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1. INTRODUCTION

Harmonic Measure by Garnett and Marshall takes the reader from fundamental
concepts to recent research in geometric function theory, an area that has seen
many exciting developments over the last 25 years. But before describing the book
in detail, I will introduce the topic and describe some of this recent work. We start
with a simple formulation of the main problem.

1.1. Detecting the exit point of Brownian motion. Consider a random Brow-
nian particle moving in a domain Q C R2. We want to find the point where it first
hits the boundary, 92, and to do this we are allowed to place circular detectors
along the boundary which register if the particle hits them. If a detector of radius r
costs us ¢(r) (for some increasing ¢ on (0, 00)), can we detect the exit point almost
surely (a.s.) on a finite budget? Note that to detect an exit at z, the point must
be contained in infinitely many detectors whose radii tend to zero (Figure 1).

FiGURE 1 FIGURE 2 FIGURE 3

When (2 is the unit disk, D, and the Brownian particle starts at 0, the hitting
distribution on T = 9D is just normalized Lebesgue measure. Thus to detect the
exit point a.s., we must cover almost every (a.e.) point of T by arbitrarily small
balls. This implies the sum of the radii of the disks is infinite; so, if ¢(r) > r, then
we can’t detect the exit point on a finite budget. However, if ¢(r) = o(r) (i.e.,
@(r)/r — 0 as 7 — 0) then we can: cover T by about nj balls of size 1/n; and let
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ng /oo so fast that Y nrp(1/ng) < co. See Figure 2. Thus ¢ “works” for D iff
() = oft).

If 9Q is the von Koch snowflake (Figure 3) it takes roughly 4™ balls of size 3~ "
to cover the whole boundary, which we can do on a finite budget iff p(t) = o(t%),
where o = log4/log3 > 1. Thus it seems more expensive to detect exit points
on a fractal boundary. However (and this is the main point), not all parts of the
snowflake are equally likely to be hit by Brownian motion and there is a “small”
subset of 02 which still gets hit with probability 1. In fact, it turns out we can
detect exit points from the snowflake a.s. with cost function ¢(r) = r, more cheaply
than we can do for the circle! To explain why, we will need some notation.

1.2. The dimension of harmonic measure. Given z € 2 C R? and E C 0Q
the harmonic measure of E in Q with respect to z (denoted w(z, E, Q) or w(E) for
brevity) is the probability that a Brownian motion started at z first exits 2 in E.
For a fixed E it is a harmonic function (hence the name) with values in [0, 1]. By the
minimum principle, if this function vanishes anywhere on €2 it vanishes everywhere;
thus the sets of harmonic measure zero do not depend on z. Can we geometrically
characterize these w-null sets?

This problem is best understood when € is simply connected, for then the Rie-
mann mapping theorem provides a 1-1, holomorphic map f : D — € and the
conformal invariance of Brownian motion implies

w(f(0), E,Q) = w(0, fT1(E),D) = |1 (E)| /2.
Estimates for conformal mappings then imply estimates for harmonic measure with
base point z = f(0), e.g., for an interval I C T and J = f(I) C 01, we often have

(1.1) diam(J) = diam(f (1)) ~ |f'(zr)|diam(I) ~ |f'(z1)|w(J]),

where z;y = ¢;(1 — |I|) and ¢y is the center of I (think of z; as the top of a “tent”
with base I). The estimate is true as stated for many domains (e.g., quasidisks
such as the snowflake), and is true in general if we replace I by a certain subset of
smaller measure (which is usually adequate). Here and later, A ~ B means that A
and B have bounded ratio.

We want to estimate harmonic measure by comparing it to the more geomet-
rically defined Hausdorff measures: given an increasing function ¢ on [0,00), the
Hausdorff p-measure of E is

Ho(E) = }i_r}r(l) inf{z @(rn) : E CUB(&p,Tn), ™ < 0}.

This measures the “price” of covering E by small balls whose cost is given by ¢.
When ¢(t) = t* we denote this by H, (o = 2 gives a multiple of Lebesgue area
measure, @ = 1 gives length). The Hausdorff dimension of a set is defined by

dim(FE) = inf{a : Ho(E) = 0}.

The smaller « is, the more expensive it is to cover E; the dimension marks the
transition from positive to zero cost coverings. The dimension of a measure y is
the smallest dimension of a full y-measure set, i.e.,

dim(p) = inf{dim(F) : p(E°) =0} = inf{a : p L Ha},

where E° is the complement of ¥ and we write p L v if there is a set E such that
w(E) = v(E®) = 0. We write p < v if ¥(E) =0 = p(E) = 0 and write v ~ p
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if v €« p < v. We always have dim(p) < dim(supp(p)) but strict inequality is
possible (e.g. point masses on a countable dense set).

How does our problem about the cost of detecting exit points fit into this nota-
tion? A collection C of disks is called a Vitali covering of a set F if for each € > 0,
C. ={D € C : diam(D) < €} is also a cover. We can detect a.e. exit point of Brow-
nian motion on a finite p-budget iff there is a Vitali covering of a full w-measure
set E by disks of radius {r;} such that 3, ¢(r;) < co. This happens iff #,(E) =0
which happens iff w 1 H,. Conversely, w < H,, holds iff any set £ which we can
afford to test has zero w-measure. Thus the detection question is really: for what
functions ¢ is w L H,? When is w < H,?

If we can find a ¢ so that w ~ #,,, then we can claim to “completely understand”
w. One case when this happens is when 0 has finite length:

Theorem 1.1 (F. and M. Riesz [1916). | H1(09Q) < 00 = w ~ H;.

This is a perfect example of what we want: a geometric criterion (zero 1-measure)
which exactly identities the w-null sets. We don’t have w ~ H; for general simply
connected domains, but surprisingly w is always “l-dimensional”:

Theorem 1.2 (Makarov [1985]). If Q is simply connected then dim(w) = 1, i.e.,
w <K Hg for every B <1 and w L Hqy for all o > 1.

Makarov proved an even more precise version (one with lots of logarithms) which
we will discuss later. This unexpected, elegant and influential theorem and earned
him the 1986 Salem prize and I will try to describe his results and how they fit into
what came before and after.

2. HARMONIC MEASURE IS AT MOST ONE DIMENSIONAL

2.1. Plessner, McMillan and Pommerenke. The “right” way to take boundary
values of a holomorphic function in the disk is non-tangentially: i.e., as z > w € T
through a cone in D centered along a radius, Figure 4. The most drastic way the
limit could fail to exist is if f is non-tangentially dense (i.e., f(z) can approach any
complex value along some non-tangential sequence approaching w). In turns out
that, except on zero measure, one of the two extremes must happen:

Theorem 2.1 (Plessner’s theorem). If f is analytic on D, then at Lebesgue a.e.
point of T , either f has a nontangential limit or is nontangentially dense.

FIGURE 4 FIGURE 5 FIGURE 6

A boundary point of a simply connected domain € is called a cone point if it
is the vertex of a cone in Q (Figure 5) and is called an inner tangent if the angle
of this cone can be taken as close to m as we wish, but no larger. These sets will
be denoted Cone(2), IT(Q2). If T is a closed Jordan curve with complementary
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components 4,89, its set of tangent points is Tan(I') = IT(Q:) N IT(Q2). A
boundary point z is called a twist point if

limsup arg(z — ) = 400, liminfarg(z —z) = —o0,

as z approaches z in . The set of twist points is denoted Tw(f2); they are hard
to visualize, but are basically points where 02 spirals around x in both directions
(imagine Figure 6 continued for infinitely many scales with increasing number of
twists). This sounds like it might be rare, but according to McMillan’s twist point
theorem, a.e. boundary point is either an inner tangent or a twist point:

Theorem 2.2 (McMillan [1969]). w(IT(2) UTw(Q2)) = 1.

Moreover, if f : D — € is conformal, McMillan showed these two sets correspond
to the sets in Plessner’s theorem where f’ has non-tangential limits or is non-
tangentially dense and that w ~ H; on the inner tangents. Thus any failure of the
Riesz theorem for general domains must occur on the twist points. In fact, it always
fails on the twist points, for Pommerenke [1986] refined an argument of Makarov
to show that w-a.e. on Tw((Q),

w(B(z,r))

(2.1) lim sup ————* = oo.

r—0 T
(One often writes w(0 N B) instead of w(B) for B = B(z,r), but since w is
supported on 9%, the two are equal and the latter is more compact.) Equation
(2.1) says w is more “compressed” than H; and it implies

Theorem 2.3. w L H; on Tw(Q).

(2.1) holds because at a.e. z € E = f~1(Tw(Q)), f’ is non-tangentially dense;
thus there is a non-tangential sequence converging to x along which f’ — 0 and
hence | f'| < € eventually; by (1.1) these points correspond to arcs on J C 02 where
w(J) > diam(J)/e. Taking ¢ — 0 gives (2.1). Next, (2.1) and Vitali’s theorem
(every Vitali cover contains a pairwise disjoint subcover of a.e. point) imply there
is a set E C Tw(Q) so that w(E) = w(Tw(Q?)) and for any € > 0, E can be covered
by disjoint balls B; = B(x;,r;) with r; < ew(B;). Since Y w(B;) <1, Hi(E)=0
and so Theorem 2.3 holds.

2.2. Some examples. We can now see why both directions of the F. and M. Riesz
theorem fail in general. First, Figure 7 shows a domain whose bottom edge F
contains no inner tangents or twist points; thus H;(E) > 0 but w(E) = 0. Second,
for the snowflake domain one can prove directly that inner tangents have zero H;
measure (they all lie on a union of Cantor sets of dimension < 1), so by McMillan’s
theorem w(Tw(Q2)) = 1. By Pommerenke’s theorem w L #;, i.e., there is a set with
Hi(E) = 0 but w(E) > 0. The first such example was given by Lavrent’ev [1936]
and a simpler example was given by McMillan and Piranian [1973].

Consider the two harmonic measures wq,ws, corresponding to opposite sides of
a Jordan curve I'. By McMillan’s theorem, on Tan(I') we have wq ~ wa ~ Hi. A
famous estimate of Ahlfors implies wy(B)wa(B) = O(r?) for any ball B = B(z,r).
Using this and (2.1), we can prove wy L wy on Tw(T') (at scales when wy(B) > r
(2.1) implies wy(B) < r so the two measures can’t be comparable). Indeed,

w1 L wo < Hy(Tan(I')) = 0.



FIGURE 7 FIGURE 8

See Bishop, Carleson, Garnett, and Jones [1989]. Thus for a snowflake, Brownian
particles on opposite sides are absorbed a.s. by disjoint subsets of I'.

The Weierstrass function f,4(z) = > oo, @ " sin(b"z) with a = 2,b = 3 is shown
in Figure 8. If b > a > 2, then f has no finite or infinite derivatives, so its graph
has no tangents (not even vertical ones) and hence the inner tangents for the two
sides are disjoint. Hence w; | wy. However, since a graph has no twist points,
wi(IT(Q;)) =1, ¢ = 1,2. When a = b, the Weierstrass function has no finite
derivatives, but it is in the Zygmund class (so the graph is a quasicircle), which
implies Tan(T") = IT(£;), ¢ = 1,2 and Tan(T") has full w-measure from both sides.
Since f has no finite derivatives, every tangent line must be vertical. This implies
wy ~ wy ~ H; and “live” on a set which projects vertically to a set of zero length.

It is possible to construct a curve I' so that wi(Tw(I")) =1 and we(Tw(I")) =0
(but I leave this as an exercise).

2.3. The local F. and M. Riesz theorem. Given (2.1) and the dichotomies in
Plessner’s and McMillan’s theorems, it is natural to ask if (e.g., Bishop [1992])

|
(2.2) lurnﬂ%lf ;w(B(a:, r)) =0,
at w-a.e. twist point. This was recently proven by Choi [2004]. In addition to its
intrinsic elegance, Choi’s theorem gives an alternate proof of

Theorem 2.4 (Bishop and Jones [1990]). If Q is simply connected and T is a
rectifiable curve, then w < Hy on I' N 0N.

We call this the “local F. and M. Riesz theorem” since it gives half of Theorem
1.1 when T' = 9Q. In terms of the “detector problem” at the beginning of this
review, this theorem says our detectors must be battery powered; it they have to
be connected by a wire with cost proportional to length, then we can never afford
to detect exits on twist points, regardless of the cost of the detectors themselves.

The local Riesz theorem follows from Choi’s theorem because (2.2) says that w-
a.e. point of E = I'NTw(Q) can be Vitali covered by balls such that w(B(z,7)) < er.
Taking a disjoint sub-covering, {B,}, we get

w(F) <w(UBp) < len < eH1(T) — 0.

The original proof of the local Riesz theorem is a rather involved combination of
Fuchsian groups, covering maps, quadratic characterizations of rectifiability and es-
timates for the Schwarzian derivative, but it does give a useful quantitative version:
EcCoQnT,Hi(E) <= w(E) < e where § = (e, H1(T)).



6 CHRISTOPHER J. BISHOP

3. HARMONIC MEASURE IS AT LEAST ONE DIMENSIONAL

3.1. Beurling, Carleson and Makarov. We have seen that harmonic measure
is at most 1-dimensional for simply connected domains, but why can’t it live on a
set of smaller dimension? If w gives positive mass to an a-dimensional set then we
must have w(B) > Crad(B)® for many small balls. However, this is impossible if o
is too small. For example, Beurling proved that for any simply connected domain
and any ball B = B(z,r) we have w(B) < O(y/r). This implies w < H1/2, so
dim(w) > 1 for all simply connected domains.

Beurling’s estimate is sharp because w(B) = +/r if B is centered at the tip
of a spike pointed into the domain. Such points have harmonic measure zero,
and we expect a better estimate to hold on sets of positive w-measure. Indeed,
Carleson [1973] proved there is an € > 0 so that w(B) < O(rzT€) at w-a.e. point
and hence w < Hy1/2. This used a difficult argument for a relatively modest
improvement, and there was no further progress until Makarov’s striking jump to
“dim(w) = 17. Indeed, Makarov [1985] gave an incredibly sharp description of how
small the support of harmonic measure can be:

Theorem 3.1 (Makarov’s Law of the Iterated Logarithm (LIL) for w). Let

1 1
vol(t) = texp(C\/log . log log log ;)

Then there is a value A so that w < H,, for every simply connected domain and
a value B so that w L H,, for some simply connected domain.

Since ¢c(t) tends to zero more slowly than ¢ but faster than ¢'~¢ for any € > 0,
this implies that w < Hg for any 8 < 1. Makarov’s original examples of sharp-
ness were based on lacunary power series, but Jones [1989] gave a geometric cri-
terion which shows that the snowflake domain is such an example, and Przytycki,
Urbariski, and Zdunik [1989] showed “most” rational Julia sets are also examples.

The Bloch space is the Banach space of analytic functions on D with

[£lls = sup[f'(2)(1 — [2]) < oo.
zeD

Standard results imply that || log f'||s < 2 = f is conformal = |/log f'||z < 6,
and using (1.1), Makarov’s LIL reduces to showing that for g € B,

i0
(3.1) lim sup lg(re™)]
r—1 \/1og ﬁ log log log ﬁ

= O(||gl|5) for a.e. 6.

All the logarithms may seem a bit intimidating, but I will try to convince you they
are perfectly natural, indeed, “obvious” in hindsight. Consider the standard random
walk S, on the integers. After n steps, we expect that | S, | & 4/n, but occasionally it
is larger, as described by the law of the iterated logarithm (Kolmogorov, Khinchin)

: |Sn|
limsup —————==1
n—r00 2nloglogn
If we set n = log li—r we get the same expression as in Makarov’s theorem, and this
is not a coincidence nor even a heuristic analog; both follow from a more general
LIL for dyadic martingales.

a.s..
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3.2. Dyadic martingales. Let D,, denote the dyadic intervals of generation n in
[0,27) =T, i.e., intervals of the form 7[j27™, (j + 1)27™). We say {S,} is a dyadic
martingale if S, = ZZ=1 X where X} is constant on intervals in Dj and has
mean value zero over every interval in Dy_;. We let (S), = > _, X7 denote its
quadratic variation. The most basic example is to let X, (z) = sign(sin(2"7z)) be
the nth Radamacher function. Then S, (z) represents the standard random walk
on the integers (where step direction at time k depends on the value of the kth
binary digit of ). A martingale is called a Bloch martingale if the jumps of S,, are
uniformly bounded.

Theorem 3.2 (LIL for dyadic martingales). If {S,} is a Bloch martingale then

: |Sn|
lim su
o r \/2(S)n loglog(S),

=1,

a.e. on{z: (S)oo = 0}.

Makarov originally proved his LIL by an analytical argument that mimicked the
martingale case, but later showed it can be deduced from that case using:

Theorem 3.3. Ifu € B and I € D, then u(I) = lim,_,; ﬁ J; uw(rw)dw exists and
defines a dyadic Bloch martingale on T so that |u(I) — u(zr)| = O(Jjul|B)-

Thus the a.e. radial behavior of Bloch functions is the same as the a.e. growth
of Bloch martingales. Note that if I € D,, then log(1 — |27]) ! ~ n. Also, if {S,}
is Bloch, then (S),, = O(n), so
o),

lim sup [Sn

n  vnloglogn -

and together these facts imply (3.1).

3.3. Brennan and Hayman-Wu. Clearly a conformal map f : D — ) satisfies
| '] > 0 (since otherwise it would not be 1-to-1 near a critical point). If it satisfied
the stronger uniform condition |f’| > ¢ > 0 on D then w < #; would be trivial by
(1.1). Makarov’s theorem is basically an estimate of how close and how often |f’|
can be near 0. Many of the most interesting questions of geometric function theory
deal with such estimates in one way or another or with the equivalent formulation:
if g= f~!:Q — D then how close is |g’| to being bounded?

One of the most famous such questions is Brennan’s conjecture, which claims
that |¢g'| € LP(dzdy, Q) for every p < 4. This is a special case of the integral means
conjecture which concerns the function B(t) defined by

B(t) = sup{B,(t) : ¢ is univalent }, where

B,(t) = inf{B: /|go'(rei0)|td0 = O(llTr)B}’

One can show Brennan’s conjecture is equivalent to B(—2) = 1 and many other
famous problems are embedded in evaluating B(t) at various values (e.g., Carleson
and Jones showed B(1) = 1/4 is equivalent to a natural growth bound for level
lines of Green’s function and to a Bieberbach type conjecture on the decay of
Taylor coefficients). The Brennan-Carleson-Jones-Kraetzer conjecture states that
B(t) = t?/4 for —2 <t < 2. This is the object of intense theoretical and numerical
investigation but is still open.
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Another sense in which |¢'| is “almost bounded” is the Hayman-Wu theorem
which states that supg , 1, [;ql9'lds < oo, ie., if L is any line, then the length
of g(LNQ) C D is bounded independent of everything. The Hayman-Wu theorem
has been generalized in various directions; e.g., [rq |9'[Pds < oo if I' is Ahlfors
regular (i.e., sup, , +H1(I' N B(z,r)) < C < o) and p > 1 depends on C. This
is due to to Walden [1994], but builds on many previous results; Kaufman and
Wu [1982], Ferndndez, Heinonen, and Martio [1989], and Bishop and Jones [1990]
among others. In particular, it uses the quantified version of the local F. and M.
Riesz theorem mentioned earlier, and so neatly fits into the rest of our story.

A third example of how |¢’| is “almost bounded”, comes from Bishop [2002]: there
is a universal K < oo so that every simply connected domain €2 can be mapped to
D by a K-quasiconformal map with bounded derivative. Thus the conformal map
is always uniformly close to a bounded derivative map in the quasiconformal sense.

4. BEYOND THE SIMPLY CONNECTED CASE

4.1. Multiply connected plane domains. For multiply connected domains, one
cannot expect to have w <« H, for all @ < 1, since the entire boundary of €2 could
have dimension < 1, e.g., if Q is the complement of a “small” Cantor set. However,
it is still true that dim(w) < 1 for any planar domain. In the case of certain self-
similar Cantor sets, this was first proved by Carleson [1985], and his ideas were
generalized to all domains in Jones and Wolff [1988]. Later, “dim(w) < 1” was
improved to “w gives full mass to a set of sigma finite length” by Wolff [1993]. The
key idea in the multiply connected case is the equality

(4.1) / log G o= + > G(a),
o0 871
2:VG(z)=0

where C is the Robin’s constant of 9Q and G is the Green’s function. Since G > 0
on €2, the right hand side is always bounded below, hence so is the integral on
the left. Thus most of the harmonic measure lives on the set where the logarithm
term is bounded below. Since dw = g—gds, this means that w has density bounded
below compared to arclength and this implies that w lives on a 1-dimensional set
(although there are formidable technical details to overcome to make this idea into
a proof). If O has “many, well-separated” components in a precise sense (e.g. it is
a self-similar Cantor set), then G has “lots” of critical points and Jones and Wolff
proved that the series on the right side of (4.1) diverges at a certain rate. This
forces w to be even more compressed; indeed, dim(w) < 1 for such domains.

4.2. Higher dimensions. In higher dimensions, not much is known about analogs
of Makarov’s theorems. The most obvious conjecture would be that for any domain
in R*, dim(w) < n — 1; Bourgain [1987] showed dim(w) < n — e, < n. However, a
celebrated example of Wolff [1995] shows that dim(w) > n—1 is possible for certain
“snowball” domains. One of the key ingredients of the proof of Makarov’s theorems
is that if u is harmonic in the plane then log |Vu| is subharmonic. This is false in
higher dimensions (and its failure is the starting point of Wolff’s counterexample)
but there is a substitute: if u is harmonic then |Vu|("~2/("=1) js subharmonic.
Perhaps dim(w) <n -1+ Z—:f for domains in R"? At present, nothing is known.
Wolff snowballs have been further studied by Lewis, Verchota, and Vogel [2005].



5. THE BOOK

Over the last 20 years I have often been asked to suggest a “good place to learn
about harmonic measure” and from now on, the book of Garnett and Marshall
will be my first suggestion. It’s a great place for graduate students to learn an
important area from the foundations up to the research frontier, or for experts to
locate a needed result or reference. Almost all the topics we have touched on, and
many more, are discussed with greater depth and clarity than I have been able
to achieve here, and since you are obviously quite interested in harmonic measure
(after all, you have read this far) I recommend you get the book for the full story.

The first four chapters deal with “preliminary” material such as conformal maps,
the hyperbolic metric, the Hayman-Wu theorem, Green’s functions and the Dirich-
let problem on general domains and extremal distance, including the famous esti-
mate of Ahlfors involving integrals of the form [ dt/6(t). Chapter V contains many
interesting applications of material in the first four chapters, including Alhfors’ so-
lution of the Denjoy problem, the Teichmiiller Modulsatz, estimates of harmonic
measure and the first discussion of the angular derivative problem.

The next three chapters deal with the geometric properties of harmonic measure
on simply connected domains and covers many of the results mentioned above.
Chapter VI has the F. and M. Riesz theorem, as well as the theorems of Plessner,
McMillan, Makarov and Pommerenke. Chapter VII deals with the special case of
quasidisks (such as the von Koch snowflake), and has numerous results dealing with
the Bloch space, A, weights, chord-arc curves and BMO domains. Chapter VIII
covers Makarov’s LIL and recent developments on Brennan’s conjecture.

Chapter IX deals with infinitely connected domains (including previously un-
published results of Jones and Wolff) and Chapter X covers work of Peter Jones
and mine using rectifiability, square functions and Schwarzian derivatives to prove
the most general versions of the Hayman-Wu and F. and M. Riesz theorems. Each
chapter ends with bibliographical notes and many exercises. Some of these are
actual exercises; others present additional theorems, examples and conjectures.

The choice of what material to include is obviously a matter of personal prefer-
ence, but the authors could hardly have chosen better; while many interesting topics
have to be omitted because of space limitations (e.g., harmonic measure on Julia
sets or the higher dimensional results of Bourgain and Wolff), the authors touch
on all of the most interesting results for general planar domains. I should point
out that the first author is my academic grandfather and the second an academic
uncle; thus our mathematical tastes may not be entirely uncorrelated.

The book is well organized and well written. Indeed, the first author won the
2003 Steele prize for mathematical exposition for his earlier book Bounded Analytic
Functions, and this one reaches the same high standard of style and relevance. It
deserves a large audience because this material is fundamental to modern complex
analysis and has important connections to probability, dynamics, functional anal-
ysis and other areas. It will be of immense value to both expert practitioners and
students. This is one of a handful of books I keep on my desk (rather than up on
a shelf) and I often look through its pages to educate or entertain myself. It is
an illuminating survey of the geometric theory of harmonic measure as it stands
today, and is sure to become a respected textbook and standard reference that will
profoundly influence the future development of the field.
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