Dimension in Transcendental Dynamics 4: A Julia set of dimension one

Dave Sixsmith

Department of Mathematics and Statistics The Open University

> Open University June 2014

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

f is a transcendental entire function.

Proposition 1 $dim_H F(f) \in \{0, 2\}.$

Proposition 2

 $\dim_H J(f) \in [1, 2].$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Theorem 1 (Stallard, 1997, 2000)

For each $p \in (1,2]$ there is a transcendental entire function f such that dim_{*H*} J(f) = p.

Theorem 2 (Stallard, 1996)

If $f \in \mathcal{B}$, then dim_H J(f) > 1.

Theorem 3 (Stallard, 1994)

 $\dim_H K(f) > 0.$

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Theorem 4 (Bishop, 2012)

There is a transcendental entire function f such that:

$$1 \quad \dim_H J(f) = \dim_H J(f) \cap A(f) = 1.$$

2 dim_H(
$$I(f) \setminus A(f)$$
) = 0.

3 Given $\alpha > 0$, f can be constructed such that

$$\dim_H K(f) = \dim_H (J(f) \setminus A(f)) < \alpha.$$

4 ** dim_P
$$J(f) = 1$$
.

5 ** J(f) has locally finite 1-dimensional Hausdorff measure.

6 ** f can be constructed to have arbitrarily slow growth.

In our example, J(f), $J(f) \setminus A(f)$ and $(J(f) \cap I(f)) \setminus A(f)$ are each as small as is possible for a transcendental entire

function; in some sense, our example is the "least chaotic" or "most normal" transcendental entire function.

This talk

- In this talk we sketch the construction and proof of Bishop's result (excluding asterised items).
- All errors and omissions are mine; in particular I may have omitted important elements of the proof in my attempt to present only the basic structure.
- We write f ≈ g to indicate that, in some domain, the functions f and g are very close to being equal, in a way which is intuitively obvious and can be made precise. We will only worry about the intuition.
- Since the construction involves a multiply connected Fatou component, we will consider first a simpler example of Baker.

Define a transcendental entire function g by

$$g(z) = cz^2 \prod_{k=1}^{\infty} \left(1 + \frac{z}{a_k}\right)$$

Here c > 0 is small, $a_1 > 0$ is large, and we set

$$a_{n+1}=ca_n^2\prod_{k=1}^n\left(1+\frac{a_n}{a_k}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Note that, for large *n*, we have $a_{n+1} \approx g(a_n)$.

If |z| is small then $g(z) \approx cz^2$. Hence g has an attracting Fatou component near the origin.

Behaviour far from the origin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Bishop modifies Baker's function so that:

- There is no 'gap' between small modulus behaviour and large modulus behaviour.
- The 'error' between the function and its approximation is very small.
- The Julia set can be partitioned into three subsets, the size of each of which can be controlled:
 - Points whose orbit eventually stays near the origin.
 - Points whose orbit eventually always 'jumps' up an annulus.
 - Points which 'jump' down annuli infinitely often.

Near the origin: the dynamics of T_2

- Define a function $T_2(z) = 2z^2 1$.
- The following diagram commutes:

Hence J(T₂) = [-1, 1], and all other points iterate to infinity.

- Define a function $p_{\lambda}(z) = \lambda T_2(z)$, for $\lambda > 1$.
- p_{λ} maps two small intervals to [-1, 1]; all other points iterate to infinity.
- $p_{\lambda}^{\circ k}$ maps 2^k small intervals to [-1, 1].
- A simple calculation based on the size and number of these intervals shows that dim_H J(p_λ) → 0 as λ → ∞.

(日) (日) (日) (日) (日) (日) (日)

The definition of the function

- Choose $\lambda > 1$ arbitrarily large, so that dim_{*H*} $J(p_{\lambda}) < \alpha$.
- Choose $R_1 > 0$ large and $K_0 \in \mathbb{N}$ large.
- Define a sequence of (large, increasing) integers (m_k) (which depend on K₀) – to be specified later.
- Define a transcendental entire function f by

$$f(z) = p_{\lambda}(z)^{\circ K_0} \prod_{k=1}^{\infty} \left(1 - \frac{1}{2} \left(\frac{z}{R_k}\right)^{m_k}\right).$$

Here we set

$$\mathcal{R}_{n+1} = \mathcal{p}_{\lambda}(2\mathcal{R}_n)^{\circ \mathcal{K}_0} \prod_{k=1}^n \left(1 - \frac{1}{2}\left(\frac{2\mathcal{R}_n}{\mathcal{R}_k}\right)^{m_k}\right),$$

• so that $R_{n+1} \approx f(2R_n)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choose
$$K_0 = R_1 = 10$$
.
Then $m_1 \approx 10^3$, $m_2 \approx 2^{1000}$, $R_2 \approx 10^{300}$.
 $f(z) \approx p_\lambda(z)^{\circ 10} \left(1 - \frac{1}{2} \left(\frac{z}{10}\right)^{1000}\right) \left(1 - \frac{1}{2} \left(\frac{z}{10^{300}}\right)^{2^{1000}}\right) \dots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $|z| < R_1/2$, then $f(z) \approx p_\lambda(z)^{\circ K_0}$.

Hence there is a Cantor repeller E ⊂ {z : |z| ≤ R₁/2} with dim_H E < α.</p>

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

If $n \in \mathbb{N}$ and $R_n/2 \le |z| \le R_{n+1}/2$, then

$$f(z) \approx p_{\lambda}(z)^{\circ K_0} \prod_{k=1}^n \left(1 - \frac{1}{2} \left(\frac{z}{R_k}\right)^{m_k}\right)$$
(1)

$$\approx \text{const} \cdot z^{2^{K_0} + \sum_{k=1}^{n-1} m_k} \left(1 - \frac{1}{2} \left(\frac{z}{R_n} \right)^{m_n} \right) \qquad (2)$$
$$= \text{const} \cdot \left(\frac{z}{R_n} \right)^{m_n} \left(2 - \left(\frac{z}{R_n} \right)^{m_n} \right). \qquad (3)$$

Note that the (m_n) are chosen to give equality in (3).
If n ∈ N and 3R_n/2 ≤ |z| ≤ R_{n+1}/2, then

$$f(z) \approx \text{const} \cdot z^{2m_n}.$$
 (4)

The geometry of T_2 : part 1

Recall
$$T_2(z) = 2z^2 - 1$$
.

Image (part): Bishop (2012)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The geometry of T_2 : part 2

Define a function
$$H_n(z) = z^n(2-z^n) = -T_2\left(\frac{z^n-1}{\sqrt{2}}\right).$$

Image (part): Bishop (2012)

・ コット (雪) (小田) (コット 日)

- \blacksquare H_n is conformal in the 'petals'.
- \blacksquare *H_n* is 2*n*-1 elsewhere.
- These facts will be used later when counting preimages.

The geometry of T_2 : part 3

- Note that we have shown that $f(z) \approx \text{const} \cdot H_n(z/R_n)$, where the constant is comparable to R_{n+1} .
- Indeed, this fact motivated our choice of the (m_k) and the structure of the polynomials in f.

Image (part): Bishop (2012)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hence we have good control on the behaviour of f.

Behaviour far from the origin, i.e. $|z| \ge R_1/2$

- Set $A_n = \{z : 1/2R_n \le |z| \le 4R_n\}$ (includes petals).
- Set $A'_n = \{z : 3/2R_n \le |z| \le 5/2R_n\}$ (outside petals).
- Set $B_n = \{z : 4R_n \le |z| \le 1/2R_{n+1}\}$ (far from petals).
- From the previous approximations, it is straightforward to show that $f(A'_n) \supset A_{n+1}$ and hence $f(B_n) \subset B_{n+1}$.
- Hence $B_n \subset F(f)$, and B_n must be in a multiply connected Fatou component.

(日) (日) (日) (日) (日) (日) (日)

F(f) and J(f)

Partition the Julia set

- For $k \leq 0$, set $A_k = \{z : |z| \leq R_1/2, f^{k+1}(z) \in A_1\}$.
- Set $A = \bigcup_{k=-\infty}^{\infty} A_k$.
- Set $B = \bigcup_{k=1}^{\infty} B_k$.
- The orbit of a point z must eventually:
 - Land in *B* in which case $z \in F(f) \cap A(f)$. We have no further interest in these points.
 - Land in *E*. Let the set of these points be *E*', and note that $E' \subset J(f) \cap K(f)$.
 - Always lie in A, i.e. $z \in X := \bigcap_{n=1}^{\infty} f^{-n}(A)$. We further partition this set as follows:
 - $Z \subset X$ consists of those points whose orbit, eventually always 'goes up' an annulus. Note that $Z = J(f) \cap A(f)$.
 - $Y \subset X$ consists of those points whose orbit, fails to 'goes up' an annulus infinitely often. Note that $Y \subset J(f) \setminus A(f)$.

The result follows from the following.

Lemma 5

If
$$S \subset \mathbb{C}$$
, then $\dim_H f^{-1}(S) = \dim_H f(S) = \dim_H S$.

Lemma 6

 $\dim_H E' = \dim_H E < \alpha.$

Lemma 7

 $\dim_H Z = 1.$

Lemma 8

 $\dim_H Y \cap A_m \leq \alpha, \text{ for } m \in \mathbb{Z}.$ Moreover, for $z \in Y$, let $m(z) = \min\{m : \exists n \text{ s.t. } f^n(z) \in A_m\}.$ Then $\dim_H \{z \in Y : m(z) \geq m\} \to 0, \text{ as } m \to \infty.$

If $S \subset \mathbb{C}$, then dim_{*H*} $f^{-1}(S) = \dim_H f(S) = \dim_H S$.

This follows from standard properties of Hausdorff dimension for any non-constant entire function.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This follows from the previous lemma, and the size of *E*.

 $\dim_H Z = 1.$

- By the earlier lemma, we only need to estimate, for each $m \in \mathbb{N}$, the dimension of $\{z \in Z : f^n(z) \in A_{m+n}, \text{ for } n \ge 0\}$.
- For $n \ge 0$, consider the nested topological annuli

$$\Gamma_{m,n} = \{ z \in A_m : f^j(z) \in A_{m+j}, \text{ for } j = 1, \dots, n \}.$$

- Recall that f is very closed to a monomial in each A'_n .
- It can be deduced that the widths of the Γ_{m,n} decrease to zero uniformly in n, and these sets limit on a smooth Jordan curve.

(日) (日) (日) (日) (日) (日) (日)

Penultimate slide, final lemma.

Lemma 9

 $\dim_H Y \cap A_m \leq \alpha, \text{ for } m \in \mathbb{Z}.$ Moreover, for $z \in Y$, let $m(z) = \min\{m : \exists n \text{ s.t. } f^n(z) \in A_m\}.$ Then $\dim_H\{z \in Y : m(z) \geq m\} \to 0, \text{ as } m \to \infty.$

- We cover $Y \cap A_m$ with nested collections of sets W, where W is such that $f^{n-1}(W) \subset A_{k'}$ and $f^n(W) = A_k$, where k < k'.
- We can count the number of such preimages using the previous comments on the multiplicity of H_n .
- We can estimate the diameters of these preimages using the scaling properties of *H_n*.
- Both parts of the lemma can be derived from these facts.

Thanks to Chris Bishop for his assistance with the preparation of these slides.

