equivalent to:
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Definition 26. Γ satisfies limr→1 [W(S1, r · S1,C)−W(Γ,Γr,C)] <∞.

It is interesting to note that this is a type of renormalization of a divergent quantity,

just as renormalized area is. Similarly, Möbius energy can be written as the Hadamard

renormalization of a divergent energy integral involving an inverse cube law, e.g., the

repulsive force exerted by distributing charge according to arclength on a curve in

R4. Is there some underlying connection between these different renormalizations?
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