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Abstract. How do we cut a polygon into triangles that are all as “round” as
possible, e.g., minimizing the maximum angle used? In this paper, we give the
optimal upper and lower angle bounds for triangulating a polygon P with Steiner
points, and prove that triangulations attaining these bounds always exist, except
in a few clearly defined cases. These results sharpen the 1960 theorem of Burago
and Zalgaller that every n-gon has an acute triangulation. We show that the op-
timal bounds can be computed in time O(n), even though there is no polynomial
bound for size of the corresponding optimal triangulations. We also deduce that the
optimal angle bounds for polygonal triangulations are the same as for triangular
dissections. This implies, in a stronger form, a 1984 conjecture of Gerver.
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1. Statement of results

It is a problem of long-standing theoretical and practical interest to triangulate a

polygon with the best possible bounds on the angles used. For example, the con-

strained Delaunay triangulation famously maximizes the minimal angle if no addi-

tional vertices (called Steiner points) are allowed [42], [43], and algorithms for min-

imizing the maximum angle (again without Steiner points) are given in [7] and [28].

In this paper, we will compute the optimal upper and lower angle bounds for tri-

angulating any polygon P when the finite collection of non-Steiner triangulations is

replaced by the infinite dimensional family of triangulations allowing Steiner points.

In this case, Burago and Zalgaller [19] proved in 1960 that every planar polygon

P has an acute triangulation (all angles < 90◦). This is best possible if we want a

uniform angle bound independent of P , and there is now a large collection of theorems,

heuristics and software involving acute triangulations. However, several fundamental

questions have remained open. What are the optimal upper and lower angle bounds

for triangulating a given polygon P with Steiner points? Are these bounds attained

or can they only be approximated? Can both bounds be attained simultaneously?

How regular are the corresponding triangulations? How do the angle bounds for

triangulations differ from those for dissections? Using ideas involving conformal and

quasiconformal mappings, we shall answer each of these questions.

We start with some notation. Suppose T is a triangulation of P . Let VP and

VT denote the vertex sets of P and T respectively and note VP ⊂ VT . We define

∂T = VT ∩P to be the boundary vertices of T , and let int(T ) = VT \ ∂T denote the

interior vertices. Label each v ∈ VT with the number, L(v), of triangles in T that

have v as a vertex. For v ∈ ∂T , we define its discrete curvature as κ(v) = 3− L(v),

and for an interior vertex we set κ(v) = 6 − L(v). This notion of curvature for

triangulations is implicit in Gerver’s paper [33], explicit in Thurston’s work [57], and

has, no doubt, occurred elsewhere. See Figure 1. Using these definitions, Euler’s

formula applied to a triangulation can be rewritten to look like the Gauss-Bonnet

formula:

∑

v∈int(T )

κ(v) = 6−
∑

v∈∂T

κ(v).(1.1)

The common value is denoted κ(T ), the curvature of the triangulation.
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Figure 1. Vertices are labeled with their discrete curvatures; the
triangulations have curvatures 0, 0, 2 respectively. The left and center
show that allowing Steiner points can lower the maximum angle (here,
from 120◦ to 60◦). The center and right triangulations have the optimal
upper angle bounds for a hexagon (60◦) and a square (72◦).

For φ > 0, a φ-triangulation of P is one with all angles at most φ. For φ ∈ [60◦, 90◦]

define the interval I(φ) = [180− 2φ, φ]. Since the angles of a triangle sum to 180◦, it

is easy to check that any φ-triangulation must have all of its angles in I(φ). Let |VP |

be the number of vertices in P , and for v ∈ VP , let θv denote the interior angle of P

at v. A labeling L : VP → N = {1, 2, . . . } is called φ-admissible (or a φ-labeling) if

θv ∈ L(v) ·I(φ) for every v ∈ VP . Note that this implies L(v)(180◦−2φ) ≤ θv ≤ 360◦,

so that elements of a φ-admissible labeling all lie between 1 and ⌊360/(180 − 2φ)⌋.

The curvature of a labeling L is defined as

κ(L) = 6−
∑

v∈VP

κ(v) = 6−
∑

v∈VP

(3− L(v)) = 6− 3|Vp|+
∑

v∈VP

L(v).

If a labeling L of VP comes from a φ-triangulation T of P with φ < 90◦, then it

is automatically φ-admissible and satisfies κ(L) ≤ κ(T ), since vertices of ∂T \ VP

must have degree ≥ 3 (see Section 9 for more details). If φ < 72◦ then int(T ) has no

vertices of degree ≤ 5, so (1.1) implies κ(L) ≤ κ(T ) ≤ 0. See Figure 2. Similarly, if

φ < 5
7
· 90◦ ≈ 64.2857◦ then every vertex in int(T ) has degree 6 and every vertex in

∂T \ VP has degree 3, so κ(L) = κ(T ) = 0. Remarkably, these elementary necessary

conditions are also sufficient.

Theorem 1.1. For 60◦ < φ ≤ 90◦, a polygon P has a φ-triangulation if and only if

(1) 72◦ ≤ φ < 90◦ and there is some φ-admissible labeling L of VP ,

(2) 5
7
· 90◦ ≤ φ < 72◦, and there is a φ-admissible labeling with κ(L) ≤ 0,

(3) 60◦ < φ < 5
7
· 90◦, and there is a φ-admissible labeling with κ(L) = 0.
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For 60◦ < φ < 90◦ define K(φ) to be the set of possible values of κ(L) over all

φ-admissible labelings of VP ; we set K(φ) = ∞ if there is no admissible labeling. We

claim that K(φ) is either ∞ or a non-empty interval of integers. To see this, note

that for each vertex v, the set of φ-admissible labels for v is {L ∈ N : θv/(180−2φ) ≤

L ≤ θv/φ}. Thus the set of possible curvatures is either empty or a sum of integers,

each taken from an interval, hence it is an interval itself.

Thus K(φ) has a unique closest element to 0, denoted κ(φ) (possibly equal to 0 or

∞). The three conditions in Theorem 1.1 can be restated as κ(φ) <∞, κ(φ) ≤ 0 and

κ(φ) = 0 respectively. (We should write K(φ, P ) and κ(φ, P ), since these quantities

also depend on P , but in this paper P is usually fixed and clear from context.)

For a simple polygon P , define

Φ(P ) = inf{φ : P has a φ-triangulation }.

Is this infimum attained? Since the elements of a φ-admissible labeling are uniformly

bounded, if P has a sequence of φn-labelings for φn ց φ < 90◦, then the same

labeling occurs infinitely often, and must be a φ-labeling for P . Thus the non-strict

inequalities in Cases 1 and 2 of Theorem 1.1 imply the following.

Corollary 1.2. If Φ(P ) > 60◦, then Φ(P ) is attained by some finite triangulation.

On the other hand, if Φ(P ) = 60◦ then sometimes the infimum is attained and

sometimes it is not. It is easy to verify that Φ(P ) = 60◦ implies every interior angle

of P is an integer multiple of 60◦; if this holds, we call P a 60◦-polygon. Conversely,

every 60◦-polygon has Φ(P ) = 60◦; see Lemma 5.1. In a 60◦-triangulation every

triangle is equilateral and thus must have the same size, so such a triangulation

exists for P if and only if any two edges of P have rational length ratio. Thus 60◦-

polygons that have some irrational edge length ratio are the only polygons for which

the optimal bound Φ(P ) is not attained by any triangulation of P . See Figure 2.

As noted earlier, Burago and Zalgaller [19] proved that Φ(P ) < 90◦ for any polygon

P . Theorem 1.1 implies a sharp, explicit improvement of this.

Corollary 1.3. For any polygon with minimal angle θ, Φ(P ) ≤ 90◦ −min(θ, 36◦)/2.

This will be proven in Section 10. If a polygon P has an interior angle θ, then any

triangulation of P contains a triangle T with some angle ≤ θ. Since the angles of
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Figure 2. The left polygon satisfies κ(60◦) = 0, but has no equilat-
eral triangulation unless both s and t are rational. The other pictures
show where the special angles in Theorem 1.1 come from: these angles
are forced by interior vertices of degree five or seven.

T sum to 180◦, it also contains an angle ≥ 90◦ − θ/2. Thus by Corollary 1.3, if the

minimal angle is θ ≤ 36◦, then Φ(P ) = 90◦ − θ/2 and the optimal triangulation has

all of its angles in [θ, 90◦ − θ/2]. Also, Φ(P ) ≤ 72◦ if its minimal angle is θ ≥ 36◦,

strengthening a result of Gerver for dissections (Theorem 2, [33]). A triangular

dissection of P is a finite collection of closed triangles that cover exactly P and its

interior, and that have pairwise disjoint interiors. The edges of adjacent triangles

in a dissection need not match up exactly; if they do, then we have a triangulation.

See Figure 3. A φ-dissection is a triangular dissection with maximum angle ≤ φ. In

1984, Gerver [33] showed that the conditions in Theorem 1.1 are necessary if P has

a (φ+ ǫ)-dissection for every ǫ > 0, and he conjectured that they are sufficient for a

φ-dissection to exist if φ > 60◦. Theorem 1.1 strengthens this by proving that these

conditions actually imply a φ-triangulation exists.

Corollary 1.4. For a polygon P and φ ∈ (60◦, 90◦], the following are equivalent:

(1) For every ǫ > 0, P has a (φ+ ǫ)-dissection,

(2) P has a φ-dissection,

(3) P has a φ-triangulation.

This will be proven in Section 11; only (1) ⇒ (3) needs to be verified, since (3)

⇒ (2) ⇒ (1) is trivial. The corollary implies that for every polygon P , we have

Φ(P ) = M(P ) := inf{φ : P has a φ-dissection}, using the notation from [33]. This

is surprising (at least to the author). Since dissections satisfy much less stringent

conditions than triangulations do, one might expect a gap Φ(P ) > M(P ) for some

polygons P , but such a gap never occurs. Corollary 1.2 implies that the infimum
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Figure 3. On the left is a dissection of a polygon and on the right a
triangulation. The white dots are the Steiner points. Despite triangu-
lations being more restrictive than dissections, the optimal upper angle
bounds are the same for both types of decomposition.

defining M(P ) is attained (by a triangulation) whenever M(P ) > 60◦. However,

Tutte [60] proved that a convex 60◦-polygon does not have a dissection into equilateral

triangles unless all of its side length ratios are rational (see also Theorem 4 of [39]).

Thus an optimal dissection need not always exist when M(P ) = 60◦.

The conditions in Theorem 1.1 only depend on the set of angles of P , not on their

ordering around P , nor on the side lengths of P . Thus we immediately obtain the

following solution to Problem C7 of [23].

Corollary 1.5. If φ > 60◦ and P , P ′ are N -gons with the same set of angles (pos-

sibly in different orders around the boundary) then P has a φ-triangulation (or a

φ-dissection) if and only if P ′ does.

Finding triangulations with good angle bounds has a long history and many appli-

cations, e.g, see [16] or [62] for lists of algorithms, such as the finite element method,

that work better with well formed meshes. Burago and Zalgaller’s theorem from [19]

was an element of their polyhedral version of the Nash embedding theorem, but it

long remained unknown in the western computational geometry literature (partly for

being written in Russian and partly for being a lemma in a topology paper). The first

reference to it that I am aware of is [37] in 2004. In 1988 Baker, Grosse and Rafferty

[5] independently proved that every polygon has a non-obtuse triangulation (all an-

gles ≤ 90◦). This led to a large literature on algorithms for finding triangulations in

various settings with guaranteed angle bounds, e.g., [8], [9], [10], [21], [16], [26], [31],
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[41], [45], [47], [52], [56]. For a recent survey, see Chapter 29 of [35]. In 2002 Maehara

[46] showed every non-obtuse triangulation can be converted to an acute one (with

a comparable number of triangles), giving an alternate proof of the Burago-Zalgaller

result. See also Yuan’s paper [61]. A simpler approach was given by Saraf in [53].

Despite much effort devoted to finding triangulations with good geometry and op-

timal complexity, finding triangulations with optimal geometry has attracted less

attention, at least when Steiner points are allowed. Triangulating the square with

optimal angles is discussed by Gerver [33] and Eppstein [29], and Aronov, Asano and

Funke [3], [4] give a polynomial time algorithm for maximizing the minimum angle

when a fixed number of Steiner points are allowed (the degree of the work bound

depending on the number of points added), but I do not know of other papers com-

puting the optimal MinMax or MaxMin triangulation with arbitrary Steiner points.

One possible reason may be the close connection to conformal mappings described

below; it is hard to see how our proof of Theorem 1.1 could have been discovered

using purely discrete geometric ideas.

Another reason may be the traditional focus on complexity. If the size of the

triangulation is bounded by a function of N = |VP |, independent of the geometry,

then 90◦ is the best possible upper angle bound, e.g., if a 1×R rectangle with R ≫ 1

is triangulated by O(1) triangles, then there must be a small angle θ = O(1/R),

and hence some large angle ≥ 90◦ − θ/2. Thus the elements of an angle-optimal

triangulation of an N -gon cannot be computed in polynomial time. This paper

does not address the interesting question of finding efficient triangulations attaining

the optimal bounds, but see Section 16 for some ideas on how this might be done.

However, in Section 13 we will prove that the optimal angle bound Φ(P ) is “easy”

to compute.

Corollary 1.6. Φ(P ) can be computed in time O(|VP |).

In 1992 Edelsbrunner, Tan and Waupotitsch [28] gave a O(N2 logN) algorithm for

minimizing the maximum angle of a triangulation of an N -gon without using Steiner

points, and their result has not yet been improved, so far as I (or Edelsbrunner)

know. Thus finding the optimal angle bound over all Steiner triangulations is faster

than the best known algorithms for computing the optimal bound over the finitely

many non-Steiner triangulations.
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A similar situation regarding Steiner points occurs when decomposing a polygon

into convex pieces: Chazelle and Dobkin [20] obtain a faster solution using Steiner

points than is obtained by Keil and Snoeyink [38] without Steiner points. Their

result, and the one given in this paper, runs counter to the general expectation that

an optimization problem becomes harder by introducing Steiner points. For example,

it is unknown whether a Steiner triangulation minimizing total edge length even exists

for general polygons. See Section 16 for further remarks on this.

The main contribution of this paper is to show that (barring some well defined

exceptions), the optimal angle bounds for triangulating with Steiner points are at-

tained by some finite triangulation. The existence proof is a construction based on

conformal mappings, which are often difficult to compute in practice, so the trian-

gulations we produce are probably too computationally expensive for applications,

especially as many excellent methods already exist, e.g., see [6], [11], [27], [31], [56].

However, Corollary 1.6 does give a fast and practical way to compute the optimal

angle bound for any polygon, so it can be used to certify the output of any triangu-

lation algorithm, or can be used to halt an iterative method once it is close enough

to optimal. It would be interesting to test the optimality of various existing methods

using Corollary 1.6; if they typically fail to approach the sharp bounds, then fur-

ther research into optimizing the more computationally intensive conformal methods

might be worthwhile.

To illustrate the relative ease of computing Φ(P ), we will calculate it for several

examples. Corollaries 1.7 to 1.10 are proven in Section 12.

Corollary 1.7. For the regular N -gon, the sharp upper bound is ΦN = 72◦ except

when N = 3, 6, 7, 8, 9; then ΦN = 60◦, 60◦, 5
7
· 90◦, 67.5◦, and 70◦ respectively.

Corollary 1.8. Any 90◦-polygon P has Φ(P ) = 72◦. The optimal triangulation may

be taken with all interior vertices of degree six, except for two vertices of degree five.

Here, a 90◦-polygon is one where all the interior angles are multiples of 90◦, e.g.,

all edges are either horizontal or vertical segments. Given P , let θmin, θmax denote the

minimum and maximum interior angles of P .

Corollary 1.9. If T is a triangle with θmin ≤ 36◦, then Φ(T ) = 90◦ − θmin/2. If

θmin > 36◦, then Φ(T ) = min(72◦, θmax).
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When is a triangle an optimal triangulation of itself? Corollary 1.9 implies that if

either (1) θmax ≤ 72◦, or (2) θmin ≤ 36◦ and T is isosceles, then Φ(T ) = θmax, and

hence T is its own MinMax optimal triangulation. In all other cases, Φ(T ) < θmax,

so there is some triangulation that is “better” than T itself.

The next result applies if P approximates a smooth curve (angles close to 180◦).

Corollary 1.10. If θmin ≥ 144◦, then Φ(P ) = 72◦. If θmin ≥ 162◦, then every

triangulation angle may be taken in [54◦, 72◦]. If 144◦ ≤ θmin ≤ θmax ≤ 216◦, then the

triangulation may be chosen with six vertices of degree five (the rest have degree six).

Note that 72◦ is frequently the sharp bound. This is partially explained by the fact

that the set of N -gons with this optimal bound contains an open set in the space PN

of all simple N -gons (we put a topology on PN by thinking of it as a subset of CN).

For example, Corollary 1.10 shows the set of polygons with θmin > 144◦ is such an

open set. More precisely, we have the following result, proved in Section 14.

Corollary 1.11. The map P → Φ(P ) is continuous. Thus {P ∈ PN : Φ(P ) ≤ φ}

is closed in PN , as is {P ∈ PN : Φ(P ) = φ}. For large enough N , the latter set has

non-empty interior iff φ = 5
7
· 90◦ or φ = 72◦; for other values of φ it always has

co-dimension ≥ 1.

Suppose we wish to maximize the minimal angle of a triangulation, instead of min-

imizing the maximum angle? As noted earlier, the Delaunay triangulation of a point

set maximizes the minimal angle without Steiner points; with Steiner points, angles

arbitrarily close to 60◦ can be achieved for point sets. The constrained Delaunay

triangulation does the same for triangulating polygons without Steiner points (see

[42], [43]), and an algorithm using only interior Steiner points is presented in [48].

The methods of this paper can be used to maximize the minimum angle when trian-

gulating a polygon P with arbitrary Steiner points. To state the result we introduce

some more notation, analogous to that used in Theorem 1.1.

A φ-lower-triangulation means a triangulation with all angles ≥ φ, and we define

Φ̃(P ) to be the supremum of φ so that P has a φ-lower-triangulation. For 0 < φ < 60◦

we define Ĩ(φ) = [φ, 180◦ − 2φ]; any triangle having smallest angle φ must have all

its angles inside Ĩ(φ). Define a labeling L to be φ-lower-admissible if θv ∈ L(v) · Ĩ(φ)

where θv is the angle of P at v ∈ VP . The curvature κ(L) is defined just as before,
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and K̃(φ) is the set of curvatures of φ-lower-admissible labelings. Also as before, κ̃(φ)

is the element of this set closest to 0 (equal to ∞ if no φ-lower-admissible labeling

exists). The following result and its corollaries are proven in Section 15.

Theorem 1.12. For 0 < φ < 60◦, a polygon P has a φ-lower-triangulation iff

(1) 0 < φ ≤ 1
7
· 360◦ ≈ 51.4286◦ and κ̃(φ) <∞,

(2) 1
7
· 360◦ < φ ≤ 54◦, and κ̃(φ) ≥ 0,

(3) 54◦ < φ < 60◦, and κ̃(φ) = 0.

As before, there are a variety of consequences that follow; we list a few here.

Corollary 1.13. Φ̃(P ) can be computed in time O(|VP |).

Corollary 1.14. If P has a φ-lower-triangulation, then it also has an acute φ-lower-

triangulation.

Corollary 1.15. If θmin ≤ 45◦, then Φ̃(P ) = θmin.

Comparing Corollaries 1.3 and 1.15, we see that if P is a polygon with θmin = 45◦,

then Φ(P ) ≤ 72◦ and Φ̃(P ) = 45◦. If P has at least one angle θ ∈ (72◦, 90◦), then

any triangulation of P that attains the optimal upper bound Φ(P ) must subdivide θ

and hence has an angle strictly less than 45◦, and hence < Φ̃(φ). This immediately

gives the following consequence.

Corollary 1.16. There exist polygons so that no triangulation attaining the optimal

upper angle bound Φ(P ) can achieve the optimal lower angle bound Φ̃(P ).

Gerver [33] used conformal maps to transfer dissections from the unit disk to a

polygon. In this paper, given a polygon P , we will construct a 60◦-polygon P ′,

together with a conformal map f between their interiors that defines a map between

their vertices (in some cases, P will be replaced by a subdomain obtained by cutting

a few “slits” in P ). We then transfer a nearly equilateral triangulation from P ′ to

P using f . More precisely, we map the triangulation vertices from P ′ to P , and

connect the images by segments in P ; we call these the “pushed forward” triangles

(conformal images of the triangles themselves would have curved sides). A simple

example is shown in Figure 4. The labeling shown in Figure 4 is 72◦-admissible and

has curvature 0, so κ(72◦) = 0. Moreover, the reader can check that κ(φ) > 0 for
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φ < 72◦, hence Φ(P ) = 72◦. As the mesh in Figure 4 gets finer, the largest angle

tends to 72◦, and we will show later that this limiting bound can be attained by

modifying a sufficiently fine triangulation near the vertices (see Lemma 6.3).

Figure 4. An equilateral triangulation of P ′ (left) and its conformal
image P (angles: 270◦, 126◦, 96◦, 126◦, 105◦, 105◦, 144◦, 144◦, 80◦, 262◦,
162◦). The maximum angle used here is ≈ 73.5205◦ and approaches
72◦ as the mesh gets finer; 72◦ is sharp by Theorem 1.1 and can be
attained by modifying a sufficiently fine triangulation near the vertices.

We want P ′ to have a (nearly) equilateral triangulation, so we will assume it is a

60◦-polygon. Note that such a triangulation of P ′ has all interior vertices of degree

six. The angle of P ′ at the vertex corresponding to v ∈ VP is given by 60◦ · L(v),

where L is a labeling of VP . Since the angles of P ′ sum to (|VP | − 2) · 180◦, a short

calculation shows that we must have κ(L) = 0. Given such a labeling of VP , we will

use the Schwarz-Christoffel formula to define P ′ and f . If we transfer a sufficiently

fine and nearly equilateral triangulation from P ′ to P using f , the image will be

close to a φ-triangulation of P if the labeling L is φ-admissible. Thus to start the

construction, it seems that we need a φ-admissible labeling of P with zero curvature.

However, such a labeling need not exist. For example, suppose P is a pentagon with

five equal angles of 108◦. Theorem 1.1 (in particular, Corollaries 1.7 and 1.5) implies

that Φ(P ) = 72◦. However, the only 72◦-admissible labels for a 108◦-vertex are {2, 3},

so K(φ) = {1, . . . , 6} and so κ(φ) = 1 > 0. This holds even if we add extra 180◦-

vertices to P (their possible labels are {3, 4, 5}). Therefore, any 72◦-triangulation of

P has positive curvature and thus it has at least one interior vertex of degree five

(degree ≤ 4 implies an angle ≥ 90◦).
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How can such a triangulation of P be a conformal image of a triangulation of P ′

that only has interior vertices of degree six? The answer is that we can choose f

to conformally map the interior of P ′ into a subdomain of P obtained by cutting

a slit in P . Two adjacent edges of P ′ are mapped to the two sides of the slit, and

some boundary vertices of P ′ become interior vertices of P , thus the topology of

the triangulation changes. See Figure 5. In general, up to |κ(Φ(P ))| slits are used,

introducing vertices of either degree five (κ > 0) or degree seven (κ < 0). We will

prove the following sharp bounds for the number of such “exceptional” vertices in

Section 11.

Corollary 1.17. In Theorem 1.1, if a φ-triangulation T exists, then it can be con-

structed so that all interior vertices have degree six except that

(1) if 72◦ ≤ φ < 90◦, then max(0, κ(φ)) vertices have degree five,

(2) if 5
7
· 90◦ ≤ φ < 67.5◦, then −κ(φ) vertices have degree seven,

For 67.5◦ ≤ φ ≤ 72◦ there are −κ(φ) vertices of curvature −1, but these vertices may

each be chosen either in the interior (degree seven) or on the boundary (degree four).

Figure 5. The edges adjacent to the 300◦-vertex of P ′ are mapped
to the two sides of the slit inside P . An interior vertex v of degree 5 is
created. The slit is slightly curved to make the triangles on either side
match up, although this is not easily visible (the actual slit lies slightly
above the chord between its endpoints; total bending is about 3◦).

The scheme outlined above encounters a number of difficulties, that we overcome

using ideas from complex analysis. We list a few of these here, giving details later.

• Conformal welding: When we map boundary edges of P ′ to a slit in P , the

images of certain boundary triangles in P ′ must match up across the slit in P , so
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that the image will be a triangulation and not a dissection. This is only possible if

the shape of the slit is carefully chosen so that arclength on each boundary segment

maps to the same measure on the slit, i.e., we need f(z) = f(w) ⇒ |f ′(z)| = |f ′(w)|.

This is a special case of a conformal welding problem, e.g., [12], [36], [51], and in our

case it can be solved explicitly. The slit is generally not a segment, but may be close

to one, as in Figure 5. If the slit were straight, then the Schwarz reflection principle

would imply it lies on a line of symmetry for the triangles, which is not true here.

• Riemann surfaces: In cases where we introduce an interior vertex of degree

seven, P ′ will need to have a boundary vertex of degree seven, i.e., P ′ has interior

angle 420◦ at some vertex. Thus we necessarily consider “polygons” P ′ that are

actually Riemann surfaces and not planar regions. See Figure 6.

Figure 6. We triangulate an equal-angle heptagon using a Riemann
surface with a 420◦-vertex to insert a degree 7 vertex into the triangu-
lation. The self-overlapping part of the surface is shaded.

• Distortion estimates: A conformal map f preserves interior angles infinitesi-

mally, but to control our triangulation angles we shall need angle distortion estimates

at positive scales, with bounds depending on the size of the triangle, its distance to

the nearest vertex, and the ratio of the corresponding angles in P and P ′ at that

vertex. Here we make use of the classical distortion theorems for conformal maps.

• Harmonic measure: Transferring a nearly equilateral triangulation from P ′ to

P will allow us to approximate the optimal bounds, but to actually attain them, we

need to also use triangulations of infinite sectors that arise as images of an equilateral

triangulation of a 60◦-sector under a power map zα. Thus in some regions of P we

utilize triangulations arising from two different conformal maps, and we use harmonic

measure estimates to bound the difference between these conformal maps.
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• Quasiconformal mappings: Given two triangulations of a region arising from

different, but close, conformal maps, we merge the triangulations by using a parti-

tion of unity to interpolate from one conformal map to the other. The result is a

quasiconformal map, and we shall use standard estimates on the angle distortion of

such maps to control the angles of the interpolated triangulations. We also use such

estimates to prove that any 60◦-polygon has a nearly equilateral triangulation.

This paper arose from a related question asked by Florestan Brunck: given a

planar triangulation with lower angle bound θ, does it have an acute refinement with

upper angle bound strictly less than 90◦ and only depending on θ? In [14] I proved

the answer is yes, by showing that every planar straight line graph (PSLG) Γ has

a uniformly acute triangulation T . This means that there is a universal θ0 > 0,

independent of Γ, so that Γ has a conforming triangulation with all angles inside the

fixed interval [θ0, 90
◦ − θ0/2], except for triangles that contain vertices v of Γ that

have an interior angle θv < θ0; these exceptional triangles are isosceles with angles in

[θv, 90
◦ − θv/2]. The proof in [14] uses a compactness argument, and does not give

an explicit value for θ0, but [13] shows we can take θ0 = 30◦ in the special case of

polygons. Dropping the requirement that exceptional triangles must contain a vertex

of P permits an even smaller angle bound, and led me to formulate Theorem 1.1.

Section 2 gives an overview of the proof Theorem 1.1, and later sections provide

the details. We end with some calculations, questions and remarks in Section 16.

Several figures are drawn using Toby Driscoll’s SC-Toolbox package for MATLAB

[24], an improved version of an earlier algorithm of Nick Trefethen [59] for comput-

ing Schwarz-Christoffel maps. I thank Toby for his assistance with the toolbox. I

thank Joe Mitchell and Herbert Edelsbrunner for their helpful comments on an ear-

lier version of this paper, and their encouragement to disseminate it in the computer

science community. The results in this paper were announced at SODA 2022 [17], and

the referees judging submissions provided many helpful suggestions. I am also very

thankful to an anonymous referee who provided numerous suggestions for correcting

the grammar and the mathematical exposition; these remarks greatly improved the

paper.
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2. Overview of the proof

The basic idea to introduce a class of polygons that have “nearly equilateral”

triangulations (all angles close to 60◦) and use conformal maps to transfer these

triangulations to general polygons.

We will say that a simple polygon is an equilateral grid-polygon if its edges are

contained in a grid of the plane consisting of congruent equilateral triangles, and its

vertices are vertices of the grid. These are exactly the simple polygons that have a

triangulation by equilateral triangles. See Figure 7.

Figure 7. On the left is a equilateral-grid polygon, and on the right
is a 60◦-polygon.

It will be convenient to enlarge this class to the class of 60◦-polygons, whose interior

angles are all multiples of 60◦. We will say that a polygon P has nearly equilateral

triangulations if for any ǫ > 0 it has a triangulation with all angles in [60◦− ǫ, 60◦+ ǫ]

and that each vertex of P has a neighborhood in which the triangulation elements are

actually equilateral (this is used to attain the desired angle bounds, instead of just ap-

proximating them). We will prove that every 60◦-polygon has nearly equilateral trian-

gulations in this sense; see Lemma 5.1. This lemma includes 60◦-surfaces, i.e., simply

connected Riemann surfaces R obtained by identifying 60◦-polygons along matching

edges. The boundary of R projects into the plane, possibly with self-intersections.

Such surfaces arise as Schwarz-Christoffel images of the disk (see Section 10) when

all the angles are multiples of 60◦, but the map is not globally 1-to-1.

Suppose f : Ω′ → Ω is a conformal mapping between the interiors of two polygons

P ′ and P , and that f induces a bijection between vertices of P ′ and vertices of P .
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(Below, we will often use P to refer to both the boundary curve and the interior

domain, instead of using Ω for the latter; the meaning should always be clear from

context.) Then f will only slightly perturb the angles of sufficiently small triangles

in Ω′, unless they are near vertices of P ′ (see Corollary 3.3). If v′ is a vertex of P ′

with angle ψ that maps to a vertex v of P with angle θ, then any small triangle close

enough to v′ will have its interior angles distorted by at most θ/ψ (see Lemma 6.1).

The triangulations we construct will have all their angles between 36◦ and 72◦,

except for some triangles near vertices of P that may have angles less than 36◦.

Larger angles of P will be subdivided by the triangulation to give new angles that

are all in the interval [36◦, 72◦], and these sub-angles should each map to 60◦ under

the conformal map from P to P ′. In order to have this work out correctly, we need

an angle θ in P to correspond to an angle ψ = L(v) · 60◦ in P ′ that satisfies

3

5
ψ ≤ θ ≤

6

5
ψ.(2.1)

The restrictions imposed by (2.1) are summarized by Table 1 and Figure 8. For

example, if P has a vertex v with interior angle θ = 135◦, then the corresponding

vertex v′ in the 60◦-polygon P ′ must have angle either 120◦ or 180◦. Any other choice

means that the triangles containing v′ in the nearly equilateral triangulation of P ′

map to triangles with angles either less than 36◦ or larger than 72◦.

θ range allowable ψ
0–72 60
72–108 120
108–144 120, 180
144–180 180, 240
180–216 180,240, 300
216–288 240, 300, 360
288–360 300, 360

Table 1. Given an angle θ of P , this table gives the possible cor-
responding ψ’s in P ′ needed to attain Φ(P ) ≤ 72◦. Note that angles
≤ 36◦ in P imply there are angles ≥ 72◦ in the triangulation.

Figure 8 plots ∪kk · I(φ) vertically above each value of φ. The result is a union of

shaded triangles. P can have a φ-admissible labeling only if all its angles lie in the

intersection of the shaded region and the vertical line through φ. For 72◦ ≤ φ ≤ 90◦,
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Figure 8. P has a φ-admissible labeling if and only if all its angles
lie in the union of shaded triangles, on the vertical line through φ. The
dashed vertical lines indicate where the transitions occur in Theorem
1.1, i.e., φ = 5

7
· 90◦, and φ = 72◦.

∪kk · I(φ) = [180◦ − 2φ,∞) so this condition only depends on the size of θmin, and is

equivalent to having a φ-triangulation. This observation is the reason why Corollary

1.3 follows from Case 1 of Theorem 1.1; we will explain this further in Section 10. For

φ < 72◦, having a φ-triangulation requires all the angles of P to lie in this intersection

(which is now disconnected), and we must also be able to choose the indices of the

triangles containing these angles to satisfy certain linear constraints (the curvature

conditions in Theorem 1.1).

Unfortunately, there are some polygons P whose vertices cannot be put into 1-1

correspondence with the vertices of a 60◦-polygon so that they satisfy the restrictions

in Table 1 and Figure 8. In general, the interior angles {θ1, . . . , θN} of an N -gon

must satisfy
∑

k θk = (N − 2)180◦. When we assign image angle values {ψ1, . . . , ψN}

using (2.1) or Table 1, we need to have
∑

k ψk = (N − 2)180◦, but this is sometimes

impossible. For example, if P is a square, then each of its four 90◦ angles would have

to be assigned angle 120◦ in P ′, giving an angle sum 480◦ > 360◦. We can “fix” the

angle discrepancy by adding extra vertices to the edges of P .

First suppose
∑

k ψk <
∑

k θk. We add a new vertex v of angle 180◦ in an edge of

P , and assign the corresponding vertex v′ in P ′ the angle 240◦ ≤ 6
5
· 180◦. See Figure

9. Doing this increases the angle sum
∑
θk by 180◦ but increases the angle sum

∑
ψk

by 240◦, decreasing the gap between them by 60◦. Doing this several times we can

clearly make the two sums match, as desired. Four equilateral triangles in P ′ touch
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v′, and they are mapped to four triangles in P touching v. They have angle 45◦ at v

and the opposite angles are approximately 67.5◦ (some distortion may occur). Hence

using this method can only give φ-triangulations with φ ≥ 67.5◦. This is adequate to

prove Case 1 of Theorem 1.1 but a more elaborate construction is needed to prove

Cases 2 and 3.

P

P

180

240

Figure 9. Our first trick for increasing the ψ-sum relative to the
θ-sum is to pair a 180◦-vertex in P with a 240◦-vertex in P ′. The
conformal map locally looks like z3/4, and maps a 60◦ sub-angle to 45◦.
A triangle containing this angle also contains an angle ≥ 67.5.

In Case 2 of Theorem 1.1 we want to get the angle 67.5◦ down to 5
7
·90◦ ≈ 64.2857.

We will do this by using a triangulation of a slit half-plane based on transferring an

equilateral triangulation from a polygonal Riemann surface that has a 420◦ angle in

its boundary. The idea is shown in Figure 10; the details will be given in Section 8.

The Riemann surface R is built by attaching two planar domains as shown on the

left side of Figure 22. R has a 1-1 projection onto a sector of angle 240◦, except for

the darker triangle where it is 2-1. Traversing the boundary, we encounter angles

60◦, 420◦ and 120◦. The 420◦-vertex belongs to seven triangles in R and will map to

a degree seven interior vertex in the final triangulation.

The two segments adjacent to the 420◦-vertex are mapped to a slit in P where

the angles are 60◦, 180◦ and 120◦. The worst distortion comes from mapping the

420◦-vertex in P ′ to the 360◦-vertex in P (the tip of a slit). Locally the map looks

like z6/7, that maps each 60◦ sub-angle to 6
7
· 60◦ = 4

7
· 90◦ ≈ 51.4286. A triangle with

this angle must also contain an angle ≥ 5
7
· 90◦ ≈ 64.2857, which is where this angle

in Theorem 1.1 comes from. Note that the two finite boundary segments of R are
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360

P

60 120

420

120

60

P

Figure 10. We cut a slit in the upper half-plane at angle 60◦. This
models a neighborhood of a 180◦-vertex on the boundary of P . The
angles we observe tracing the outline of the slit are: 60◦, 360◦ and
120◦. The triangulation near this slit will correspond to an equilateral
triangulation of a Riemann surface R with angles 60◦, 420◦ and 120◦,
pictured at right. R is a 1-1 cover of a 240◦-sector, except for the darker
triangle where it is 2-1.

both mapped to the slit in P , so triangulation edges along these two sides of R must

map to matching edges along the slit. This requires that the conformal map sends

the length measures on the two segments to the same measure on the slit (but not

necessarily length measure). See Figure 23.

If
∑

k ψk >
∑

k θk we use a slightly easier variant of the 420◦-trick that we call the

“120◦-trick”. This involves mapping a slit half-plane to a 120◦-sector with a triangle

removed, as shown in Figure 11. Traversing the boundary of the slit half-plane we

encounter angles 60◦, 360◦, and 120◦, but traversing the boundary of the modified

120◦-sector we encounter 60◦, 300◦ and 120◦, so the ψ-sum decreases by 60◦ relative

to the θ-sum. As in the 420◦-trick, the shape of the slit can be chosen so that points

on the two identified segments are paired according to their distance from the 300◦-

vertex. In that case, an equilateral triangulation of the modified sector will map to

a triangulation of the half-plane. Note also that exactly one degree five vertex is

created in the triangulation, located at the tip of the slit. See also Figure 20.

Sections 3-8 will provide the details of the various constructions sketched above.

The proof of Theorem 1.1 and its corollaries starts in Section 9.
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60

360

300

60 120

120

Figure 11. Take a 120◦-sector and cut out an equilateral triangle
(left). Conformally map this region to a slit half-plane (right). The two
edges adjacent to the 300◦-vertex are mapped to opposite sides of the
(slightly) curved slit, and points on these edges equidistant from this
vertex are identified. This implies that an equilateral triangulation on
the left pushes forward to a triangulation on the right.

3. The distortion theorem

We let D(z, r) = {w : |z − w| < r}, D = D(0, 1) and T = ∂D = {z : |z| = 1}. In

this paper, a conformal map always refers to a 1-to-1 holomorphic mapping. Thus,

to us, a conformal map is both angle and orientation preserving. By the Riemann

mapping theorem, there is a conformal map from D onto any proper, simply connected

subdomain of the plane, in particular, the interior of any bounded polygon. The same

holds for any simply connected Riemann surface that is not homeomorphic to the 2-

sphere or conformally equivalent to the plane; this is true for all the Riemann surfaces

we shall consider in this paper. For Jordan domains, the conformal map extends to a

homeomorphism between the boundaries; this will be the case for the all the polygonal

domains and surfaces that we consider in this paper. The conformal map is unique

if we specify the image of 0 and of one boundary point. For a conformal map from D

onto a region Ω bounded by an N -gon P , the N preimages of the vertices on T are

called the prevertices.

We start by recalling a fact from complex analysis that we will use below (this is

a special case of the Borel-Carathéodory theorem).

Lemma 3.1. If g is holomorphic on D and g(0) = 0 then

max
|z|<1/2

|g(z)| ≤ 2max
|z|<1

|Re(g(z))|.
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Proof. Without loss of generality we may assume that Re(g) < 1 on D, so that g

maps the disk into the half-plane H = {x + iy : x < 1}. If τ(z) = z/(2 − z) is a

Möbius transformation that takes H to D and fixes 0, then by the Schwarz lemma,

|τ(g(z))| ≤ |z|. Therefore g maps D into τ−1(D(0, 1
2
)) ⊂ D(0, 1

2
). �

By definition, a conformal map f on a domain Ω preserves angles infinitesimally.

We will need to show they almost preserve angles in triangulations in the following

way. When we map a triangulation by a conformal map, we don’t take the image

f(T ) of each triangle T ; this would have curved sides. If T = ∆ABC ⊂ Ω has

vertices A,B,C, we define the pushed forward triangle f ∗(T ) = ∆f(A)f(B)f(C),

i.e., the triangle with vertices f(A), f(B), f(C). See Figure 12. We wish to prove

that pushing forward small triangles in Ω by conformal maps alters the angles by as

little as we wish, except near the vertices.

Figure 12. An equilateral triangulation (left), the actual confor-
mal images of the triangles (center), and the pushed forward triangles
(right) where vertex images are connected by segments.

Lemma 3.2. If f is a conformal map on a disk D(z, r), 0 < δ < 1/4, and T =

∆ABC is triangle inside D(z, δr), then the triangle f ∗(T ) = ∆f(A)f(B)f(C) has

angles that are within O(δ) of the corresponding angles of T .

Proof. Since pre or post-composing f by a similarity does not change the angles of

f ∗(T ), we may assume z = 0, r = 1, f(0) = 0 and f ′(0) = 1. The distortion theorem

for conformal maps (e.g., Theorem I.4.5 of [32]), says that

1 + |z|

1 + |z|3
≤ |f ′(z)| ≤

1 + |z|

1− |z|3
.
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Thus log |f ′(z)| ≤ log(1 + |z|) − log(1 − |z|3). Using Lemma 3.1, and the facts that

log(1 + x) ≤ x and log 1/(1− x) ≤ 1 + 2x for x ∈ [0, 1
2
], implies

max
|z|<δ

| arg(f ′(z))| ≤ 2 max
|z|<2δ

log(1 + 2|z|) + 2 log
1

1− 8|z|3

≤ 2 max
|z|<2δ

2|z|+ 32|z|3

≤ 4δ + 64δ3 ≤ 8δ

if δ ≤ 1/4. Therefore, inside D(0, δ) any segment S is mapped to a smooth curve all

of whose tangents are within 8δ of being parallel of S. Hence the chord connecting

the endpoints of f(S) is within 8δ of being parallel to S, and so the angles of f ∗(T )

are within 16δ of the corresponding angles of T . �

Next, we quantify the fact that, except near the corners, a conformal map between

polygons alters triangle angles very little.

Corollary 3.3. Suppose f is a conformal map between the interiors of two polygons

P and P ′ that maps vertices to vertices. Suppose VP is the vertex set of P , Ω is

the interior of P , and that {Dv}v∈VP are disjoint disks around each vertex v. Define

Ω0 = Ω \ ∪v∈VPDv and suppose T ⊂ Ω0 is a triangle. Then for every ǫ > 0 there is a

δ > 0 so that f changes the angles of T by less than ǫ if diam(T ) < δ.

Proof. Let r > 0 be the distance from Ω0 to VP and let s > 0 be the minimal distance

between any two connected components of P \∪v∈VPDv. If z ∈ Ω0 and t =
1
2
min(r, s),

then we claim f extends to be conformal on the disk D1 = D(z, t). If D1 ⊂ Ω0 this

is obvious. Otherwise, D1 does not hit any vertex of P and hits at most one edge

e of P . Suppose w ∈ D1 ∩ e. Then D1 ⊂ D2 = D(w, 2t). Since the edge e of P

maps to an edge of P ′, the Schwarz reflection principle says f can be extended to be

conformal on all of D2, hence on D1, proving the claim.

Therefore, if T ⊂ Ω0 has diameter δ, then it is contained in a disk of radius t where

f is conformal and hence the angles of T are distorted by at most O(δ/t). Since t is

fixed, this is as small as we wish, if δ is small. �

4. Approximation in finite sectors

A K-quasiconformal map h of the plane is a homeomorphism of the plane to

itself that is absolutely continuous on almost all lines and whose complex dilatation



22 CHRISTOPHER J. BISHOP

µ = hz/hz satisfies ‖µ‖∞ ≤ k < 1 where k = (K−1)/(K+1). Recall hz =
1
2
(∂h
∂x
−i∂h

∂y
)

and hz =
1
2
(∂h
∂x

+i∂h
∂y
). At the points where f is differentiable, the derivative is a linear

map sending a circle to an ellipse, and this definition implies the eccentricity of the

image ellipse (i.e., ratio of the major axis to the minor axis) is bounded by K. A

map is quasiconformal if it K -quasiconformal form some K < ∞. See [1] or [44]

for the basic properties of quasiconformal mappings. One such property is that pre

or post-composing a K-quasiconformal map by a conformal map gives another K-

quasiconformal map: a simple calculation with the chain rule shows the phase of the

dilatation may change, but its absolute value does not. An important property of

K-quasiconformal maps C → C is that they form a compact family when normalized

to fix two points, usually taken to be 0 and 1. Also, a 1-quasiconformal map is

conformal, so a 1-quasiconformal map of the plane to itself must be linear. These

facts imply the following.

Lemma 4.1. For any δ > 0, there is a ǫ > 0 so that if f is a (1 + ǫ)-quasiconformal

map from {|z| < 1/ǫ} into C, then |f(z)− z| ≤ δ|f(0)− f(1)| on D.

Proof. Suppose not. Since pre and post-composing by similarities (these are confor-

mal) does not change the quasiconformal bound, we may assume there is a sequence

of Kn-quasiconformal maps on {|z| < n} into C with Kn → 1, that fix both 0 and 1,

but so that each map moves some point of D by more than δ. By compactness of nor-

malized K-quasiconformal maps, any subsequence has a uniformly convergent (on D)

subsequence to a conformal linear map, that must be the identity. This contradicts

the assumption that every map moves some point by at least δ. �

Using the Law of Sines, we can deduce that under the same hypotheses the push

forward of any triangle T ⊂ D has its angles changed by at most a factor of O(δ).

Given a Jordan domain Ω, a point z ∈ Ω and a Borel set E ⊂ ∂Ω, the harmonic

measure, ω(z, E,Ω) is the Lebesgue length of f−1(E) ⊂ T = ∂D, where f is a

conformal map f : D → Ω with f(0) = z. More intuitively, it is the probability

that a Brownian motion started at z first hits ∂Ω in the set E, and it is the value

at z of the harmonic function u on Ω that has boundary value 1 on E and zero

elsewhere (appropriately defined). A similar definition works for simply connected

domains, but in this case the conformal map f : D → Ω may not have a continuous
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boundary extension, and much extra care is needed to define f−1(E) for E ⊂ ∂Ω.

In this paper, we only need to deal with Jordan domains, where the conformal map

extends homeomorphically to the boundary. The text [32] of Garnett and Marshall

is a comprehensive treatment of harmonic measure on planar domains, and includes

all the results we shall use below.

An infinite sector is a region congruent to S(θ) = {reiφ : r > 0,−θ/2 < φ < θ/2}.

The boundary consists of two infinite rays meeting at its vertex and the angle of the

sector is the interior angle θ made by these rays. A finite sector is a region congruent

to S(θ) ∩D(0, t) for some t > 0 and θ ∈ (0, 360◦]. For r > 1, let A(r) = {z : 1/r <

|z| < r}. An annular sector is a region congruent to S(θ, r) = S(θ)∩A(r). Let z0 = 1

be the center of the circular arc γ = S(θ)∩T and let z1 = eiθ/2 be one endpoint of γ.

Lemma 4.2. With notation as above, suppose Ω1 and Ω2 are Jordan domains so

that for k = 1, 2, Ωk∩A(r) both have connected components equal to S(θ, r). Suppose

F : Ω1 → Ω2 is the conformal map that fixes z0 and z1. As r → ∞, F converges

uniformly to the identity on S(θ, 2).

Proof. It is enough to take Ω2 = S(θ, r); in general, the conformal map Ω1 → Ω2 can

be written as the composition of conformal maps Ω1 → S(θ, r) → Ω2, so it is enough

to show each of these is close to the identity on S(θ, 2).

Let f : Ω1 → D be the conformal map sending z0 to 0 and z1 to i. See Figure

14. By standard estimates, e.g., a version of the Ahlfors distortion theorem, such as

Theorem IV.6.2 of [32], the harmonic measure of the circular arcs of S(θ, r) ∩ ∂A(r)

with respect to z0 is O(r−π/θ). This tends to zero as r ր ∞. Since harmonic

measure is a conformal invariant, the images of these two curves under f have the

same harmonic measures with respect to 0. The following lemma implies that they

also have Euclidean diameter bounded by O(r−π/θ).

Lemma 4.3. Let γ ⊂ D be a cross-cut of D (an arc in D with both endpoints on T).

Then diam(γ) ≤ Cω(0, γ,D \ γ) for some C <∞ independent of γ.

Proof. Let γ∗ = {|z|/z : z ∈ γ} be the radial projection of γ into the unit circle T. By

the radial version of Hall’s lemma (e.g., Exercise III.20.d of [32]) there is an absolute

constant C > 0 so that

ω(0, γ,D \ γ) ≥ Cω(0, γ∗,D).
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Since γ is connected, γ∗ is a sub-arc of T, so its harmonic measure from 0 equals

its length divided by 2π. Thus the radial projection of γ has length bounded by a

multiple of its harmonic measure, i.e., it is bounded by O(r−π/θ).

Similarly, if we let γ̃ = {|z| : z ∈ γ} be the circular projection of γ into [0, 1), then

Beurling’s projection theorem (Theorem III.9.2 in [32]) says that

ω(0, γ,D \ γ) ≥ ω(0, γ̃,D \ γ̃).

Since γ is a cross-cut, its circular projection is an interval of the form [1− ǫ, 1). The

domain D \ [1 − ǫ, 1) can be conformally mapped to D by a composition of Möbius

transformations and power maps

f(x) = τ−1
(√

τ 2(z)− τ 2(1− ǫ)
)
,

where τ(z) = (1− z)/(1 + z) map the disk to the right half-plane. See Figure 13.

Figure 13. Estimating the harmonic measure of the slit in a slit
disk. The slit disk can be conformally mapped to the disk by an explicit
composition of Möbius transformations, power maps and a translation.
A slit of length ǫ maps to an arc of length ≈ 2ǫ and the origin moves
by ≈ 2ǫ. Thus the harmonic measure of the slit is ≈ 2ǫ.

Simple estimates show that the segment [1− ǫ, 1) gets mapped to a sub-arc I of T

of length 2ǫ + O(ǫ2) centered at 1, and that 0 is moved to right by 2ǫ + O(ǫ2). The

harmonic measure of I with respect to the new base point is clearly at least ǫ, so we

can deduce diam(γ̃) = ǫ = O(ω(0, γ,D \ γ)). A set with both its radial and circular

projections having diameter ≤ ǫ, itself has diameter less than 2ǫ, so the claim that

diam(γ) = O(ω((0, γ,D \ γ)) is now proved. �

Now back to the proof of Lemma 4.2. Let Er = f(Ω \ S(θ, r)) ⊂ D, and let E1
r

and E2
r denote its two components. The arguments above say the diameters of these

components are each O(r−π/θ), and hence they shrink to zero as r increases to ∞.
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Moreover, as r ր ∞, symmetry across R implies the two radial segments making

up ∂S(3) ∩ ∂Ω both have harmonic measure (with respect to z0) approaching 1/2.

Similarly, reflection across T shows the four sub-segments inside and outside T all

have harmonic measures approaching 1/4. Since f(z1) = i and E1
r and E2

r both have

small diameters, this implies they are respectively contained in small disks around

±1. See Figure 14.

f g

r

1/r

Figure 14. The conformal map from Ω1 to S(θ, r) can be written
as a composition F = f−1 ◦ g ◦ f where f : Ω1 → D and g is a map of
D\f(Ω1\S) to D. The components of f(Ω1\S(θ)) have small diameter
as r ր ∞, so both g and F = f−1 ◦ g ◦ f are close to identity maps.

Let gr be the conformal map from D \ Er to D that fixes 0 and i. Let Fr be the

reflection of Er over the unit circle. By Schwarz reflection, g extends to a conformal

map on Wr = C \Er ∪ Fr. Thus if δ > 0, and r is sufficiently large (depending on δ),

then gr is conformal on Wδ = C \ (D(−1, δ) ∪ D(1, δ)) and gr(Wδ) omits −1, 1,∞.

Hence this family of maps is normal and any subsequence converges uniformly on

compact subsets ofWδ to a conformal map onWδ. Taking a sequence of δ’s converging

to zero and diagonalizing, we get that every subsequence of grk with rk ր ∞ contains

a subsequence that converges uniformly on compact subsets of W0 = C\{−1, 1} to a

conformal map ofW0 that fixes 0 and i. This map extends to be 1-1 and holomorphic

on the plane, hence linear, hence the identity. Since the limit is unique, we deduce

that the whole family {gr} converges uniformly on compact subsets of W0 to the

identity.

Since f(S(θ, 2)) is pre-compact in C \ {−1, 1}, we see that gr is defined on this

set for large enough r, and that it converges uniformly to the identity there. Thus
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F = f−1 ◦ g ◦ f : Ω1 → S(θ, r) is well defined, conformal, fixes z0 and z1, and tends

to the identity uniformly on S(θ, 2) as r ր ∞, proving the lemma. �

Recall that A(r) = {z : 1
r
< |z| < r} and suppose that Ω1 and Ω2 are Jordan

domains, and that both Ω1 ∩ A(3) and Ω2 ∩ A(3) have connected components equal

to S(θ, 3). Let Ω∗
1 be the component of Ω1 \ 3T that contains S(θ, 3) and let Ω∗

2 be

the component of Ω2 \
1
3
T that contains S(θ, 3). We will say Ω1 and Ω2 as above are

“compatible” if Ω∗
1 ∩ Ω∗

2 = S(θ, 3). In this case, Ω∗ = Ω∗
1 ∪ Ω∗

2 is a Jordan domain.

Lemma 4.4. Suppose Ω1 and Ω2 are compatible in the sense just defined. Suppose

fk is conformal on Ωk, k = 1, 2 and supS(θ,3) |f1 − f2| < ǫ. If I is either one of the

two radial segments of ∂S(θ, 3), suppose that f1, f2 both map I into the same line.

Let η : [0,∞) → [0, 1] be smooth with η(t) = 0 if t < 1/2 and η(t) = 1 if t > 2. Then

g(z) =





f1(z), z ∈ Ω∗
1 \ S(θ, 3)

f2(z), z ∈ Ω∗
2 \ S(θ, 3)

f1(z)(1− η(|z|)) + f2(z)η(|z|), z ∈ S(θ, 3)

is quasiconformal on Ω∗ with complex dilatation bounded by O(ǫ) on S(θ, 3) and is

equal to zero elsewhere.

Proof. By the assumption on the boundaries, both f1, f2 can be extended by reflection

across the radial boundary segments of ∂S(θ, 3), and hence the Cauchy estimates are

valid with a uniform radius at every point of ∂S(θ, 2). Therefore |f ′
k(z)| ≃ 1 on

S(θ, 2) for k = 1, 2. It also follows that

|f ′
2(z)− f ′

1(z)| = O(|f2(z)− f1(z)|) = O(ǫ).

Next we estimate the dilatation µ = ∂zg/∂zg. First,

∂zg(z) = f ′
1(z)(1− η(|z|))− f1(z)∂zη(|z|) + f ′

2(z)η(|z|) + f2(z)∂zη(|z|)

= f ′
1(z) + (f ′

2(z)− f ′
1(z))η(|z|) + (f2(z)− f1(z))∂zη(|z|)

= f ′
1(z) +O(ǫ) ≃ 1,

because |η|, |∇η| = O(1) (recall η is a fixed smooth function). Since ∂zf = 0 for

holomorphic functions f ,

|∂zg(z)| = |(f2(z)− f1(z))∂zη(|z|)| = O(ǫ).

Thus |µg| = |∂zg/∂zg| = O(ǫ) as desired. �
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The same argument proves the following, slightly simpler, version where we assume

the maps are defined on a common disk, instead of a sector. This version will be used

to merge triangulations near tips of slits in the 120◦-trick (see Section 7) and the

420◦-trick (see Section 8) .

Lemma 4.5. Suppose Ω1,Ω2 are Jordan domains and that D(0, r) ⊂ Ω1 ∩ Ω2 for

some r > 4. Suppose f : Ω1 → Ω2 is conformal and f(0) = 0, f ′(0) = 1. Let

η : [0,∞) → [0, 1] be smooth with η(r) = 0 if r ≤ 1/2 and η(r) = 1 if r ≥ 2. Then

g(z) =





z, |z| ≤ 1/2,

f(z), |z| ≥ 2,

z(1− η(|z|)) + f(z)η(|z|), 1/2 < |z| < 2

is quasiconformal from Ω1 to Ω2 with complex dilatation bounded by O(1/r) as r ր ∞.

Proof. The proof is almost identical to the proof of Lemma 4.4, except that we have

to verify that |f(z) − z| = O(1/r) if |z| ≤ 2. By considering g(z) = f(rz)/r it

suffices to show that if g is conformal on the disk, g(0) = 0 and g′(0) = 1 then

|g(z) − z| = O(1/r2) on the disk or radius 2/r. However, this follows from the

classical estimate |a2| ≤ 2 (or use Theorem I.4.5 of [32]). �

5. 60◦-surfaces have nearly equilateral triangulations

As noted in the introduction, not every 60◦-polygon P has an equilateral triangu-

lation, but in this section we will prove that they all have nearly equilateral triangu-

lations. Recall that this means that for any ǫ > 0, there is a triangulation of P with

all angles within ǫ of 60◦ and that all angles are equal to 60◦ in some neighborhood

of each vertex (the neighborhood may depend on the triangulation). Also recall that

we need this result for both planar polygonal regions and Riemann surfaces with

polygonal boundaries.

Lemma 5.1. Every 60◦-surface P has nearly equilateral triangulations.

Proof. We refer to the boundary curve of a 60◦ Riemann surface R as P , although it

need not be a simple planar polygon. However, it does project to a planar N -gon,

possibly with self-intersections. By rotating, we may assume the sides of this curve

are parallel to lines in the usual equilateral grid in C (with one side of each triangle

parallel to the vertical axis). Rescale the grid to have a small side length δ, and
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consider the union of triangles compactly contained in the surface R that project

onto elements of the δ-grid. When δ is sufficiently small, this union forms a simply

connected sub-surface R′ with boundary curve P ′ that is also a 60◦-surface and also

has N vertices. Each edge of P ′ corresponds to a parallel edge of P . See Figure 15.

If we fix a conformal map of D to R, then by taking δ small enough, we can choose a

conformal map onto R′ so that the corresponding conformal prevertices on T (recall

these are the preimages of a conformal map from the unit disk to the surface R′) can

be chosen to approximate the prevertices of P as closely as we wish.

Figure 15. Two examples of approximating a 60◦ surface (white) by
a union of equilateral triangles (shaded). On the left is simple polygon
and on the right a Riemann surface. Overlaps of the surface with itself
have darker shading.

Thus if the minimal distance between prevertices of P on T is d > 0, then given any

ǫ > 0 we may assume P ′ has exactly one prevertex within ǫ · d/10 of each prevertex

of P . The following lemma implies there is a (1+O(ǫ))-quasiconformal map Φ of the

unit disk to itself that sends the prevertices of P ′ to the prevertices of P .

Lemma 5.2. Suppose {zj}
n
1 ⊂ T are all at least distance d > 0 apart. Suppose

{wj}1 ⊂ T satisfies max1≤j≤n |wj − zj| < ǫd < d/4. Then there is a (1 + O(ǫ))-

quasiconformal map ϕ so that ϕ(wj) = zj for j = 1, . . . n, ϕ(z) = z for all |z| < 1−d,

and ϕ(z) is conformal inside D(zj, ǫd) for j = 1, . . . , n.

Proof. LetDj the disk of radius d/2 around zj. By assumption these disks are disjoint.

Outside these disks define ϕ(z) = z. To define the map inside D ∩ D(zj, d/2) it is

convenient to move to the upper half-plane via a Möbius transformation τ that sends
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zj → 0, −zj → ∞, and 0 → i. Then Dj ∩ D maps to a half-disk centered at 0 and

radius 1
2
d+O(d2). The point wj maps to a point xj on the real axis with |xj| < 2ǫd,

if d is sufficiently small. The interpolating QC map can be given by a piecewise affine

map between the triangulations shown in Figure 16. The angles all change by less

than a factor of O(ǫ), so the map is (1+O(ǫ))-quasiconformal, as required. Mapping

back to the disk by τ−1 gives the desired map on Dj. Doing this for each j = 1, . . . , n

proves the lemma. �

Figure 16. Defining a map that moves the origin 0 to a point x. The
circular arcs have radii d and ǫd respectively. The map is the identity
in the outer shaded region and is a translation in the inner shaded
region. In each white rectangle it is an affine stretch or skew map. All
the angles in the image quadrilaterals are within O(ǫ) of 90◦, so these
affine maps are O(ǫ)-quasiconformal.

Now back to the proof of Lemma 5.1. Let F : P ′ → P be the composition of the

conformal map from P ′ to D, followed by Φ, followed by the conformal map of D to

P . This is a quasiconformal map from P ′ to P with dilatation bounded by O(ǫ) and

mapping each vertex of P ′ to a vertex of P with equal angle. The push-forward of an

equilateral triangulation on P ′ will be a (60◦ + O(ǫ))-triangulation of P , away from

the vertices. All that remains is to adjust this triangulation to make it equilateral in

a neighborhood of each vertex of P .

Suppose v = v′ = 0 are corresponding vertices in P and P ′, both with angle

θ = k·60◦. Set α = 3/k. Then z → zα maps the angle θ to 180◦, so G(z) = (F (z1/α))α

maps a half-disk centered at the origin conformally to a region also bounded partly

by a segment through the orgin. By the Schwarz reflection principle, G extends

conformally to a disk around the origin, and hence setting w = z1/α, we have F (w) =

G(wα)1/α. This implies F (w) = cw +O(w2) near the origin, for some c 6= 0.
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Let R be the surface with boundary P . Now take r > 0 very small and consider

R∩D(0, r). This corresponds in the plane to a finite sector that equals the intersection

of some infinite sector Ω1 with D(0, r). Define Ω2 = Ω \ D(0, r/3). After rescaling,

Ω1 and Ω2 are compatible in the sense of Lemma 4.4 so we can apply that lemma

with f1 being the identity and f2 = F , as above. If r is small enough, then |f1−f2| ≤

O(r2) ≤ ǫr, so we can apply Lemma 4.4 to define a 1 + O(ǫ) map that interpolates

between the identity near 0 and F outside D(0, 3r).

Doing this for every vertex pair in P ′ and P defines a 1 + O(ǫ)-quasiconformal

map from P ′ to P that is complex linear in a neighborhood of each vertex. Thus the

image of an equilateral triangulation of P ′ is a 60◦ + O(ǫ) triangulation of P that is

equilateral in a neighborhood of each vertex, as desired. �

We will need the estimate from the final part of the argument again later, so we

record it as a lemma.

Lemma 5.3. Suppose 0 < θ ≤ 360◦ and that Ω1 and Ω2 are Jordan domains such

that Ω1 ∩ D(0, 1) = Ω2 ∩ D(0, 1) = S(θ) ∩ D(0, 1) and f : Ω1 → Ω2 is a conformal

map such that f(0) = 0. Then f(z) = cz +O(z2) on D(0, 1/2) for some c 6= 0.

6. Triangulations of infinite sectors

As before, S(θ) denotes the infinite sector of angle θ with positive real half-line

as its axis of symmetry. Note that S(60◦) comes with a natural equilateral triangu-

lation G as shown in Figure 17. This triangulation can obviously be extended to a

triangulation of the right half-plane, and in this section, we record a computation

that gives angle bounds for images of this triangulation under conformal maps of the

form z → zα. See Figure 18 for two examples.

Lemma 6.1. Consider the grid G of unit equilateral triangles in S(60◦). Let 0 <

α ≤ 2. Suppose T = ∆ABC ∈ G and f ∗(T ) = ∆f(A)f(B)f(C), where f is a branch

of zα defined on T . Then the interior angles of f ∗(T ) differ from the corresponding

angles of T by at most |α− 1| · θ where θ is the angle subtended by T from the origin.

Proof. Consider the angle ∠f(A)f(B)f(C), i.e., the angle between the segments

f(A)f(B) and f(C)f(B). By Rolle’s theorem

arg[f(B)− f(A)] = arg[B − A] + t arg f ′(z),
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T1T0

Figure 17. The sector S(60◦) and its equilateral triangulation G.
The triangle containing the vertex of the sector is denoted T0; the
unique triangle adjacent to T0 is denoted T1.

for some z ∈ AB. Thus the change in angle |∠ABC − ∠f(A)f(B)f(C)| is at most

| arg(f ′(z))−arg(f ′(w))| where z, w are on AB and CB respectively. Since arg f ′(z) =

(α− 1) arg(z), the difference | arg(f ′(z))− arg(f ′(w))| for z, w ∈ T is no bigger than

|α− 1| times the angle subtended by T . �

Figure 18. Image of the equilateral grid in the upper halfplane under
the maps z3/5 and z6/5. These are the extreme values that keep images
of 60◦ angles between 36◦ and 72◦.

Corollary 6.2. Suppose 0 < φ < 90◦. The sector S(φ) has a triangulation with all

angles in [180◦−2φ, φ] if φ ≥ 60◦, and in [φ, 90◦−φ/2] if φ < 60◦. The triangulation

is the image of an equilateral triangulation of S(60◦) under a power map.
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Proof. First suppose φ ≥ 60◦ and set α = φ/60◦. Consider the image of the triangular

grid G, defined above, under the power map f(z) = zα. Note that α > 1 and hence

|α − 1| = α − 1. Let T0 ∈ G be the triangle containing the origin, and let T1 be the

unique triangle in G that shares an edge with T0. All other triangles in G subtend

angle ≤ 30◦, so their angles can increase by at most (α − 1)30◦, and hence these

angles are bounded by

60◦ + (α− 1)30◦ = 30◦ + α · 30◦ = 30◦ +
φ

60◦
· 30◦ = 30◦ + φ/2 ≤ φ,

since φ ≥ 60◦. The pushed forward triangle f ∗(T0) is isosceles with vertex angle

φ = α · θ, so its angles are in [90◦ − φ/2, φ] ⊂ [180◦ − 2φ, φ]. T1 is divided into two

right triangles by the real axis (each with angles 30◦ and 60◦) and each sub-triangle

subtends angle ≤ 30◦. Apply the previous lemma to these sub-triangles. The 30◦

angle has image angle ψ bounded above and below by

60◦ − φ/2 = 30◦ − (α− 1)30◦ ≤ ψ ≤ 30◦ + (α− 1)30◦ = φ/2.

Doubling the upper bound gives 2ψ ≤ φ as the bound for the angle of f ∗(T1) op-

posite the common edge with f ∗(T0), as desired. The other two angles are equal by

symmetry and bounded above by

1

2
(180◦ − 2ψ) = 90◦ − ψ ≤ 30◦ + φ/2 ≤ φ,

since 30◦ = 1
2
60◦ ≤ φ/2.

For φ < 60◦ we have |α−1| = 1−α, so the push forward f ∗(T ) of a general triangle

T ∈ G \ {T0, T1} has angles bounded by

60◦ + (1− α)30◦ = 90◦ − φ/2 ≤ 180◦ − 2φ,

as desired. Triangle T0 works out just as before. We split T1 in half as above. Since

α < 1 the argument of f ′(z) = αzα−1 becomes more negative as we move away from

the real axis along the hypotenuse; thus the hypotenuse maps to a concave down curve

γ. By conformality, γ meets the real axis at 30◦, and thus the segment connecting

its endpoints meets the axis at angle < 30◦. Therefore the corresponding angle ψ of

f ∗(T1) is < 60◦. By symmetry the angles at the other two vertices of f ∗(T1) are equal

and bounded above by

1

2
(180◦ − 2ψ) ≤ 90◦ − (30◦ − (1− α)30◦) = 90◦ − φ/2. �
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Note that if T ∈ G is at distance d from the origin, then it subtends angle O(1/d)

so f ∗(T ) has angles bounded by 60◦ + O(1/d). Thus the pushed forward triangles

converge to equilateral as we move away from the vertex of the sector. The follow-

ing lemma allows us to modify a triangulation pushed forward by a conformal map

between polygons to agree with a sector triangulation, as described above, near each

vertex. This will be used to show that the bounds in Theorem 1.1 can be attained,

not just approximated.

f f

P

1 2

Ω

Ω

1

2

Figure 19. Idea for the proof of Lemma 6.3. Near each vertex v of
P ′ we interpolate between the conformal f2 map from Ω2 ⊂ P ′ to P
(away from v) and a power map f1 on a sector Ω1 (near v). The two
maps nearly agree on the overlapping region (the image of this overlap
is darker in the center picture). This interpolation allows us to attain
the sharp angles given by the power map near each vertex; these angles
might only be approximated by the conformal map from P ′ to P .

Lemma 6.3. Suppose f : P ′ → P is a conformal map between polygons that maps

vertices to vertices. Suppose f(v′) = v where v′ is a vertex of P ′ and v is a vertex

of P , with angles ψ = k · 60◦ and θ respectively. Suppose T is a nearly equilateral

triangulation of P ′ and f ∗(T ) the image triangulation of P . If T is fine enough, then

there is a neighborhood U of v and a triangulation S of P that equals f ∗(T ) outside

U and every triangle of S touching U has all angles bounded by max(θ/k, 90◦−θ/2k).

Proof. Let Ω′ be the interior region of P ′, and let Ω be the interior region of P . By

translating and rotating, we may assume that v = v′ = 0 and that for sufficiently

small r > 0 Ω′ ∩ D(v, 3r) = Ω1 ∩ D(v, 3r) where Ω1 = {z : | arg(z)| < ψ/2} is an

infinite sector of angle θv. Define f1(z) = zθ/ψ; this is a conformal map from Ω1 to

the infinite sector Ω1 = {z : | arg(z)| < θ/2}. Define Ω2 = Ω \D(v, r/3) and let f2 be
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f restricted to Ω2. After rescaling, Ω1 and Ω2 are compatible in the sense of Lemma

4.4, and by Lemma 5.3, the conformal maps f−1
1 ◦ f2(x) = cz+O(z2) in D(0, 3r). By

replacing f1 by a constant multiple of itself, we can make c = 1 and thus

f2(z)− f1(z) = f1(z +O(z2))− f1(z) = O(|z|2 · |z|(θ/ψ)−1) = O(|z|1+θ/ψ).

Since θ/ψ > 0, this is less than ǫr if |z| ≤ 3r is small enough. Therefore Lemma 4.4

applies to (a rescaling of) Ω1,Ω2, f1, f2

Thus by taking r sufficiently small, we can apply Lemma 4.4 at each vertex to

construct a (1 + ǫ)-quasiconformal map from P ′ to P that agrees with f outside

U = Ω′ ∩D(v, 3r) and that agrees with the power map Czψ/θ inside D(v, r/3) These

angles correspond to the triangulation of a sector on angle θ/k given by Corollary 6.2:

the image of an equilateral triangulation under a power map. By Corollary 6.2, all

these angles are bounded by either θ/k (if θ/k ≥ 60◦) or by 90◦−θ/2k (if θ/k < 60◦).

Thus the angles are always less than the maximum of these two bounds, as desired.

In the intermediate region, Ω′ ∩ (D(v, 3r) \ D(v, r/3)), the triangulation of P ′ is as

close to equilateral as we wish, so the image under the quasiconformal interpolation

in this region may be taken as close to equilateral as we wish. This finishes the proof,

since the desired angle bound in the lemma is strictly greater than 60◦. �

7. The 120◦-trick

In this section, we provide the details of the “120◦-trick” for triangulating the

upper half-plane in a way that uses maximum angle 72◦, and near infinity looks like

the push forward under z3/2 of the standard equilateral mesh of a 120◦-sector. This

involves cutting a slit in P , as discussed in Sections 1 and 2.

Consider the region Ω shown on the left in Figure 11. This is a 120◦-sector with an

equilateral triangle at the origin removed. We translate the picture so the 300◦-vertex

is at the orgin; see the white dot in Figure 20. If we then apply a branch of z6/5,

the 300◦ angle becomes 360◦, and the two finite segments I, J in ∂Ω adjacent to it

become identified with a radial slit in the image. The two infinite rays in ∂Ω map

to the boundary curve of am infinite Jordan domain Ω′. See lower left in Figure 20.

By the Riemann mapping theorem, Ω′ can be mapped to the upper half-plane, and

the slit maps to a curved arc, meeting the real line at angle 60◦ (the slit looks quite

straight since the tangents at the two endpoints differ by only ≈ 2.75◦).
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I

J

0

Figure 20. The cut 120-sector (top) is mapped to a simply connected
region (lower left) by a branch of z6/5. This is then mapped to the
upper half-plane by a conformal map. Because the power map identifies
points on I and J that are equidistant from 0, the push forward of the
triangulation is still a triangulation; this is crucial.

Since the power map identifies points on the two segments I, J adjacent to 0

that are equidistant from 0, any equilateral triangulation of Ω will push forward to

triangulation of the upper half-plane. If the triangulation is fine enough, then all

the pushed forward triangles will be nearly equilateral, except near the corners and

tip of the slit. However, near the point v where the slit joins the real line, P looks

like the union of a small 60◦-sector and a 120◦-sector and the map to P ′ sends each

of these to subdomains of P ′ that contain and are contained in small sectors of the

same angles. Thus by Lemma 5.3, the conformal map restricted to each finite sector

is approximately linear and the image of the equilateral triangulation of P ′ is close

to equilateral in P near v. This leaves only the tip of slit. In a small neighborhood

of the tip, angles are bounded above by 72◦ + ǫ if the mesh is fine enough, but might
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exceed 72◦. However, we can replace the mesh in a neighborhood of the tip by the

standard mesh of a 360◦-sector using Lemma 4.5. This gives the 72◦ bound.

Lemma 7.1. Suppose f : P ′ → P is a conformal map between polygons that maps

vertices to vertices. Suppose f(v′) = v where v′ is a vertex of P ′ and v is a vertex

of P , with angles 120◦ and 180◦ respectively. Suppose T is a nearly equilateral trian-

gulation of P ′ and f ∗(T ) the image triangulation. If T is fine enough, then there is

a neighborhood U of v and a triangulation S of P that equals f ∗(T ) outside U and

every triangle of S touching U has all angles ≤ 72◦.

Proof. The proof is the same as for Lemma 6.3, except that now we use the mesh

coming from the 120◦-trick. See Figure 21. �

Figure 21. The left shows the equilateral triangulation of a 120◦-
sector pushed forward to the half-plane by z3/2. The right shows the
triangulation coming from the “120◦-trick”. These two meshes can be
merged using quasiconformal interpolation as described in the text.

8. The 420◦-trick

There are two things we can do to increase the ψ-sum for P ′ by 60◦ with respect

to the θ-sum for P . The first is to introduce a 180◦-vertex v in an edge of P and add

a corresponding 240◦-vertex v′ to P ′. This clearly increases the ψ-sum by an extra

60◦ relative to the θ-sum. The angle at v′ is subdivided into four equilateral triangles

by the nearly equilateral triangulation, and each of these are mapped to four angles

of size 45◦ at v. The opposite angles in the image triangles are 67.5◦ < 72◦, so this

construction will be enough for proving Case 1 of Theorem 1.1.

However, in order to handle Case 2 of Theorem 1.1 we need another “trick” that

can add 60◦ to the ψ-sum relative to the θ-sum, but introduces triangulation angles
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no larger than 5
7
· 90◦ ≈ 64.2857◦. This is precisely the angle bound we get if a

420◦-vertex v′ ∈ P ′ is mapped to a 360◦-vertex v ∈ P . The 360◦ vertex v can occur

as the end vertex of a slit in P , but how do we get a 420◦-vertex in P ′? We do this

by considering a non-planar Riemann surface.

120

 420

60

60

300

120

120

Figure 22. Here a 180◦ vertex in P corresponds to a 420◦ in P ′.
This is obtained by making P ′ a Riemann surface instead of a planar
domain. The surface can be constructed from two planar domains glued
along the dashed edges of each as illustrated on the left. The darker
triangle indicates where the surface has two sheets over the plane.

The idea is illustrated in Figure 22. Consider the two planar regions shown on the

left side of the figure and define a Riemann surface by identifying them along the

dashed ray. This creates a simply connected Riemann surface R with single boundary

curve that is the union of two infinite rays, two finite segments and has three corners

of 60◦, 420◦ and 120◦.

We can conformally map R to a slit upper half-plane in two steps as illustrated

in Figure 23 so that the two segments of ∂R that are adjacent to the 420◦ angle

are identified with the slit, and length measure on these segments is pushed forward

to the same measure on the slit. Translate the 420◦-vertex to the origin and apply

a branch of z6/7 defined on R. This maps R to a simply connected planar domain

Ω with a straight slit; the two segments of ∂R are identified with this slit in the
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Figure 23. The Riemann surface R can be conformally mapped to
a slit domain Ω by a branch of reiθ → rei6θ/7. This map is followed by
a conformal map to the upper half-plane that bends the the straight
slit to an analytic arc. (It looks quite straight; the tangent directions
only change by about 1◦ along the arc).

correct way, and the two infinite rays are mapped to disjoint, unbounded arcs on ∂Ω.

The domain Ω can then be conformally mapped to a half-plane. Thus equilateral

triangulations of R will be mapped to triangulations of the upper half-plane.

9. Necessity in Theorem 1.1

Proof. For completeness, we include the details of the proof of necessity that was

sketched preceding the statement of Theorem 1.1. We also restate our conditions in

the notation used by Gerver in [33], who also proved the necessity of these conditions.

Fix 60◦ < φ < 90◦ and suppose T is a φ-triangulation of P . Let VP be the vertex

set of P and |VP | the number of points in VP (in general we let |X| denote the number

of elements in a set X). As before, for v ∈ VP , let L(v) denote the number of triangles
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containing v. Let F (for faces) be the number of triangles in T , and E the number

of edges. Let VT be the vertices of the triangulation T . If an interior angle θ of P is

subdivided into k sub-angles all in I(φ), then θ ∈ k · I(φ). Thus a φ-triangulation of

P gives an admissible labeling of VP . This is necessity in Case 1.

Let VT (k) = {v ∈ VT : L(v) = k}, i.e., the vertices that are in k triangles. Set

• rk = |VT (k) ∩ VP | (vertices of P in k triangles),

• qk = |VT (k) \ P | (interior vertices of T in k triangles),

• sk = |VT (k) ∩ (P \ VP )| (boundary vertices of T that are not vertices of P ).

With this notation, |VP | =
∑

k rk, |int(T )| =
∑

k qk, and |∂T | =
∑

k sk +
∑

k rk.

Given a labeling L : VP → N as above, we have
∑

k krk =
∑

v∈VP
L(v) and hence

∑

k

(3− k)rk = 3|VP | −
∑

v

L(v) = 6− κ(L).

Therefore κ(L) ≤ 0 if and only if
∑

k(3−k)rk ≥ 6, and equality holds simultaneously.

This is the notation used by Gerver in [33].

We have the relations

• F − E + |VT | = 1 (Euler’s formula),

• |VT | =
∑

k qk +
∑

k rk +
∑

k sk (every vertex is in VP , P \ VP or VT \ P ),

• 3F =
∑

k kqk +
∑

k krk +
∑

k ksk (triangle corners counted in two ways),

• 2E = 3F +
∑

k rk +
∑

k sk (triangles sides counted in two ways),

Combining these four equations and eliminating F , |VP |, E and |VT | we get

∑

k

(6− k)qk +
∑

k

(3− k)rk +
∑

k

(3− k)sk = 6,(9.1)

in Gerver’s notation, or equivalently using discrete curvatures:

∑

v∈int(T )

κ(v) +
∑

v∈VP

κ(v) +
∑

v∈∂T \VP

κ(v) = 6.(9.2)

This is the discrete Gauss-Bonnet formula, (1.1). For acute triangulations we have

s1 = s2 = 0, and hence the third term in (9.1) and (9.2) is non-positive, i.e.,
∑

v∈int(T ) κ(v) +
∑

v∈VP
κ(v) ≥ 6.

In Case 2 of Theorem 1.1, φ < 72◦, so every interior vertex has degree ≥ 6. This

implies q1 = · · · = q5 = 0 and thus the first term in (9.2) is also non-positive, i.e.,

κ(L) = 6−
∑

v∈VP
κ(v) ≤ 0, as desired.
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In Case 3, 60◦ < φ < 5
7
90◦, so every interior vertex of T has degree six and every

vertex in ∂T \ VP has degree three. Thus
∑

v∈int(T ) κ(v) =
∑

∂T \VP
κ(v) = 0 and so

(9.2) implies κ(L) = 0, as desired. �

10. Sufficiency in Theorem 1.1: Case 1

Proof. We want to show that any polygon P (possibly after adding extra vertices)

can be conformally mapped to a 60◦-polygon P ′, with the restrictions on the angles

given by Table 1. We will use the 120◦-trick to “fix” the pushed forward triangulation

in a neighborhood of a few boundary points, but the 420◦-trick is not needed until

the proof of Cases 2 and 3 in the next section.

The Schwarz-Christoffel formula gives a conformal map f of the disk onto a polyg-

onal region P in terms of two types of data. First are the angles of P : suppose

VP = {vj}
N
1 are the vertices of P and the interior angle at vj is αj · 180

◦. Sec-

ond, suppose f maps zj ∈ T to vj ∈ P ; these points are called the prevertices or

Schwarz-Christoffel parameters of f . Then the conformal map f is given by

f(z) = A+ C

∫ z N∏

j=1

(1−
w

zj
)αj−1dw,(10.1)

for some appropriate choice of constants A,C. See e.g., [25], [50], [58]. The formula

was discovered independently by Christoffel in 1867 [22] and Schwarz in 1869 [55],

[54]. For other references and a brief history, see Section 1.2 of [25]. Given a polygon

P , the angles are known, but the prevertices must be solved for.

Given N distinct points z = {z1, . . . , zN} on the unit circle and N real values

{α1, . . . , αN} summing to N − 2, Formula (10.1) defines a locally 1-1 holomorphic

function on the disk that maps each component of T \ z to line segment, with the

segments meeting at f(zk) making interior angle αk · 180
◦. The map given by (10.1)

is always locally 1-1 on D, but need not be globally 1-1 in general. In this case, the

image is a Riemann surface with an obvious projection onto the plane. For the proof

of Case 1 of Theorem 1.1 we can arrange for the image to be a planar 60◦-polygon,

although in the proof of Cases 2 and 3, given in the next section, the image may be

a non-planar 60◦-surface (this occurs when we apply the 420◦ trick).

Given an N -gon P , we take some conformal map f of its interior to the unit disk,

D. The N vertices of P map to N distinct points z = {z1, . . . , zN} on the unit circle
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T. We then want to choose N real values ψk ∈ Z = {60◦, 120◦, 180◦, 240◦, 300◦} so

that
∑

k ψk = 180(N − 2). If this is possible, we then set αk = ψk/180 and apply the

Schwarz-Christoffel formula to get a map g : D → P ′. Then g ◦ f : P → P ′ is the

desired map. However, as noted in Sections 1 and 2, such a choice of angles ψk may

not be possible without adding extra vertices to P .

First choose six interior points of some edge of P . We call these the “extra” vertices

of P . This creates an M -gon with M = N + 6. These are 180◦-vertices in P and are

assigned to have angle ψv = 120◦ in P ′. Assign angle 180◦ to every other vertex of P ′,

so the ψ-angle sum is 6 · 120◦ + 180◦N = (M − 2)180◦. Applying Schwarz-Christoffel

gives a a 60◦-hexagon, as in Figure 24.

Figure 24. In the proof of Case 1 of Theorem 1.1 we can assume P ′

is planar. The first step is to choose six “extra” vertices on one edge
of P and make these correspond to six 120◦-vertices in P ′.

Next we modify the angle assignments to get a P ′ that approximates this hexagon.

Let L : VP → N be a φ-admissible labeling of the vertices of P . For v ∈ VP , assign

angle ψv = 60◦ ·L(v) to the corresponding vertex v′ of P ′. In order to adjust the angle

sums, for each vertex v of P we define either 0, 1 or 2 “associated vertices”. The

new vertices will be in the edge of P that begins with v (P has the counterclockwise

orientation with the domain interior on the left) and may be taken as close to v as

we wish. The vertices associated to v on P have angle 180◦ and the corresponding

vertices associated to v′ in P ′ have angle either 120◦ or 240◦. The following rules for

making the assignments are illustrated in Figure 25. Suppose v is an original vertex

of P with interior angle θv:

(i) if 0 < θv ≤ 72◦, set ψv = 60◦ and add two vertices each with angle 240◦,

(ii) if 72◦ < θv ≤ 144◦, set ψv = 120◦ and add one vertex with angle 240◦,

(iii) if 144◦ < θv ≤ 216◦, set ψv = 180◦ and add no associated vertices,

(iv) if 216◦ < θv ≤ 288◦, set ψv = 240◦ and add one vertex with angle 120◦,
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(v) if 288◦ < θv ≤ 360◦, set ψv = 300◦ and add two vertices of angle 120◦.

240

120

180

120

240

300

120

120

60

240

240 iv

v

ii

iii

i

Figure 25. The five cases for assigning image angles and associated
vertices. In each case the black indicates the image v′ ∈ P ′ of a vertex
v ∈ P and the white dots the new associated vertices; each of the latter
corresponds to a a 180◦ vertex in P .

The angles at the extra vertices associated to v were chosen precisely so the curve

entering v is parallel to the curve leaving last vertex associated to v. Thus if the

distance between v and its associated vertices is very small, the entering and exiting

segments will be parallel, and they will have very small perpendicular displacement,

i.e., they will look like a single line segment. See Figure 26. Thus if every vertex

is sufficiently close to its associated vertices, the minimal sub-arc of P ′ containing

all the vertices, except for the six extra vertices, is as close as we wish to a line

segment in the Hausdorff metric. In particular, P ′ is not self-intersecting and so is a

planar 60◦-polygon. By Lemma 5.1, P ′ has nearly equilateral triangulations. In the

remainder of the proof we will take this triangulation as fine as is needed (but only

finitely many conditions are involved, so we finish with a positive grid size).
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Figure 26. The 60◦-polygon P ′. The six gray points are the “extra”
vertices added at the beginning, the black points are the images of the
original vertices, and the white points are the associated vertices. If
each black vertex is very close to its associated white vertices, then
the arc inside the dashed box mostly (in terms of length) consists of
horizontal segments, and will approximate a horizontal segment.

Each original vertex with angle θv ≥ 36◦ was assigned an image angle ψv in the

allowable range from Table 1. Thus transferring a nearly equilateral triangulation

of P ′ gives a triangulation of P with all angles between 36◦ and 72◦ except possibly

in small neighborhoods of these vertices, where all the angles are between 36◦ − ǫ

and 72◦ + ǫ, and ǫ can be made as small as we wish be taking the triangulation fine

enough. In a neighborhood of each such vertex, we may use Lemma 6.3 to merge the

pushed forward triangulation with a sector triangulation with angle bounds 36◦, 72◦.

For each original vertex with interior angle θv < 36◦ the same argument applies,

except that now we get the bounds in the interval I(θv) = [θv, 90
◦− θv/2]. Again, we

may use interpolation to locally merge the pulled back triangulation (which might

only approach the desired bounds as the triangulation gets finer), with a sector tri-

angulation satisfying the precise desired bounds.

Next, consider the associated vertices with angles > 120◦; Cases (i) and (ii) above.

In Case (i) each 240◦-vertex is hit by 4 equilateral triangles and so each 60◦ sub-angle

is mapped to an angle of size 180◦/4 = 45◦. In this case, the interpolation with a

sector triangulation isn’t needed; with small enough distortion, the angles are already

inside [36◦, 72◦]. Case (ii) is the same, except there is only one associated vertex.

There are no associated vertices in Case (iii).
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Finally, we consider Cases (iv) and (v). Here we only use image angles of size 120◦.

Such an angle is divided into two 60◦ angles that are mapped to 90◦ by the conformal

map. These angles are too large, so we use Lemma 7.1 to interpolate between the

conformal image triangulation and the triangulation of the half-plane coming from

the 120◦-trick. This gives a triangulation of with angles in I(36◦) = [36◦, 72◦] in a

neighborhood of each associated vertex. This completes Case 1 of Theorem 1.1. �

Proof of Corollary 1.3. If φ ≥ 72◦, then (see Figure 8)
⋃

k≥1

k · I(φ) = [180◦ − 2φ,∞).

So for φ ∈ [72◦, 90◦) having a φ-admissible labeling the same as φ ≥ 180◦ − 2θmin.

Therefore P must have a φ-triangulation for

φ = max(72◦, 90◦ − 2θmin) = 90◦ −min(36◦, θmin)/2.

Thus the infimum defining Φ(P ) is at most this value, as desired. �

The upper bound in Corollary 1.3 implies every angle in the triangulation is at

least min(θmin, 36
◦). However, the proof of Theorem 1.3 actually proves the following,

slightly stronger, lower bound: every angle in the triangulation is larger or equal to

max (min(θmin, 36
◦),min(θmin/2, 48

◦),min(θmin/3, 54
◦)) .

This formula is somewhat clearer when graphed, as in Figure 27. The first term

follows directly from Corollary 1.3. The second term holds because any angle 72◦ ≤

θ ≤ 96◦ can be divided into two angles of size θ/2 and larger angles can be divided

into two or more angles ≥ 48◦. Similarly, the third term arises because any angle

144◦ ≤ θ ≤ 162◦ can be divided into three angles of size θ/3 and larger angles can be

divided into three or more angles ≥ 54◦.

11. Sufficiency in Theorem 1.1: Cases 2 and 3

Proof. We have already proven sufficiency in Case 1. To prove it in the other two

cases, we just have to modify the construction in the proof of Case 1 to avoid using

the 120◦-trick in Case 2 (this forces an angle ≥ 72◦), and to avoid both the 120◦-trick

and the 420◦-trick in Case 3 (the latter forces angles ≥ 5
7
· 90◦).

Suppose L is a φ-admissible labeling of VP so that κ(φ) = κ(L) (i.e., choose L to

minimize |κ(L)| among admissible labelings). As before, let θv denote the angle of
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Figure 27. If P has minimal angle 0 < θmin < 180◦ (plotted on
the horizontal axis), then P has a triangulation with all angles inside
the interval above θmin. For example, if θmin = 108◦ the interval is
[48◦, 72◦]. Bold lines indicate values that must be attained by any
upper-optimal triangulation, e.g., θmin = 80◦ implies 40◦ is attained by
any 72◦-triangulation of P .

P at vertex v, and for each vertex v in P , suppose ψv = L(v) · 60◦ is the tentative

corresponding angle of v′ in P ′. As we have noted before,
∑

v

θv = (|VP | − 2)180◦ = 60◦(3|VP | − 6)

= 60◦

(
3|VP | − 6−

∑

v

L(v) +
∑

v

L(v)

)

= 60◦

(
−κ(L) +

∑

v

L(v)

)
= −60◦ · κ(L) +

∑

v

ψv.

Thus in Case 2 (κ(L) ≤ 0) we only need to introduce 180◦-vertices on P that corre-

spond to 240◦-vertices in P ′. If φ ≥ 67.5◦, we can do this by replacing the pushed

forward triangulation from P ′ by the 240◦-sector triangulation. If 5
7
· 90◦ ≤ φ < 67.5◦

then we replace it with the triangulation of the half-plane obtained by the 420◦-trick.

This proves sufficiency in Case 2.

Finally, if κ(L) = 0, then no extra vertices or “tricks” are needed. We simply use

a fine enough triangulation pushed forward by the conformal map from P ′ to P and

replace it in a neighborhood of each vertex by the appropriate sector mesh. �

Proof of Corollary 1.17. By construction, all the interior vertices of our triangulation

have degree 6, except for the single degree 7 vertex used in each application of the

“420◦-trick” and the vertex of degree 5 used in the “120◦-trick”. The first is only
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used in Case 2 of Theorem 1.1 and is only needed for angles < 67.5◦, since using a

240◦ sector mesh will work for larger angles. The number of times we need to apply

the 420◦-trick is (
∑

P θv −
∑

P ′ ψv)/60
◦ = −κ(φ), so this is the number of degree 7

vertices.

One degree 5 vertex is created in each application of the 120◦-trick. This occurs

only in Case 1 and only if
∑

P θv <
∑

P ′ ψv; otherwise we can use 240◦-vertices in P ′

to make up the gap. Thus only max(0, κ(φ)) degree 5 vertices need to be created. �

Proof of Corollary 1.4. In [33], Gerver proved the conditions in Theorem 1.1 are im-

plied by the weaker condition that for every ǫ > 0, the polygon P has a (φ + ǫ)-

dissection. This and Theorem 1.1 show that (1) ⇒ (3). Since (3) ⇒ (2) ⇒ (1) is

trivial, the corollary is proven. �

To recreate Gerver’s argument in [33], redefine qk to be the number of interior

vertices of the triangulation that are shared with k triangles and are not interior to

any edges of the triangulation. Also, redefine sk to be the number of vertices of the

triangulation that are shared by k triangles and that lie on the interior of an edge of

P or of an edge of some triangle. The argument in the second half of Section 10 now

proceeds as before, showing that having a (φ + ǫ)-dissection for every ǫ > 0 implies

the conditions in Theorem 1.1 must hold.

12. Some examples

Proof of Corollary 1.7. We compute the optimum upper bound ΦN for triangulating

the regular N -gon. The cases N = 3 and N = 6 are trivial; these have equilateral

triangulations, so Φ3 = Φ6 = 60◦. Otherwise, there are N interior angles of size

θN = 180◦ − 360◦/N ≥ 90◦. Since these are all > 36◦, Corollary 1.3 says ΦN ≤ 72◦,

so we only have to check whether an even smaller bound is possible.

For N ≥ 10, the interior angles are ≥ 144◦, and hence the φ-admissible labels for

φ < 72◦ are at least 3. Then any φ-admissible label satisfies κ(L) ≥ 6 > 0, so we

must be in Case 1, so ΦN = 72◦. (This case also follows from Corollary 1.10).

For N = 9, the interior angle is θ9 = 140◦. If φ < 70◦ then θ9 6∈ 2 · I(φ), so all

the φ-admissible labels are ≥ 3, which implies κ(L) ≥ 6; thus such φ’s don’t work.

However, for φ = 70◦ we can take six labels equal to 2 and three equal to 3; this
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labeling satisfies κ(L) = 6− 6(3− 2)− 3(3− 3) = 0. Thus Case 2 holds for Φ9 = 70◦

and this must be the sharp upper bound.

For N = 8, the same argument holds by considering θ8 = 135◦ and φ = 67.5◦.

Below this value, admissible labels have positive curvature, but for this value we

obtain a zero curvature label by taking six labels 2 and two of 3. Thus Φ8 = 67.5◦.

For N = 7, we have θ7 = 5
7
· 180◦ ≈ 128.5714, and apply the argument to Φ7 =

5
7
· 90◦ ≈ 64.2857. The only Φ7-admissible label for θ7 is 2, and the curvature of this

labeling is 6− 7(3− 2) = −1. Therefore there is a Φ7-triangulation, and this is sharp

since there are no zero curvature labelings for smaller φ’s.

For N = 4 the internal angles are 90◦ so the only φ-admissible labels for φ ≤ 72◦ are

≥ 2, and hence any such φ-admissible label L satisfies κ(L) ≥ 6− 4 · (3− 2) = 2 > 0.

Thus Cases 2 and 3 of Theorem 1.1 can’t hold and we must be in Case 1, i.e., Φ4 ≥ 72◦.

By our remark at the beginning of the proof, we must have equality. Exactly the

same argument works for N = 5, but using κ(L) ≥ 6− 5 · (3− 2) = 1 > 0. �

Proof of Corollary 1.8. By Corollary 1.3, φ(P ) ≤ 72◦. The polygon P only has angles

of 90◦, 180◦ or 270◦, so suppose P has n90, n180 and n270 angles of each size. Then

|VP | = n90+n180+n270 and the angle sum formula for polygons implies n270 = n90−4.

Thus 2n270 = |VP | − 4 − n180. Any φ-admissible labeling for φ < 90◦ gives the 90◦-

vertices label 2, the 180◦-vertices labels ≥ 3 and the 270◦-vertices labels ≥ 4. Thus

the smallest admissible label sum is

2n90 + 3n180 + 4n270 = 2n90 + 3n180 + |Vp| − 4− n180 + 2n270 = 3|VP | − 4,

so κ(L) ≥ 2 for any φ < 90◦ and any φ-admissible labeling L. Thus we must be in

Case 1 and 72◦ is the sharp angle bound. Moreover, there is a 72◦-admissible labeling

(the minimal one) with κ(L) = 2, so we can apply the 120◦-trick twice and construct

a triangulation with exactly two vertices of degree 5 (the rest are degree 6). �

The proof above still holds if the angles are perturbed slightly (the bounds on the

labels don’t change), so the axis-parallel N -gons are in the interior of the set of all

N -gons with sharp bound 72◦, e.g., Corollary 1.11. The proof also works if we allow

angles of 360◦; the analogous arithmetic shows the minimal labeling for any φ < 90◦ is

still 2. However, in this case the polygon is not simple and the optimal triangulation

need not be consistent across “slits” at the 360◦ vertices.
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Proof of Corollary 1.9. If θmin ≤ 36◦, the statement is just a special case of Corollary

1.3. So suppose θmin > 36◦. Then again my Corollary 1.3, we have Φ(P ) ≤ 72◦. If

Φ(P ) < 72◦ then by Theorem 1.1 P has a labeling L of non-positive curvature. This

means that 6−
∑3

1(3−L(v)) ≤ 0 or
∑3

1 L(v) ≤ 3, which implies L(v) = 1 for all three

vertices. Thus the optimal triangulation does not subdivide any of the three angles

of the triangle, so all these angles occur in the triangulation. Thus Φ(T ) ≥ θmax.

Since we can take T as a triangulation of itself, we get equality. �

Proof of Corollary 1.10. If all angles of P are ≥ 144◦, then for any φ < 72◦, any

φ-admissible labeling is at least 3 at every vertex, and hence has curvature ≥ 6. By

Corollary 1.3, 72◦ is therefore the sharp angle bound. If the minimum angle of P is

≥ 162◦, then every angle of P can be split into three or more angles between 54◦ and

72◦ and the triangulation only uses interior vertices of degree 5 and 6. Thus all angles

in the triangulation can be taken in [54◦, 72◦]. If we also assume that all angles are

≤ 216◦, then taking all labels equal to 3 is 72◦-admissible, and has curvature 6, so

we need only six applications of the 120◦-trick. �

13. Computing Φ(P ) in linear time

Proof of Corollary 1.6. First check whether every angle of P is a multiple of 60◦. If

so, then Φ(P ) = 60◦. If not, find the smallest angle θmin of P . If θmin ≤ 36◦, then

Φ(P ) = 90 − θmin/2 by Corollary 1.3. If θmin ≥ 144◦ then Φ(P ) = 72◦ by Corollary

1.10. All this can be done in time O(|VP |).

Otherwise we may assume 36◦ < θmin < 144◦, and we claim that computing Φ(P )

reduces to finding one or both of

φ∞ = inf{φ ∈ [60◦, 90◦] : κ(φ) <∞},

φ0 = inf{φ ∈ [60◦, 90◦] : κ(φ) = 0}.

Since I(90◦) = [0◦, 90◦], 4 is a 90◦-admissible label for any vertex of any polygon, so

we always have κ(90◦) <∞. This implies φ∞ is well defined. Computing φ∞ in time

O(|VP |) is easy: for each v ∈ VP , we find the smallest φ so that v has a φ-admissible

label (time O(1) per angle) and then take the maximum of these |VP | values.
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Increasing an 90◦-admissible label gives another 90◦-admissible label, so K(90◦) is

a half-infinite interval of the form {k ≥ k0}. Thus κ(90◦) ≥ 0 for any polygon. If

κ(90◦) > 0, then κ(φ) > 0 for all φ < 90◦ and hence Φ(P ) = max(72◦, φ∞).

We may henceforth assume that κ(90◦) = 0. Thus φ0 is well defined and φ0 ≤ 90◦.

If κ(φ∞) = 0, then φ∞ = φ0 and Φ(P ) = φ∞.

So assume κ(φ∞) 6= 0; thus φ∞ < φ0. We consider the cases κ(φ∞) > 0 and

κ(φ∞) < 0 separately.

If κ(φ∞) > 0, then κ(φ) is a decreasing, non-negative function of φ and

• if φ∞ ≥ 72◦, then Φ(P ) = φ∞;

• if φ∞ < 72◦ and φ0 ≥ 72◦, then Φ(P ) = 72◦;

• if φ0 < 72◦, then Φ(P ) = φ0.

Otherwise, κ(φ∞) < 0. Then κ(φ) is non-positive and increasing, and we have:

• if φ∞ ≥ 5
7
· 90◦, then Φ(P ) = φ∞;

• if φ∞ < 5
7
· 90◦ and φ0 ≥

5
7
· 90◦, then Φ(P ) = 5

7
· 90◦;

• if φ0 <
5
7
· 90◦, then Φ(P ) = φ0.

Compute κ(72◦). If this is non-zero, then φ0 > 72◦. In every case where this holds

(the first two bullets in each triple), Φ(P ) is determined from φ∞ alone.

We have now reduced finding Φ(P ) to computing φ0, assuming that κ(72◦) = 0,

and hence that φ0 ≤ 72◦. Note that κ(φ) = min(κ+(φ), 0) + max(κ−(φ), 0), where

κ−(φ) = −3|VP |+ 6 +
∑

v

inf{k ∈ N : θv ∈ k · I(φ)},

κ+(φ) = −3|VP |+ 6 +
∑

v

sup{k ∈ N : θv ∈ k · I(φ)},

are the smallest and largest elements of K(φ). For a single value of φ, each of these

can be computed in time O(|VP |), hence so can κ(φ). Moreover, given each angle

θv of P , we can compute the values of φ ∈ (60◦, 72◦] where θv lies on the boundary

of one of the triangles in Figure 8. There are 10 possible triangles, so at most 10

possible φ’s for each θv. In fact, Figure 8 shows at most 5 triangles can be hit by a

single horizontal line of height θ ∈ [0, 360◦] over the interval [60◦, 72◦]. This gives a

set X1 ⊂ (60◦, 72◦] of size ≤ 5|VP | that contains all possible φ values where κ− and

κ+ can have jumps. If we were to sort X1, then we could compute these functions at

every jump point by summing jumps from left to right, and then find φ0 by searching
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for the smallest φ value so that κ(φ) = 0. This takes time O(|VP | log |VP |) due to the

sorting, but φ0 can be computed even faster.

Recall that we are now assuming κ(φ∞) 6= 0 and κ(72◦) = 0. Find the median value

φ1 of X1; this can be done in time O(|X1|) by the median-of-medians algorithm in

[18]. (See also [2] for some history and updates of this algorithm.) Compute κ(φ1) in

time O(|X1|). If κ(φ1) = 0, then φ0 ∈ X1∩ [φ∞, φ1] and otherwise φ0 ∈ X1∩ [φ1, 72
◦].

In either case, we now know that φ0 is contained in a subinterval X2 of X1 with at

most 1
2
|X1| + 1 elements. Thus |X2| ≤

3
4
|X1| if |X1| ≥ 4. We can construct X2 in

time O(|X1|) by comparing each element of X1 to φ1.

We inductively create intervalsX1 ⊃ X2 ⊃ X3 ⊃ . . . containing φ0 (by induction, κ

will be non-zero at the leftmost point of Xn and zero at the rightmost point). Given

Xn, we find its median φn in time O(|Xn|) by the median-of-medians algorithm.

We can compute κ(φn) in time O(|Xn|) because we already know κ at the leftmost

endpoint of Xn and we can sum the jumps between this point and φn by examining

each element of Xn. If κ(φn) = 0 we let Xn+1 be the elements of Xn that are

≤ φn, and otherwise the elements of Xn that are ≥ φn. Clearly Xn+1 has at most
1
2
|Xn|+1 ≤ 3

4
|Xn| elements and takes O(|Xn|) work to compute. Stop when |Xn| ≤ 4,

and compute κ at all these values to find φ0. The total time taken is

O(|X1|+ |X2|+ . . . ) = O(|X1|)(1 + 3/4 + (3/4)2 + . . . ) = O(|VP |). �

14. Continuity of Φ

Proof of Corollary 1.11. Suppose P is an N -gon and {Pn} is a sequence of N -gons

converging to P . This means the ordered list of vertices converges in R
2N .

First suppose P has a φ-triangulation T . Choose ǫ so small that any two distinct

vertices of T are at least distance ǫ apart. For any δ > 0 choose n so large that all

the interior vertices of T are contained inside Pn, and each boundary vertex of T is

within δ · ǫ of a point on Pn. Move the boundary points of T to these points on Pn.

This creates a triangulation of Pn whose angles are within O(δ) of the corresponding

angles of T . Thus lim supnΦ(Pn) ≤ Φ(P ).

Conversely, suppose φ = lim infnΦ(Pn). Fix ǫ > 0 and suppose Tn is a (φ + ǫ)-

triangulation of Pn. Passing to a subsequence, if necessary, we assume φ = limnΦ(Pn)

and Φ(Pn) < φ + ǫ for all n. As in the proof of Lemma 5.1, we may construct a
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quasiconformal map fn from the interior of Pn to the interior of P with dilatation

tending uniformly to zero as n ր ∞. By Lemma 4.1, the push-forward of Tn under

fn is a triangulation with maximum angle ≤ φ+ 2ǫ if n is large enough (it may also

be necessary to choose Tn sufficiently fine). Thus P has (φ + 2ǫ)-triangulations for

every ǫ > 0, so Φ(P ) ≤ lim infnΦ(Pn). Thus Φ is continuous at P .

If φ > 60, then E(N, φ) = {P ∈ PN : Φ(P ) ≤ φ} is the same as the set of N -gons

that have a φ-triangulations (for φ = 60◦ the latter is a subset of the former), so it

is a closed set. Similarly for F(N, φ) = {P ∈ PN : Φ(P ) = φ}. Corollary 1.10 shows

that the F(N, 72◦) contains every polygon with all angles ≥ 144◦; this is an open

set for N ≥ 10. Our remark following the proof of Corollary 1.8 shows that every

axis-parallel polygon is also in the interior of F(N, 72◦) for N ≥ 4.

To see that F(N, 5
7
90◦) has interior for N large enough, consider the polygon P

in Figure 28. Note P has eight 60◦-vertices, one 300◦ vertex and a large number of

180◦ + ǫ vertices, where ǫ may be as small as we wish. For φ ≤ 5
7
· 90◦, the only

φ-admissible labels for the 60◦, 180◦ and 300◦ vertices are 1, 3 and 5 respectively (see

Figure 8). Thus in this range κ(φ) = 6− 8(3− 1)− 1(3− 5) = 6− 16 + 2 = −8 < 0.

Therefore, we must be in Case 2 of Theorem 1.1 and φ = 5
7
· 90◦ is the sharp bound.

Any small perturbation of P has the same vertex labels, so P is in the interior of

F(N, 72◦).

60

300

Figure 28. This polygon has optimal angle bound φ = 5
7
· 90◦, and

so does every small perturbation, showing the set of such polygons has
non-empty interior.

Finally, for any angle φ ∈ (60◦, 90◦] \ {5
7
· 90◦, 72◦}, having sharp bound φ means

that one or more of the angles of φ lies on the boundary of a shaded triangle in Figure

8 (otherwise we could decrease φ slightly and still meet the criteria of Theorem 1.1).
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This means three adjacent points on P form an angle from a certain finite set of

possibilities depending only on φ. Therefore F(N, φ) has co-dimension at least 1. �

15. Minmax versus Maxmin

We recall some notation from Section 1. For 0 < φ < 60◦ we define Ĩ(φ) =

[φ, 180◦ − 2φ]; any triangle having smallest angle φ has all its angles inside Ĩ(φ).

Define a labeling L to be φ-lower-admissible if θv ∈ L(v) · Ĩ(φ) where θv is the angle

of P at v ∈ VP . See Figure 29. The curvature κ(L) the same as before, and K̃(φ) is

the set of curvatures of φ-lower-admissible labelings. We set κ̃(φ) to be the element

of this set closest to 0 (equal to ∞ if no lower-admissible labeling exists). A φ-lower-

triangulation means a triangulation will all angles ≥ φ.

Figure 29. P has an φ-lower-admissible labeling if and only if all
its angles lie in the intersection of the union of shaded triangles with
the vertical line above φ. For φ ≤ 45◦, this only depends on the size
of the smallest angle. The dashed lines indicate φ = 45◦ and the two
transition angles in Theorem 1.12.

Proof of Theorem 1.12. First consider necessity of the stated conditions. By defini-

tion, having a φ-lower-triangulation means that a lower-admissible labeling exists;

this is Case 1. If every angle of the triangulation is greater than 45◦, then every angle

is also strictly less than 90◦. This implies every vertex in ∂T \ VP has degree 3, so

(1.1) becomes
∑

v∈int(T )

κ(v) +
∑

v∈VP

κ(v) = 6.(15.1)
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If we also have φ > 1
7
· 360◦, then there are no interior vertices of degree seven, so the

first term in (15.1) is non-negative. Thus κ(L) = 6−
∑

v∈VP
κ(v) ≥ 0, as desired. If

φ > 54◦, then every v ∈ int(T ) has degree six, so κ(L) = 0 as desired.

To prove sufficiency, we simply follow the proof of Theorem 1.1, except that in

this case the 420◦-trick is the first one eliminated at φ = 1
7
· 360◦ ≈ 51.4286, and the

120◦-trick is eliminated at φ = 54◦. �

Proof of Corollary 1.13 . The linear time calculation of Φ̃(P ) is very similar to the

calculation of Φ(P ) described earlier, so we only note a few changes to the proof of

Corollary 1.6. We define

φ̃∞ = sup{φ ∈ [60◦, 90◦] : κ̃(φ) <∞}

φ̃0 = sup{φ ∈ [60◦, 90◦] : κ̃(φ) = 0}.

Since Ĩ(0) = [0◦, 180◦] it is easy to check that κ̃(0◦) = 0, so 0 < φ̃0 ≤ φ̃∞. If

κ̃(φ̃∞) = 0, then φ̃0 = φ̃∞, and this common value equals Φ̃(P ). If κ̃(φ̃∞) > 0, Then

κ̃(φ) is increasing and non-negative and

• if φ̃∞ ≤ 54◦, then Φ̃(P ) = φ̃∞;

• if φ̃∞ > 54◦, then Φ̃(P ) = 54◦.

Otherwise, κ̃(φ̃∞) < 0, and κ̃(φ) is decreasing and non-positive and

• if φ̃∞ ≤ 4
7
· 90◦, then Φ̃(P ) = φ̃∞;

• if φ̃∞ > 4
7
· 90◦, then Φ̃(P ) = φ̃0.

Thus we are reduced to calculating φ̃0 and φ̃∞. Each of these can be done in linear

time, just as in the proof Corollary 1.6 (the logic is the same, although the formulas

are slightly different since I(φ) is different from Ĩ(φ)). �

Proof of Corollary 1.14. If φ > 45◦, then every triangulation angle is ≤ 180◦ − 2φ <

90◦, so we are done. For φ ≤ 45◦, the angles created in the proof is always acute,

except possible near a vertex v of P . If v has angle θv we choose the largest possible

φ-lower-admissible label L(v) for v. This means L(v) · φ ≤ θv < (1 + L(v)) · φ, so

φ ≤ θv/L(v) < (1 + 1/L(v)) · φ ≤ 2 · φ ≤ 90◦.

Thus angles in a neighborhood of each vertex are in the correct range, and interior

vertices of degree five or seven only introduce angles ≥ 4
7
· 90◦ > φ and ≤ 72◦. �
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Proof of Corollary 1.15 . See Figure 29. Note that if φ ≤ 45◦, then
⋃
k k · Ĩ(φ) =

[φ,∞), so P has a φ-lower-admissible labeling if and only if θmin ≥ φ. �

16. Questions and remarks

We observed in the introduction that the number of elements of an angle-optimal

triangulation of an N -gon will not satisfy a polynomial bound in N in general.

Question 16.1. Can we find a φ-triangulation with the minimal number of elements,

say in time comparable to the number of elements output?

Question 16.2. Can we estimate, to within a bounded factor, the smallest number

of triangles needed in terms of the geometry of P?

Question 16.3. Is computing the minimal number of triangles required by an angle-

optimal triangulation NP hard?

Our proof of Theorem 1.1 does not give anything near the optimal number of

triangles. Each edge e of the polygon P has a harmonic measure ω(z, e) that depends

on a choice of base point z in the interior of P . This is the point that is mapped to

the origin by our conformal map to the disk, and ω(z, e) is the length of the image of

e on the unit circle (usually normalized so the circle has length 1). Our construction

will generally then use O(infz infe ω(e)
−2) triangles. In the case of a 1× r rectangle,

ω(z, e) ≃ exp(−πr/2) for at least one of the short ends e, no matter how we choose

the base point z, so our proof gives an exponential number of triangles as a function

of r. However, it is easy to see by a direct construction that only O(r) triangles are

needed to achieve the optimal angle bound 72◦. See Figure 30. Here we have chosen

a P ′ that mimics the overall shape of the rectangle, and obtain O(r) triangles, at the

cost of introducing many more degree five vertices into the triangulation when we

apply the 120◦-trick.

Question 16.4. Does choosing a 60◦-polygon P ′ to “mimic” P in some precise sense

always give a nearly optimal number of triangles, at least if the optimal angle bound

φ is ≥ 72◦?

Recall that a planar straight line graph (PSLG) is a disjoint collection of open

line segments, together with a finite set of points, including all the endpoints of all
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Figure 30. A different choice of P ′ leads to a number of triangles
that is within a bounded factor of optimal. In this figure we have
to make the grid finer and apply the 120◦-trick to get rid of certain
boundary vertices with angle 90◦.

the segments. Triangulating a PSLG usually means to triangulate its convex hull

so that the triangulation “conforms” to the PSLG, i.e., the edges of the PSLG are

covered by edges of the triangulation and every vertex of the PSLG is a vertex of

the triangulation. Simple polygons are a special case of a PSLG where the edges are

joined end-to-end, but triangulating PSLGs tends to be more difficult, since triangles

must “match up” across any edges of the PSLG that are not on the convex hull

boundary.

Question 16.5. Does every PSLG with N vertices have an acute conforming trian-

gulation with O(N2) elements?

It is known that some examples require ≃ N2 triangles, and that O(N5/2) trian-

gles always suffice. See [16]. For polygons, O(N) triangles always suffice, e.g., [9]

gives a non-obtuse triangulation of this size, and [46] or [61] convert it to an acute

triangulation of comparable size.

Question 16.6. Does every PSLG with minimal interior angle 36◦ have a 72◦ con-

forming triangulation?

Question 16.7. If a PSLG has minimum angle θ, does it have conforming triangu-

lation with all angles in the interval J(θ) = [θ, 90◦ −min(θ, 36◦)/2]?
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One of the surprising results of this paper is that angle optimal triangulations

always exist, except for 60◦-polygons with two edges having irrational length ratio.

The corresponding question for length-optimal triangulations is open.

Question 16.8. Does a polygon in general position have a minimal weight Steiner

triangulation (MWST), i.e, a triangulation that minimizes the total edge length ?

Such a triangulation need not exist if we allow three co-linear vertices, [15]. An

algorithm for approximating the infimum to within a constant factor is given in David

Eppstein’s paper [30]. If there are not always minimal weight triangulations, how do

the triangulations approaching the minimum behave?

Question 16.9. Are there simple N -gons where approximating the minimal weight

triangulation requires the number of triangles to tend to ∞? If not, prove a bound on

the number of triangles needed.

Without Steiner points, a minimum weight triangulation (MWT) for a simple N -

gon obviously exists (there are only finitely many possible triangulations), and can

be computed in time O(N3) by [34], [40]. For point sets, computing the minimum is

NP-hard [49]. How difficult are these problems with Steiner points?

One of the referees of an earlier draft of this paper pointed out several similarities

between it and [57] by William Thurston, such as using vertex degrees to define the

curvature of a combinatorial triangulation, and the special role played by equilateral

grid polygons. Thurston’s paper deals with characterizing combinatorial triangula-

tions of the 2-sphere that have non-negative curvature (i.e., every vertex has degree

at most six), by interpreting them as lattice points in a higher dimensional complex

hyperbolic space defined using cone metrics on the sphere. The current paper con-

structs specific planar embeddings of triangulations whose curvature properties are

forced by the desired geometry, e.g., Corollary 1.17 says precisely how many vertices

of degree other than six are needed in an angle optimal triangulation. If we glue two

copies of the polygon along the boundaries, we get a triangulation of the sphere with

specified curvatures. When these are all positive, can the results in [57] help con-

struct an optimal triangulation faster? Can they help find an optimal triangulation

with fewest elements (or nearly fewest)? Do Thurston’s ideas extend to cover the

case when negative curvature vertices are needed?
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Corollary 1.11 showed the that set of N -gons with Φ(P ) = 72◦ contains an open

set, and thus it should have positive measure with respect to any measure on the

space of N -gons that is absolutely continuous with respect to volume measure on

R
2N . What are natural examples of such measures, i.e., what is a random polygon?

Figure 31 show the result of computing the optimal upper bound for a billion random

10-tuples summing to 1440 = 8 ·180. This is meant to simulate a random 10-gon, but

the lists were generated by choosing ten random numbers in [0, 1] and renormalizing

to get the correct sum. This will sometimes generate angles > 360◦ and since side

lengths are not accounted for, the lists don’t correctly represent the angles of simple

polygons. However, the predicted mass at 72◦ is clearly visible (about 20% of the

total mass), but no peak appears at 5
7
· 90◦. Is N = 10 too small for this open set to

occur in Corollary 1.11? If so, what is the smallest N for which it does occur?

Figure 31. The distribution of optimal upper bounds over 109 ran-
dom samples as described in the text. On the left is a histogram based
on 1◦ bins. The spike a 72◦ is evident. On the right is an enlargement
near 64◦ using .1◦ bins. No spike at 5

7
· 90◦ ≈ 64.26◦ is visible.
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