Dimension in Transcendental Dynamics 4: A Julia set of dimension one

Dave Sixsmith

Department of Mathematics and Statistics
The Open University

Open University
 June 2014

Dimensions of sets - revision: 1

f is a transcendental entire function.
Proposition 1
$\operatorname{dim}_{H} F(f) \in\{0,2\}$.
Proposition 2 $\operatorname{dim}_{H} J(f) \in[1,2]$.

Dimensions of sets - revision: 2

$$
\begin{aligned}
& \text { Theorem } 1 \text { (Stallard, 1997, 2000) } \\
& \text { For each } p \in(1,2] \text { there is a transcendental entire function } f \\
& \text { such that } \operatorname{dim}_{H} J(f)=p \text {. }
\end{aligned}
$$

Theorem 2 (Stallard, 1996)
 If $f \in \mathcal{B}$, then $\operatorname{dim}_{H} J(f)>1$.

Theorem 3 (Stallard, 1994) $\operatorname{dim}_{H} K(f)>0$.

What about dimension equal to one?

Theorem 4 (Bishop, 2012)

There is a transcendental entire function f such that:
$1 \operatorname{dim}_{H} J(f)=\operatorname{dim}_{H} J(f) \cap A(f)=1$.
$2 \operatorname{dim}_{H}(I(f) \backslash A(f))=0$.
3 Given $\alpha>0$, f can be constructed such that

$$
\operatorname{dim}_{H} K(f)=\operatorname{dim}_{H}(J(f) \backslash A(f))<\alpha
$$

$4{ }^{* *} \operatorname{dim}_{P} J(f)=1$.
$5{ }^{* *} J(f)$ has locally finite 1-dimensional Hausdorff measure.
$6{ }^{* *} f$ can be constructed to have arbitrarily slow growth.
'In our example, $J(f), J(f) \backslash A(f)$ and $(J(f) \cap I(f)) \backslash A(f)$ are each as small as is possible for a transcendental entire function; in some sense, our example is the "least chaotic" or "most normal" transcendental entire function'.

This talk

- In this talk we sketch the construction and proof of Bishop's result (excluding asterised items).
- All errors and omissions are mine; in particular I may have omitted important elements of the proof in my attempt to present only the basic structure.
\square We write $f \approx g$ to indicate that, in some domain, the functions f and g are very close to being equal, in a way which is intuitively obvious and can be made precise. We will only worry about the intuition.
■ Since the construction involves a multiply connected Fatou component, we will consider first a simpler example of Baker.

A multiply connected wandering domain

Baker 1963, 1976

Define a transcendental entire function g by

$$
g(z)=c z^{2} \prod_{k=1}^{\infty}\left(1+\frac{z}{a_{k}}\right) .
$$

Here $c>0$ is small, $a_{1}>0$ is large, and we set

$$
a_{n+1}=c a_{n}^{2} \prod_{k=1}^{n}\left(1+\frac{a_{n}}{a_{k}}\right) .
$$

Note that, for large n, we have $a_{n+1} \approx g\left(a_{n}\right)$.

Behaviour near the origin

If $|z|$ is small then $g(z) \approx c z^{2}$.
Hence g has an attracting Fatou component near the origin.

Behaviour far from the origin

$■$ Set $A_{n}=\left\{z: \sqrt{a_{n}} \leq|z| \leq a_{n}^{2}\right\}$.
$■$ Set $B_{n}=\left\{z: a_{n}^{2}<|z|<\sqrt{a_{n+1}}\right\}$.
■ If n is sufficiently large
\square In A_{n} we have $g(z) \approx$ const $\cdot z^{n+1}\left(1+\frac{z}{a_{n}}\right)$.
■ In B_{n} we have $g(z) \approx$ const $\cdot z^{n+2}$.
■ If $|z|=\sqrt{a_{n}}$, then $|g(z)|<\sqrt{a_{n+1}}$.
■ If $|z|=a_{n}^{2}$, then $|g(z)|>a_{n+1}^{2}$.
■ Hence $g\left(A_{n}\right) \supset A_{n+1}$ and $g\left(B_{n}\right) \subset B_{n+1}$.
■ Hence $B_{n} \subset F(g)$, and B_{n} must be contained in a multiply connected Fatou component.

Bishop's approach

Bishop modifies Baker's function so that:

- There is no 'gap' between small modulus behaviour and large modulus behaviour.
- The 'error' between the function and its approximation is very small.
- The Julia set can be partitioned into three subsets, the size of each of which can be controlled:
- Points whose orbit - eventually - stays near the origin.

■ Points whose orbit - eventually - always 'jumps' up an annulus.
■ Points which 'jump' down annuli infinitely often.

Near the origin: the dynamics of T_{2}

■ Define a function $T_{2}(z)=2 z^{2}-1$.
■ The following diagram commutes:

■ Hence $J\left(T_{2}\right)=[-1,1]$, and all other points iterate to infinity.

Near the origin: the dynamics of p_{λ}

■ Define a function $p_{\lambda}(z)=\lambda T_{2}(z)$, for $\lambda>1$.

- p_{λ} maps two small intervals to $[-1,1]$; all other points iterate to infinity.
- $p_{\lambda}^{\circ k}$ maps 2^{k} small intervals to $[-1,1]$.
\square A simple calculation based on the size and number of these intervals shows that $\operatorname{dim}_{H} J\left(p_{\lambda}\right) \rightarrow 0$ as $\lambda \rightarrow \infty$.

The definition of the function

■ Choose $\lambda>1$ arbitrarily large, so that $\operatorname{dim}_{H} J\left(p_{\lambda}\right)<\alpha$.
\square Choose $R_{1}>0$ large and $K_{0} \in \mathbb{N}$ large.

- Define a sequence of (large, increasing) integers (m_{k}) (which depend on K_{0}) - to be specified later.
■ Define a transcendental entire function f by

$$
f(z)=p_{\lambda}(z)^{\circ} K_{0} \prod_{k=1}^{\infty}\left(1-\frac{1}{2}\left(\frac{z}{R_{k}}\right)^{m_{k}}\right)
$$

■ Here we set

$$
R_{n+1}=p_{\lambda}\left(2 R_{n}\right)^{\circ} K_{0} \prod_{k=1}^{n}\left(1-\frac{1}{2}\left(\frac{2 R_{n}}{R_{k}}\right)^{m_{k}}\right)
$$

$■$ so that $R_{n+1} \approx f\left(2 R_{n}\right)$.

To get an idea

■ Choose $K_{0}=R_{1}=10$.
■ Then $m_{1} \approx 10^{3}, m_{2} \approx 2^{1000}, R_{2} \approx 10^{300}$.

$$
f(z) \approx p_{\lambda}(z)^{\circ 10}\left(1-\frac{1}{2}\left(\frac{z}{10}\right)^{1000}\right)\left(1-\frac{1}{2}\left(\frac{z}{10^{300}}\right)^{2^{1000}}\right) \ldots
$$

Approximating the function: 1

■ If $|z|<R_{1} / 2$, then $f(z) \approx p_{\lambda}(z)^{\circ} K_{0}$.
■ Hence there is a Cantor repeller $E \subset\left\{z:|z| \leq R_{1} / 2\right\}$ with $\operatorname{dim}_{H} E<\alpha$.

Approximating the function: 2

■ If $n \in \mathbb{N}$ and $R_{n} / 2 \leq|z| \leq R_{n+1} / 2$, then

$$
\begin{align*}
f(z) & \approx p_{\lambda}(z)^{\circ} K_{0} \prod_{k=1}^{n}\left(1-\frac{1}{2}\left(\frac{z}{R_{k}}\right)^{m_{k}}\right) \tag{1}\\
& \approx \text { const } \cdot z^{2^{K_{0}}+\sum_{k=1}^{n-1} m_{k}}\left(1-\frac{1}{2}\left(\frac{z}{R_{n}}\right)^{m_{n}}\right) \tag{2}\\
& =\text { const } \cdot\left(\frac{z}{R_{n}}\right)^{m_{n}}\left(2-\left(\frac{z}{R_{n}}\right)^{m_{n}}\right) \tag{3}
\end{align*}
$$

\square Note that the $\left(m_{n}\right)$ are chosen to give equality in (3).
■ If $n \in \mathbb{N}$ and $3 R_{n} / 2 \leq|z| \leq R_{n+1} / 2$, then

$$
\begin{equation*}
f(z) \approx \text { const } \cdot z^{2 m_{n}} \tag{4}
\end{equation*}
$$

The geometry of T_{2} : part 1

Recall $T_{2}(z)=2 z^{2}-1$.

Image (part): Bishop (2012)

The geometry of T_{2} : part 2

\square Define a function $H_{n}(z)=z^{n}\left(2-z^{n}\right)=-T_{2}\left(\frac{z^{n}-1}{\sqrt{2}}\right)$.

Image (part): Bishop (2012)

- H_{n} is conformal in the 'petals'.
- H_{n} is $2 n-1$ elsewhere.

■ These facts will be used later when counting preimages.

The geometry of T_{2} : part 3

■ Note that we have shown that $f(z) \approx$ const $\cdot H_{n}\left(z / R_{n}\right)$, where the constant is comparable to R_{n+1}.
■ Indeed, this fact motivated our choice of the $\left(m_{k}\right)$ and the structure of the polynomials in f.

Image (part): Bishop (2012)
■ Hence we have good control on the behaviour of f.

Behaviour far from the origin, i.e. $|z| \geq R_{1} / 2$

\square Set $A_{n}=\left\{z: 1 / 2 R_{n} \leq|z| \leq 4 R_{n}\right\}$ (includes petals).
■ Set $A_{n}^{\prime}=\left\{z: 3 / 2 R_{n} \leq|z| \leq 5 / 2 R_{n}\right\}$ (outside petals).
■ Set $B_{n}=\left\{z: 4 R_{n} \leq|z| \leq 1 / 2 R_{n+1}\right\}$ (far from petals).
\square From the previous approximations, it is straightforward to show that $f\left(A_{n}^{\prime}\right) \supset A_{n+1}$ and hence $f\left(B_{n}\right) \subset B_{n+1}$.
■ Hence $B_{n} \subset F(f)$, and B_{n} must be in a multiply connected Fatou component.

$F(f)$ and $J(f)$

Partition the Julia set

\square For $k \leq 0$, set $A_{k}=\left\{z:|z| \leq R_{1} / 2, f^{k+1}(z) \in A_{1}\right\}$.
\square Set $A=\bigcup_{k=-\infty}^{\infty} A_{k}$.
■ Set $B=\bigcup_{k=1}^{\infty} B_{k}$.

- The orbit of a point z must eventually:

■ Land in B in which case $z \in F(f) \cap A(f)$. We have no further interest in these points.
■ Land in E. Let the set of these points be E^{\prime}, and note that $E^{\prime} \subset J(f) \cap K(f)$.
■ Always lie in A, i.e. $z \in X:=\cap_{n=1}^{\infty} f^{-n}(A)$. We further partition this set as follows:
$\square Z \subset X$ consists of those points whose orbit, eventually always 'goes up' an annulus. Note that $Z=J(f) \cap A(f)$.

- $Y \subset X$ consists of those points whose orbit, fails to 'goes up' an annulus infinitely often. Note that $Y \subset J(f) \backslash A(f)$.

The result follows from the following.

> Lemma 5
> If $S \subset \mathbb{C}$, then $\operatorname{dim}_{H} f^{-1}(S)=\operatorname{dim}_{H} f(S)=\operatorname{dim}_{H} S$.

Lemma 6

$\operatorname{dim}_{H} E^{\prime}=\operatorname{dim}_{H} E<\alpha$.
Lemma 7
$\operatorname{dim}_{H} Z=1$.

Lemma 8

 $\operatorname{dim}_{H} Y \cap A_{m} \leq \alpha$, for $m \in \mathbb{Z}$.Moreover, for $z \in Y$, let $m(z)=\min \left\{m: \exists n\right.$ s.t. $\left.f^{n}(z) \in A_{m}\right\}$. Then $\operatorname{dim}_{H}\{z \in Y: m(z) \geq m\} \rightarrow 0$, as $m \rightarrow \infty$.

If $S \subset \mathbb{C}$, then $\operatorname{dim}_{H} f^{-1}(S)=\operatorname{dim}_{H} f(S)=\operatorname{dim}_{H} S$.

This follows from standard properties of Hausdorff dimension for any non-constant entire function.

$\operatorname{dim}_{H} E^{\prime}=\operatorname{dim}_{H} E<\alpha$.

This follows from the previous lemma, and the size of E.

$\operatorname{dim}_{H} Z=1$.

■ By the earlier lemma, we only need to estimate, for each $m \in \mathbb{N}$, the dimension of $\left\{z \in Z: f^{n}(z) \in A_{m+n}\right.$, for $\left.n \geq 0\right\}$.
■ For $n \geq 0$, consider the nested topological annuli

$$
\Gamma_{m, n}=\left\{z \in A_{m}: f^{j}(z) \in A_{m+j}, \text { for } j=1, \ldots, n\right\}
$$

■ Recall that f is very closed to a monomial in each A_{n}^{\prime}.

- It can be deduced that the widths of the $\Gamma_{m, n}$ decrease to zero uniformly in n, and these sets limit on a smooth Jordan curve.

Penultimate slide, final Iemma.

Lemma 9

$\operatorname{dim}_{H} Y \cap A_{m} \leq \alpha$, for $m \in \mathbb{Z}$.
Moreover, for $z \in Y$, let $m(z)=\min \left\{m: \exists n\right.$ s.t. $\left.f^{n}(z) \in A_{m}\right\}$.
Then $\operatorname{dim}_{H}\{z \in Y: m(z) \geq m\} \rightarrow 0$, as $m \rightarrow \infty$.
■ We cover $Y \cap A_{m}$ with nested collections of sets W, where W is such that $f^{n-1}(W) \subset A_{k^{\prime}}$ and $f^{n}(W)=A_{k}$, where $k<k^{\prime}$.
■ We can count the number of such preimages using the previous comments on the multiplicity of H_{n}.

- We can estimate the diameters of these preimages using the scaling properties of H_{n}.
\square Both parts of the lemma can be derived from these facts.

Thanks

Thanks to Chris Bishop for his assistance with the preparation of these slides.

