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1. Introdution

Suppose E � T is a ompat subset of the unit irle and f : D ! 
 � R

2

is

a onformal mapping whih extends ontinuously to E. Whih mappings of E an

our in this way? Sine f is a homeomorphism of D , there is an obvious topologial

restrition: level sets f

�1

(z) and f

�1

(w) must either oinide or be ontained in

disjoint ars of T. The purpose of this note is to show that this is the only restrition

i� E has logarithmi apaity zero.

Theorem 1. Suppose E � T is ompat. Then the following are equivalent.

1. E has logarithmi apaity zero.

2. Given any homeomorphism g : D ! 
 � R

2

whih extends ontinuously to

T, there is a onformal map f : D ! 
 whih extends ontinuously to T and

f j

E

= gj

E

.

3. Given any ontinuous map g : E ! R

2

suh that z 6= w implies g

�1

(z) and

g

�1

(w) lie in disjoint ars of T, there is a onformal map f : D into 
 whih

extends ontinuously to T and f j

E

= gj

E

.

We will also prove a fourth equivalent ondition that requires a few more de�nitions

to state. A deomposition of ompat set K is a olletion C of pairwise disjoint losed

sets whose union is all of K. A deomposition C of K is alled upper semi-ontinuous

if a olletion of elements whih onverges in the Hausdor� metri must onverge to

a subset of another element. A deomposition of the unit irle is alled separated if

any two distint sets are ontained in disjoint intervals. We say the deomposition is

realized by a funtion f : K ! S

2

if it onsists of the level sets ff

�1

(z) : z 2 S

2

g of

f . If K � T and f is the boundary values of a onformal map on D , we will all the

deomposition onformal. It would be very interesting (and probably very diÆult) to

haraterize whih deompositions of subsets of the irle are onformal; as a speial

ase this ontains the diÆult problem of determining whih irle homeomorphisms

are onformal weldings (see e.g., [6℄, [1℄). However, we an do this if the subset is

small enough.

Theorem 2. A ompat set E � T has zero logarithmi apaity i�

4. A deomposition of E is onformal i� it is upper semi-ontinuous and separated.
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That any of (2), (3) or (4) implies (1) follows from a well known result of Beurling:

a univalent map annot be onstant on a set E � T of positive logarithmi apaity.

Also (2) , (3) ) (4) follows from topologial results of R.L. Moore (we will disuss

these more preisely in Setion 3). Thus the main point for us will be to show (1))

(2). This will follow from the following speial ase:

Theorem 3. Suppose E � T is a losed set of zero logarithmi apaity and h :

T ! T is an orientation preserving homeomorphism. Then there is a onformal map

f : D ! 
 � D onto a Jordan domain 
 so that f j

E

= hj

E

.

The proof of this follows from Evan's theorem from potential theory and an expliit

geometri onstrution. Indeed, if we only want a quasionformal mapping (with

a uniform onstant) whih does the interpolation, then we an essentially draw a

piture of it. To obtain a onformal map we ombine this piture with an iterative

onstrution whih solves a Beltrami equation at eah step to keep the map onformal.

This proof will be given in Setion 2; Theorem 1 will be proven in Setion 3.

Given a losed Jordan urve �, let 
 and 


�

denote the bounded and unbounded

omplementary omponents and let D = fjzj < 1g and D

�

= fjzj > 1g. A losed

set will be alled a onformal welding set if for every orientation preserving home-

omorphsim h : T ! T there is a losed Jordan urve � and onformal maps of

f : D ! 
 and g : D

�

! 


�

suh that f = g Æ h for all x 2 E. It is known that

the unit irle is not suh a set (e.g., see Remark 1 of [1℄), but it is an immediate

onsequene of Theorem 3 and Theorem 8 of [1℄ that

Corollary 4. Every ompat set E � T of zero logarithmi apaity is a onformal

welding set.

Are there onformal welding sets of positive logarithmi apaity? Results in [1℄

imply that every orientation preserving homeomorphism of the irle satis�es f = gÆh

for maps orresponding to some � on some set E of positive logarithmi apaity, so

the question is whether this set an be hosen independent of h.

Finally, we mention that the interpolation results in Theorem 1 imply various

similar results. For example, the separation ondition in (3) is trivially satis�ed by

any homeomorphism g of E into the plane, so there is a onformal map f : D ! 


onto a Jordan domain so that f j

E

= g. Moreover, given any Cantor set F in the
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plane, we an always write it as the homeomorphi image F = g(E) of some zero

apaity Cantor set E on the irle. Given any homeomorphism h of F we an also

apply the theorem to h Æ g : E ! h(F ) to dedue

Corollary 5. Suppose F � R

2

is any ompat, totally disonneted set and h : F !

F

0

� R

2

is any homeomorphism. Then there is a Jordan domain 
 with F � �
 and

a onformal map f : 
! 


0

to another Jordan domain suh that f j

F

= h.

Part of this paper was written during a visit to the Mittag-Le�er institute and

I thank the institute for its hospitality and the use of its failities. The ontent of

this paper originally appeared in the preprint [1℄ on onformal welding; Theorem 3

was used in the proof of the main result there, but was later made unneessary by

an alternate approah. I thank Bob Edwards and Mladen Bestvina for pointing out

Moore's theorem on quotients of the plane to me. I also thank David Hamilton for

reading the �rst draft of [1℄ and generously providing numerous helpful omments:

historial, mathematial and stylisti. I also appreiate the enouragement and om-

ments I reeived at various stages from Kari Astala, John Garnett, Juha Heinonen,

Nik Makarov, Vlad Markovi, Brue Palka, Stefan Rohde and Mihel Zinsmeister.

2. Interpolation of irle homeomorphisms: proof of Theorem 3

In this setion we prove Theorem 3. The proof is quite geometri; we an easily

desribe in pitures a quasionformal map whih takes the required boundary values.

However, if we then solve the Beltrami equation to make the map onformal, we may

alter the boundary values. Thus our proof is an indutive onstrution in whih eah

step involves building an expliit quasionformal map whih \almost" interpolates,

followed by a quasionformal orretion to make it onformal.

It is onvenient to move to the upper half plane. The following result does not

require 
 to be Jordan, but we will �x this in Corollary 8.

Theorem 6. Suppose E � R is a ompat set of zero logarithmi apaity and h :

E ! R is a non-dereasing map. Then there is a onformal map f : H ! 
 � H

suh that f j

E

= hj

E

.

Proof. The starting point is Evans' theorem (e.g., Theorem E.2 of [5℄, Theorem 5.5.6,

page 156 of [11℄, or Chapter 7 of [7℄) whih states that any ompat set of zero
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logarithmi apaity supports a probability measure � so that the potential

u(z) =

Z

R

log

1

jz � xj

d�(x);

tends to +1 at every point of E.

Let v(z) be the harmoni onjugate of u in H suh that lim

x!�1

v(x) = 0 and

lim

x!1

v(x) = �. By symmetry u has normal derivative zero on R n E and hene

v is onstant on eah omponent of R n E (more expliitly, v is given on R n E

by v(x) = ��(�1; x). We will all a domain a slit strip domain if it is of the

form S n [

n

L

n

; where S = fx + iy : �1 < x < 1; 0 < y < 1g is the strip and

L

n

= fx + iy

n

: x

n

� x < 1g are the horizontal slits, for some sequene of points

f(x

n

; y

n

)g � S suh that all the y

n

's are distint and the x

n

!1. See Figure 1. We

will also assume x

n

� 1 for all n. Then f

0

=

1

�

(u+ iv) is a onformal map of H onto

a slit strip, with u(z)! +1 as z ! E. Let W � S denote this slit strip.

Figure 1. A slit strip domain

In order to prove the theorem, it learly suÆes to assume E � [0; 1℄ and h([0; 1℄) �

[0; 1℄. Given any inreasing map h : [0; 1℄! [0; 1℄ are going to build a onformal map

f : W ! H so that lim

x!1

f(x + iy) = h(y) as long as y =2 fy

n

g. For future

onveniene we will think of h as being de�ned on all of W by h(x+ iy) = h(y).

Given a real number s let H(s) denote the horizontal line fx+ iy : y = sg and let

V (s) denote the vertial line fx+ iy : x = sg. If I � R then H(I; s) = fx + iy : x 2

I; y = sg � H(s). Similarly for V (I; s) � V (s). Given s < t letW (s; t) = W\fx+iy :

s � x � tg. Given an interval I � [0; 1℄ let W (I; s; t) =W (s; t) \ fx + iy : y 2 Ig.

Given s 2 R let fI

s

j

g be the (�nitely many) omponents of W \ V (s). Let I

s

j

(t) �

V (t) be the orthogonal projetion of I

s

j

onto V (t). Let J

s

j

be the smallest losed

interval (possibly a point) ontaining h(I

s

j

) (whih might not be onneted beause

h need not be ontinuous).
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Given a sequene of real numbers �

n

& 0 we will onstrut sequenes Æ

n

& 0 and

s

n

%1 and onformal maps f

n

of W

n

= W (�1; s

n

) into H suh that if I

n

j

= I

s

n�1

j

,

J

n

j

= J

s

n�1

j

and a

n

j

is the enter of J

n

j

, then

1. kf

n

� f

n�1

k

1

� �

n

on W

n�1

.

2. f

n

(I

n

j

) is an interval of length Æ

n

jI

n

j

j on the horizontal line H(2

�n�1

) whose

enter projets vertially to a point less than �

n

away from a

n

j

.

3. f : I

n

j

! f(I

n

j

) is quasisymmetri with bounds independent of n and j.

To start the indution we map W (�1; 0) to the vertial strip 


0

= f(x+ iy) : 0 <

x < 1; y > 1g by a Eulidean similarity.

In general, suppose we have de�ned our sequenes up to n � 1. We will de�ne

a onformal map on W

n

by �rst de�ning a quasionformal map g

n

on W

n

and then

applying the measurable Riemann mapping theorem to make it onformal. We de�ne

g

n

in six steps.

Consider the intervals fI

n

j

g � W

n�1

. We are going to de�ne the map g

n

on eah of

the domains W (I

n

j

; s

n�1

; s

n

) (for some suitable large hoie of s

n

to be made later).

For eah j we will de�ne a �nite sequene of numbers

s

n�1

= t

0

< t

1

< t

2

< t

3

< t

4

and de�ne the map on W (I

n

j

; t

k

; t

k+1

) for k = 0; 1; 2; 3. For onveniene we will drop

the n and j and write I

n

j

simply as I.

Step 1: On W

n�1

we let g

n

= f

n�1

.

Step 2: Choose t

1

> t

0

so that W (I; t

0

; t

1

) an be quasionformally mapped to

the retangle fx+ iy : x 2 f

n�1

(I);

7

8

2

�n

< y < 2

�n

g and so that g

n

agrees with f

n�1

along I and is aÆne on I(t

1

). This an be done by a map with uniformly bounded

quasionformal onstant K

2

by hypothesis (3) above.

Step 3: Choose t

2

> t

1

large enough so that W (I; t

1

; t

2

) an be aÆnely mapped to

a trapezoid of height

1

8

2

�n

, top edge of length jf

n�1

(I)j and bottom edge Æ

n

jIj. See

Figure 2. This an be done with quasionformal onstant K

3

whih is independent

of Æ

n

, although the hoie of t

2

does depend on Æ

n

.

Step 4: Choose t

3

> t

2

so large that W (I; t

2

; t

3

) is an be mapped to a \tube" of

width Æ

n

jIj whih onnets the bottom edge of the trapezoid in the previous step to

the interval of length Æ

n

jIj on H(

5

8

2

�n

) whose enter is with in �

n

=2 of a

n

j

. We an

learly hoose Æ

n

so small that the tubes for di�erent j's an be hosen to be disjoint
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Figure 2. The third step

from one another. This is one ondition that determines Æ

n

. Another will be given

following Step 6. Also note that this onstrution an be done with quasionformal

onstant K

4

whih is independent of Æ

n

. See Figure 3.

Figure 3. The fourth step

Step 5: Choose t

4

> t

3

so large that W (I; t

3

; t

4

) an be mapped to a retangle

of height

1

8

2

�n

and width Æ

n

jIj and attah this to the bottom of the tube from the

previous step (thus the bottom edge lies on the line H(2

�n�1

)). These �ve steps

together are illustrated in Figure 4.

Step 6: Now let s

n

= max

j

t

4

= max

j

t

4

(j). For the intervals I

n

j

where this

maximum is attained, do nothing. For intervals where t

4

(j) < s

n

, we replae the

vertial retangle of the fourth step above with a \onstrited tube" as pitured in

Figure 5, where the shape of the partiular tube is hosen so that W (I; t

4

(j); t

n

)

an be mapped quasionformally to the tube with uniformly bounded onstant. We

also assume the map is a similarity on the end squares. Again, the quasionformal

onstant K

6

is independent of the other parameters.

This ompletes the de�nition ofW

n

and the onstrution of the quasionformal map

g

n

: W

n

! H whih extend f

n�1

. To de�ne f

n

we take the Beltrami data assoiated
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n-1

t

t
t
t

1

2

3

4

s

Figure 4. First �ve steps of onstruting g

n

Figure 5. Replaing a tube by a onformally longer one

to g

n

and reet it aross the horizontal line H(2

�n�1

). Solve the Beltrami equation

to obtain a quasionformal map h

n

whih maps H(2

�n�1

) to itself, and suh that

f

n

= h

n

Æ g

n

is onformal. Sine the dilatation of g

n

is uniformly bounded and is

supported of a set of area � 2

�n

Æ

n�1

(this is an upper bound for the area of the

regions onstruted in the four steps above), the map h

n

is uniformly lose to the

identity on H . In partiular, given any �

n

we an hoose Æ

n�1

so small that if � is a

omplex dilatation of norm � � = (K � 1)=(K + 1), with K = max(K

2

; K

3

; K

4

; K

6

)

and whih is supported on a set of area � 2

�n

Æ

n�1

, then the orresponding solution

h of the Beltrami equation satis�es jh(z)� zj � �

n

=2 for all z 2 R

2

. This is the �nal

ondition determining the hoie of Æ

n

.

Conditions (1) and (2) of the indution are now lear. To see that (3) holds, note

that eah interval of the form g

n

(I

n

j

) has length Æ

n

jI

n

j

j and is at least distane Æ

n

jI

n

j

j

from the set where g

n

has non-zero dilatation (by the expliit onstrution of the

onstrited tubes). This ompletes the indution. Passing to the limit we obtain a

onformal map f : W ! 
 � H with the desired properties.
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Given a ompat set E � T we will now de�ne the assoiated \sawtooth" region

W

E

and a 2-quasionformal map between W

E

and D whih keeps E �xed pointwise.

Suppose fI

n

g are the onneted omponents of T nE and for eah n let 

n

(�) be the

irular ar in D with the same endpoints as I

n

and whih makes angle � with I

n

(so



n

(0) = I

n

and 

n

(�=2) is the hyperboli geodesi with the same endpoints as I

n

).

Let C

n

(�) be the region bounded by I

n

and 

n

(�), and let W

E

= D n[

n

C

n

(�=8). It is

easy to hek (see [1℄) that we an msp D to W

E

by a 2-quasionformal map f whih

is the identity on E.

Lemma 7. Suppose E � T is ompat. Then there is a onformal map g : D ! W �

D onto a Jordan domain so that g(E) = �W \ T. Moreover, E has zero logarithmi

apaity i� g(E) does.

Proof. Take ' : D ! W

E

as above. Take the Beltrami data � orresponding to ' and

extend it aross the unit irle by reetion to get a dilatation ~�. Solve the Beltrami

equation f

�z

= ~�f

z

to �nd a 2-quasionformal selfmap h of the disk so that g = hÆ' is

onformal. Sine ' is bi-Lipshitz and h is bi-H�older (sine it is quasionformal), we

see that g is also bi-H�older and hene g(E) has zero logarithmi apaity. Moreover

it is lear that g(D ) is a Jordan domain that only hits the irle at g(E).

Corollary 8. If the map h in Theorem 6 is a homeomorphism then we an take 


to be a Jordan domain suh that �
 \ �H = E.

Proof. Assume that E; h(E) � [�1; 1℄ and let F be the onformal map of the vertial

strip fx+ iy : y > 0;�1 < x < 1g to the hemisphere D \ H . Let G : H !W � H be

given by Lemma 7 (after onjugating from D to H ). Apply Theorem 6 to the map

F

�1

Æh ÆG

�1

restrited to G(E) to �nd a map f . Then F Æ f ÆG is a onformal map

of H to a Jordan domain in H whih equals h on E.

3. Boundary interpolation sets: proof of Theorem 1

In this setion we will prove Theorem 1. The basi fat whih we need is the

following result of R.L. Moore.

Theorem 9 (Moore, [8℄). Suppose C is an upper semi-ontinuous olletion of dis-

joint ontinua (ompat, onneted sets) in R

2

eah of whih does not separate R

2

.
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Then the quotient spae formed by identifying eah set to a point is homeomorphi to

R

2

.

Also see Daverman's book [2℄. For an overview of Moore's life and work see [4℄ and

[12℄ (reprinted in [3℄). For another appliation of Moore's topologial work (i.e. the

Moore triod theorem) to onformal mappings, see Pommerenke's paper [10℄.

We will also need a few easier fats, starting with the following version of Lindel�of's

theorem.

Lemma 10. Suppose f : D ! 
 is an orientation preserving homeomorphism whih

extends ontinuously to the boundary and whih is non-onstant on every boundary

ar. If  � 
 is an open ar with one endpoint on �
, then ~ = f

�1

() has a well

de�ned endpoint on T.

Proof. Sine f is a homeomorphism, ~ leaves every ompat subset of D and hene

aumulates on T. If the aumulation set is a point we are done. Otherwise it is an

interval, and we dedue that  aumulates on the image of this interval, whih is

not a single point by assumption. This is a ontradition and proves the lemma.

Lemma 11. Suppose f; g are both orientation preserving homeomorphisms of the

disk onto a planar domain 
 whih extend ontinuously to the boundary and whih

are non-onstant on every boundary ar. Then h = f

�1

Æ g is a homeomorphism of

the disk whih extends ontinuously to the boundary and these boundary values are a

homeomorphism of the irle.

Proof. If h did not extend ontinuously, then there would be a urve  whih on-

verges to a single boundary point, but suh that h() does not. However, sine g is

ontinuous, g() does onverge to a point of �
 and by Lemma 10, then h() also

terminates; thus h must be ontinuous

If h were not 1-to-1 on T, then there would be distint points x; y 2 T suh that

h(x) = h(y). If  is a Jordan urve in D with endpoints at x and y (say the hyperboli

geodesi onneting them), then h() is a losed Jordan urve (both endpoints at

h(x) = h(y)) and whih enloses a region W � D . Thus f(h()) = g() is a Jordan

urve in 
 with both endpoints equal on �
 and whose bounded omplementary

omponent f(W ) is ontained in 
. But this implies the interval of T between x and
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y is mapped to a single point by g, ontrary to assumption. A ontinuous, 1-to-1

map of T to itself must be a homeomorphism, so we are done.

The following two fats are easy and left to the reader.

Lemma 12. Suppose f : D ! 
 is a homeomorphism whih extends ontinuously

to the boundary. Then the orresponding deomposition of T is separated and upper

semi-ontinuous.

Lemma 13. Suppose C is a deomposition of T whih is separated and upper semi-

ontinuous. Construt a deomposition D of the losed disk by adjoining to eah

(non-singleton) set E 2 C its hyperboli onvex hull (i.e., the losure of W

E

(�=2)).

Then D is an upper semi-ontinuous deomposition of D .

Proof of Theorem 1. We will prove (2), (3) and (2)) (4)) (1)) (2).

(3) ) (2): This is easy sine if g satis�es the ondition in (2) its restrition to E

automatially satis�es the onditions in (3).

(2) ) (3): Suppose g : E ! R

2

is a ontinuous funtion suh that for any

distint points z; w 2 R

2

, g

�1

(z) and g

�1

(w) lie is disjoint ars of T. Then the

deomposition assoiated to g is separated and upper semi-ontinuous (by Lemma

12). Now use Lemma 13 to extend the deomposition of E to a upper semi-ontinuous

deomposition of the plane by non-separating ontinua. Then by Moore's theorem,

there is a homeomorphism h from the quotient spae to the plane. Let F = h(E).

Then H = g Æ h

�1

is well de�ned, one-to-one and ontinuous on F . Hene H an

be extended to a homeomorphism of the plane and so H Æ h Æ 1=�z restrited to D is

ontinuous, a homeomorphism on the interior and equals g on E. By (2) there is a

onformal map on D whih equals g on E and we are done.

(2) ) (4): Suppose we have a deomposition of E whih is separated and upper

semi-ontinuous. Use Lemma 13 to extend this to upper semi-ontinuous deompo-

sition of S

2

by ontinua whih do not separate the plane. By Moore's theorem there

is a homeomorphism from the quotient spae to the sphere, so restriting this to D

�

gives a homeomorphism of D

�

whih extends ontinuously to T and realizes the orig-

inal deomposition. Sine we are assuming (2) holds, this means there is a onformal

map f equal to g on E.
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(4) ) (1): Take the trivial deomposition where of all of E is a single element.

If there is a onformal map whih realizes this, then E must have zero logarithmi

apaity by a well known result of Beurling (e.g., Theorem 11.5, [9℄).

(1) ) (2): Suppose E � T is a ompat set of zero logarithmi apaity and

suppose g is a ontinuous map on D whih is a homeomorphism on D . Let W

E

be the

sawtooth region assoiated to E (see Setion 2) and let F : D !W

E

be the standard

quasionformal map whih �xes E pointwise. By replaing g by g ÆF if neessary, we

may assume g is non-onstant on every boundary ar (sine E ontains no intervals)

and that g(
) omits some disk and hene is hyperboli.

Let 
 = g(D ) and let f : D ! 
 be a onformal map. By Lemma 11, f

�1

Æ g

is a homeomorphism of the irle and so by Theorem 3 there is a onformal map

' : D ! 


0

� D whih equals f

�1

Æ g on E. Thus f Æ ' is a onformal map whih

equals g on E, as desired.
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