
BILIPSCHITZ HOMOGENEOUS HYPERBOLIC NETS
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Abstract. We answer a question of Itai Benjamini by showing there is a K < ∞
so that for any ǫ > 0, there exist ǫ-dense discrete sets in the hyperbolic disk that
are homogeneous with respect to K-biLipschitz maps of the disk to itself. However,
this is not true for K close to 1; in that case, every K-biLipschitz homogeneous
discrete set must omit a disk of hyperbolic radius ǫ(K) > 0. For K = 1, this is a
consequence of the Margulis lemma for discrete groups of hyperbolic isometries.

1. Introduction

Let D = {z : |z| < 1} denote the unit disk in the complex plane C and let ρ denote

the hyperbolic metric on D (defined in Section 2). A set X ⊂ D is called discrete if

it has no accumulation points in D, and for ǫ > 0 it is called ǫ-dense if every z ∈ D

is within hyperbolic distance ǫ of some point x ∈ X. A set X is called homogeneous

with respect to a set F of homeomorphisms if for any x, y ∈ X there is a f ∈ F
so that f(X) = X and f(x) = y. In other words, F acts transitively on X (we do

not assume F is a group; see Remark 1 below). We say that X ⊂ D is a (K, ǫ)-net

if it is a discrete ǫ-net that is homogeneous with respect to the set of hyperbolic

K-biLipschitz maps from D onto itself (we could also consider biLipschitz self-maps

of X; see Remark 2 below). Define

ǫ(K) = inf{ǫ : (K, ǫ)-nets exist}.

This is finite for all K since it is clearly a decreasing function of K (as K increases,

the infimum is over larger sets), and the orbit of any co-compact Fuchsian group G is

a (1, ǫ)-net for some ǫ < ∞; we can take ǫ to be the diameter of the compact quotient

surface R = D/G. An explicit bound is given by the genus two Bolza surface, whose
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hyperbolic diameter is arctan(3 + 2
√
2) ≈ 2.45; see [10]. Thus

Kc = inf{K : ǫ(K) = 0} = sup{K : ǫ(K) > 0}

is well defined and 1 ≤ Kc ≤ ∞. We shall prove both inequalities are strict.

Theorem 1.1. 1 < Kc < ∞.

The upper bound follows from an explicit construction: for any ǫ > 0 we build an

ǫ-net that is homogeneous for K-biLipschitz maps with K < ∞ independent of ǫ.

The lower bound is given by an indirect argument. Assuming Kc = 1 we construct an

ǫ-dense set in D that “looks like” a copy of Z×Z, and we will derive a contradiction

with the exponential growth of the hyperbolic area.

It is well known that ǫ(1) > 0. For K = 1, the maps f are hyperbolic isometries

and generate a subgroup H of the group G of all hyperbolic isometries mapping X

to itself. Since X is a discrete set, G is a discrete group, i.e., a Fuchsian group, and

R = D/G is a (possibly branched) Riemann surface and the set X projects to a single

point x ∈ R. A famous result of Každan and Margulis [7], says that there is a positive

constant ǫ1 > 0 (the Margulis constant) so that the injectivity radius is at least ǫ1

at some point of R and hence R contains disk of radius at least ǫ1/2 that does not

intersect X. Thus ǫ(1) ≥ ǫ1/2. Alternate proofs of the Margulis lemma for Fuchsian

groups are given in [8], [11], [13]; the latter gives the sharp value. The question

of whether Kc > 1 was raised by Itai Benjamini as a result of considering whether

the Margulis lemma really requires the machinery of hyperbolic isometries, group

actions and fundamental domains, or might it have an analog for sets of biLipschitz

mappings.

Remark 1: We claim that Kc = ∞, if we require X to be homogeneous with

respect to some group H of K-biLipschitz maps on D. Such a group would consist of

K2-quasiconformal maps, and a result of Tukia [12] says that such a group is of the

form H = hGh−1 for some quasiconformal map h : D → D and some Möbius group

G acting on D. By Mori’s theorem [9] (or Chapter 3 of [1]), the image of a hyperbolic

ǫ-disk under h or h−1 contains a hyperbolic disk of radius ≥ ǫK
2

/16. Since h(X) is

invariant under G, the previous paragraph shows it omits some disk of hyperbolic

radius ǫ1, and hence X omits some disk of radius ǫK depending only on K.
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Remark 2: We have assumed that X is homogeneous under biLipschitz self-maps

of the disk, but we could replace this by self-maps ofX. Our proof of the upper bound

produces biLipschitz maps of the whole disk, and the proof of the lower bound only

uses that we have self-maps of X. Thus the inequality 1 < Kc < ∞ holds in either

case, although it is not clear whether the exact value of Kc is the same in both

situations (this depends partly on whether a K-biLipschitz self-map of an ǫ-net can

be extended to a K-biLipschitz self-map of the disk, or whether a larger constant is

needed).

2. The upper bound: Kc < ∞

The pseudo-hyperbolic metric on D is given by

ρ̃(z, w) =

∣∣∣∣
z − w

1− wz

∣∣∣∣

and the hyperbolic metric by

ρ(z, w) =
1

2
log

1 + ρ̃(z, w)

1− ρ̃(z, w)
.

The hyperbolic metric can also be defined as ρ(z, w) = inf
∫
γ
ds/(1 − |x|2), where

the infimum is over all rectifiable paths in D connecting z and w. This implies

ρ(z, w) > |z − w| whenever z 6= w. The (orientation preserving) isometries of the

hyperbolic metric are the linear fractional transformations of the disk to itself. The

geodesics for the hyperbolic metric are diameters of the circle and their images under

isometries, i.e., circular arcs perpendicular to the boundary. A ball of hyperbolic

radius r has hyperbolic area that grows exponentially in r. See [2] or [5] for these

basic facts about the hyperbolic metric. A hyperbolic K-biLipschitz map f : X → Y

between subsets of D is one that satisfies

1/K ≤ ρ(f(z), f(w))

ρ(z, w)
≤ K for all z, w ∈ X.

In this section, we prove the upper bound Kc < ∞ in Theorem 1.1 by building

explicit (K, ǫ)-nets with K fixed and ǫ tending to zero. All our examples correspond

to infinite quadrilateral meshes that refine a fixed tesselation of D by right pentagons.

These meshes were constructed for different purposes in [4] (in that paper, they are

part of the proof that any simple planar n-gon can be quad-meshed in time O(n)

using elements with all new angles between 60◦ and 120◦).
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We start with the standard tesselation of D by hyperbolic right pentagons. See the

left side of Figure 1. Connect the center of each pentagon to the midpoint of each of its

five boundary arcs. This divides the pentagon into five fundamental quadrilaterals.

Each quadrilateral has three right angles and one angle of 2π/5, the latter at the

center of the pentagon.

Figure 1. Hyperbolic right pentagons tessellate the disk. Each pen-
tagon is divided into five quadrilaterals which are then each divided
into a N ×N quadrilateral mesh (here N = 3). The elements all have
diameter and side lengths ≃ 1/N .

The two edges adjacent to the center of the pentagon have the same length as each

other, as do the two sides opposite these. Choose a positive integer N and divide

each quadrilateral into a N × N quadrilateral mesh using geodesic arcs as shown

in the center of Figure 1. Each boundary arc of the fundamental quadrilateral is

divided into N sub-arcs of equal length. This implies the mesh in each fundamental

quadrilateral matches the mesh in all its neighbors and defines a quadrilateral mesh

of the whole disk. We will call this mesh M ; it is an infinite graph embedded in D in

which every vertex has degree four or five (the latter occurs only at the centers of the

hyperbolic pentagons). The set X of vertices of this mesh is our ǫ-net with ǫ ≃ 1/N .

We observe for later use that the hyperbolic distance between two vertices z, w of

M is comparable to their graph distance, dM(w, z), divided by N . This holds with

a constant that is independent of N . To see this, note that each edge of the mesh

has hyperbolic length O(1/N), so ρ(z, w) = O(dM(z, w)/N). On the other hand, a

geodesic segment γ ⊂ D connecting distinct points z, w ∈ X can can hit at most

O(Nρ(z, w)) faces of the mesh: each such face has hyperbolic area ≃ 1/N2, and is

contained in a O(1/N) neighborhood of γ, so the union of faces hitting γ has area
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O(ρ(z, w)/N). The edges of these faces contain a path of mesh edges connecting z

and w, so dM(z, w) = O(Nρ(z, w)).

We let Y ⊂ X denote the vertices of the pentagonal tesselation in the left side of

Figure 1; these are the points where the geodesics defining the edges of the tesselation

cross each other. We call these geodesics the “bounding geodesics” and call their

crossing points the “corner points”. The set Y of corner points is clearly homogeneous

under isometries of the hyperbolic disk. Thus to map a point x1 ∈ X to another point

x2 ∈ X, it suffices to map x1 to some y1 ∈ Y and map some y2 ∈ Y to x2, and then

isometrically map y1 to y2. Thus it suffices to show that each x inside a fundamental

quadrilateral Q can be mapped to a corner point y ∈ Y by a K-biLipschitz map of

X to itself, with K independent of N .

We do this in two steps. Given x ∈ X, let Q be the fundamental quadrilateral

containing x and let y = Q ∩ Y be the corresponding corner point. First we will

define a “discrete rotation” of X around y that maps x to a point z ∈ ∂Q ∩ X

that lies on bounding geodesic γ passing though y. The second step is to define a

“discrete translation” of X along γ that maps z to y. We will show both steps can

be accomplished by K-biLipschitz maps, with K independent of N .

If x ∈ Y , there is nothing to do, so we assume x 6∈ Y and choose y = Q ∩ Y

where Q is a fundamental quadrilateral containing x. If x in on a bounding geodesic

passing through y, we can continue to the second step of the construction, so for the

moment, we assume this is not the case.

The corner point y is on the boundary of four hyperbolic pentagons. Let P be the

union of these four pentagons. We define a series of closed cycles {Γk}2N1 in the mesh

M ∩ P . See Figure 2 for an example where N = 5. The first curve, Γ1, consists of

the eight points of X that are adjacent to y in the mesh M . In general, if we have

already defined Γ1, . . .Γk, then Γk+1 is the cycle consisting of points of X ∩ P that

are adjacent to Γk but not in Γk−1. Note that Γ2N lies on the boundary of P . Also,

for k = 1, . . . N , observe that Γk+1 has eight more points than Γk. For k ≥ N it has

sixteen more points than Γk (note that ΓN is the cycle passing through the centers

of the pentagons).

By assumption, x 6= y, but x and y are in the same fundamental quadrilateral Q,

so x lies on some Γk with 1 ≤ k ≤ N . Moreover, there is a point w ∈ X ∩ Γk that
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Figure 2. The left shows the union of four pentagons (= twelve fun-
damental quadrilaterals) that touch the corner point y at the center.
The right picture shows the concentric cycles Γk surrounding y. If x is
on the kth ring with 1 ≤ k ≤ N , then it is at most k points away from a
bounding geodesic passing through y (the vertical and horizontal lines
through y). Here N = 5.

is on a bounding geodesic and is at most j ≤ k steps away from x on the cycle Γk.

Thus we can map x to w by “rotating” Γk by j steps (every point of Γk is moved j

positions in the same direction).

We extend this rotation to the rest of X as follows. For 1 ≤ m < j we rotate

Γk+m by j−|m| positions. Similarly for Γk−m. On the rest of X we take the identity.

Recall that the hyperbolic distance between points of X is comparable (with absolute

constants) to the mesh distance in M divided by N . The map above clearly only

multiplies mesh distances by at most a bounded factor, independent of N . To see this,

note that if m 6= 0 and two points are on Γk and Γk+m respectively, then the mesh

distance between them is at least m and it can increase by at most O(|m|) (partly due

to the size of the shifts varying by at most m, and partly due to the lengths of the two

cycles differing by at most 16m. If two points are on the same cycle Γk, then the shifts

at worst multiply the mesh distance by two. Since dM(z, w) ≃ Nρ(z, w), our maps

also multiply hyperbolic distances by a bounded factor, i.e. they are hyperbolically

Lipschitz with a uniform constant. Moreover, the inverse map has the same form, so
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the inverse is also Lipschitz with a uniform bound. Thus our discrete rotation map

is uniformly biLipschitz as a map X → X.

We can extend the map X → X defined above to be a biLipschitz self-map of the

whole disk. We define the extension as the identity outside P (the union of pentagons

touching y), and within P we define it as follows. For each annular region Ak between

the cycles Γk−1 and Γk we take a biLipschitz map of Ak to a round annulus with points

of X mapping to evenly spaced points on each boundary circle (this is easy). The

discrete rotation maps on the cycles become Euclidean rotations on the boundary

circles, and the angle of rotations differ by at most a bounded multiple of the width

of the annulus. These boundary rotations can be interpolated by a biLipschitz map

that just rotates each concentric circle between the boundaries, and this map is then

transported back to Ak.

This completes the first step of our construction: every x ∈ X can be mapped to

a point of X lying on a bounding geodesic, by a uniformly biLipschitz map of D to

itself. Next we need to show any mesh point on a bounding geodesic can be mapped

to a corner point y ∈ Y . This is even easier that the previous step.

Figure 3. S (for strip) is the union of fundamental quadrilaterals
touching a single bounding geodesic (the thickened central horizontal
line passing through y, the white dot). The mesh in this region is
isomorphic to the square mesh on Z× [−N,N ] and it is easy to define
a uniformly biLipschitz map that translates the central geodesic by j
mesh elements (with |j| ≤ N) and is the identity outside S. Here
N = 5.

Suppose y ∈ Y is on the bounding geodesic γ. Let S denote the union of all funda-

mental quadrilaterals Q that touch γ. In Figure 3 a single fundamental quadrilateral

Q is shaded. This quadrilateral, and its three rotations around y by π/2, π and
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3π/2, form a larger quadrilateral Q′, and S is union of translates of Q′ under powers

(positive and negative) of a single hyperbolic translation along γ. See Figure 3.

The restriction of the mesh M to S is isomorphic to the graph Z × [−N,N ].

Fixing j with 1 ≤ j < N , we can define a discrete translation by j by sending

(n,m) → (n+ j − |m|,m) for |m| < j and taking the identity map on the rest of X.

This is clearly uniformly biLipschitz in both the graph and hyperbolic distances on

X and can move a point on a bounding geodesic up to N positions. This is enough

to move any point onto a corner, as desired. The extension to a biLipschitz self-map

of the disk is similar but even simpler than in the previous case. We take the identity

map outside S. We map the strip S to the Euclidean strip R× [−N,N ], extend the

translations on the top and bottom edges to the interior via a shear map preserving

each horizontal line, and then map this back to S.

This completes the proof of upper bound in Theorem 1.1.

3. The lower bound: Kc > 1

Next we prove Kc > 1 by contradiction. We will assume that Kc = 1 and construct

an ǫ-dense mesh that only has O(r/ǫ2) points within hyperbolic distance r of the

origin. However, this contradicts the well known fact that a hyperbolic ball of radius

r has area that grows exponentially with r. In this section, we need only assume that

X is homogeneous with respect to K-biLipschitz homeomorphisms of X to itself.

If Kc = 1, then for any K > 1 and any ǫ > 0 we can find a (K, ǫ) net. Fix one such

net X. Let δ be the supremum of numbers r > 0 so that D \ X contains a disk of

hyperbolic radius r. Then δ > 0 since X discrete and hence its complement is open

and non-empty. Also δ ≤ ǫ, since every point is within ǫ of some point of X. So if

we make ǫ smaller by setting ǫ = δ, the set X is still a (K, ǫ)-net, since every point

of D is within hyperbolic distance ǫ of X, but there exist disks of any radius strictly

less than ǫ that are not intersected by X. In particular, for any λ ∈ (0, 1), there is a

point xλ ∈ X and a hyperbolic disk Dλ of radius λǫ so that Dλ ∩X = ∅, and whose

center is within distance ǫ of xλ.

Lemma 3.1. If K > 1 is close enough to 1 and ǫ > 0 is close enough to 0, then

every disk of radius ǫ around any point w ∈ X contains the center of a disk of radius

ǫ/4 that is not hit by X.
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Proof. Suppose not. Note that the regular 12-gon inscribed in a Euclidean disk of

radius 1 has side lengths 2 sin(π/12) ≈ .5176, so that in hyperbolic space 12 equally

spaced points on a circle of hyperbolic radius ǫ will more than 2 sin(π/12)ǫ > ǫ/2

apart. Placing twelve disjoint disks of hyperbolic radius ǫ/4 on the hyperbolic circle

of radius ǫ around w, we see that, under our assumption, each such disk must contain

a point of X. See Figure 4.

Figure 4. In hyperbolic space we can place twelve disks of radius ǫ/4
on a circle of radius ǫ around x ∈ X (black dot). Under our assump-
tions, each smaller disk contains a point of X (white dots) and, up to
an isometry, each point’s position is determined by its distances to x
and the other chosen points. Hence approximately the same configura-
tion occurs when we map w to xλ by a K-biLipschitz map with K ≈ 1.
Thus one of the twelve image points must land inside Dλ (shaded) if λ
is close to 1.

Map w to xλ by a K-biLipschitz map of X and, recalling that we can take K as

close to 1 as we wish. Thus the distances of the twelve image points from xλ are

almost the same as the original distances to w, and the distances between the image

points is almost the same as between the original points. Thus there is a hyperbolic

isometry of the disk taking w to xλ so that the images of the twelve points under the

isometry approximate the images under the K-biLipschitz map as closely as we wish.

Moreover, as ǫ tends to zero, the length of the gaps on circle {z : |z − w| = ǫ}
between these evenly spaced disks tends to ǫ(2π − 24 sin(π/12))/12 ≈ (.006)ǫ. Thus

by choosing λ close enough to 1, we can ensure the center of Dλ is as close to

{|z− xλ| = ǫ} as we wish, and that the center of Dλ is within distance 3ǫ/4 of one of
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the image points. This means that Dλ contains a point of X. But Dλ was chosen to

not intersect X, and this contradiction proves the lemma. �

Now restrict each X to the Euclidean disk D(0,
√
ǫ) ⊂ D and expand it by the

Euclidean dilation z → z/ǫ. Taking sequences Kn ց 1 and ǫn ց 0 gives a sequence

of sets Zn ⊂ C that are Euclidean 1-nets in D(0, 1/
√
ǫn), and by passing to a sub-

sequence we may assume that {Zn} converges locally in the Hausdorff metric to a

closed set Z ⊂ C so that

(1) Z is a (Euclidean) 1-net,

(2) Z is homogeneous with respect to Euclidean isometries,

(3) Any 2-ball centered in Z contains a 1

4
-ball disjoint from Z.

The set of isometries that map Z into itself is a closed subgroup G of the Euclidean

isometry group. Since G acts transitively on the 1-net Z, it must be infinite. Thus G

is a closed, infinite Lie subgroup of the isometry group of the plane and hence must

be either a discrete group (and Z is a Euclidean lattice) or it is R × Z (and Z is a

union of evenly spaced parallel lines).

In either case, Z contains a lattice Z ′ whose fundamental parallelogram is close

to a square. In the case Z = R × Z, we can take an actual square sub-lattice, and

otherwise we can choose elements of Z that are within distance 1 of the points 10

and 10i; these give a fundamental parallelogram that is approximately a square.

This means if ǫ and K are close enough to 0 and 1 respectively, then taking δ = 10ǫ

and any point x ∈ X we can find eight other points inX that approximate a Euclidean

square 3×3 grid with side length δ centered at x. Applying the same argument to each

of the eight boundary points of this grid, we can expand it to a 5×5 grid. Continuing,

we can build a (2n+ 1)× (2n+ 1) grid centered at x that is a union of approximate

δ sized quadrilaterals that approximate squares uniformly. More precisely, we obtain

a subset of X that is a 2δ-net in D whose points are δ/2 separated, and has the

structure of a Euclidean square mesh. But then O(n2) disks of radius 2δ centered

on this grid cover a ball of radius ≃ δn around x. In other words, O(n2) disks, each

of hyperbolic area O(δ2), cover a ball of hyperbolic radius ≃ nδ, and this ball must

have hyperbolic area at least exp(cδn) for some c > 0. This is impossible for large n,

and the contradiction implies Kc > 1.



BILIPSCHITZ HOMOGENEOUS HYPERBOLIC NETS 11

4. Questions and remarks

The constructions in this paper are quite explicit. What are the explicit bounds

for Kc given by this construction?

Is the function ǫ(K) strictly deceasing on [1, Kc]? Is ǫ(Kc) = 0? Does ǫ(K) tend

to the Margulis constant as K ց 1? Is ǫ(K) continuous? It seems possible that the

nets that minimize ǫ for a given K could have some special combinatorial structure,

and that when this is changed, the optimal ǫ is different. Thus it seems possible that

jumps in ǫ(K) could occur.

What can happen if X is a K-biLipschitz ǫ-net, but we don’t require X be dis-

crete? Then we could have X = D; what else is possible? In general, a K-biLipschitz

homogeneous compact set in R
2 can be a Cantor set, even with K close to 1 (think of

a thin Cantor set constructed using very thick annuli; the outer and inner boundary

boundaries can be rotated all the way around by a biLipschitz map with small con-

stant). What if X has non-trivial connected components? Hoehn and Oversteegen

[6] proved any compact planar set that is homogeneous under self-homeomorphisms

is necessarily either a finite set, a Cantor set, a Jordan curve, a pseudo-arc, a circle

of pseudo-arcs or the product of one of the first two with one of the latter three. It is

still unknown (at least to the author) whether a biLipschitz homogeneous continuum

in R
2 must be a Jordan curve. However, it is known that a biLipschitz homogeneous

Jordan curve in the plane must be a quasicircle [3].

There is nothing special about negative curvature in Theorem 1.1. Analogous ar-

guments hold for the sphere. The dodecahedron divides the sphere into 12 congruent

spherical pentagons and the same division of each pentagon into 5N2 quadrilaterals

gives an ǫ-net with ǫ ≃ 1/N that is K-biLipschitz homogeneous for a fixed K < ∞,

independent of N . Conversely, the blowing-up argument shows that if the sphere

had (K, ǫ)-nets with K arbitrarily close to 1 and ǫ arbitrarily close to 0, then we

could construct a covering map from the plane to the sphere, which is impossible

since they are both simply connected but not homeomorphic. Thus the sphere also

has a critical exponent strictly between 1 and ∞ for the existence of arbitrarily fine,

discrete K-biLipschitz nets. In fact, it seems reasonable that under some type of

smoothness assumption, the Euclidean plane is the only 2-manifold that has (K, ǫ)-

nets with (K − 1) and ǫ both arbitrarily close to zero. If so, what are appropriate
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assumptions? Note that “snow-flaking the plane” (i.e., replacing the metric |x − y|
by |x− y|α for some 0 < α < 1) gives a metric space that is distinct from the plane

and that does have arbitrarily fine bilipschitz homogeneous nets (even with K = 1).
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