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1. Statement of results

If K � R

2

is ompat, let N(K; �) be the minimal number of �

balls needed to over K. We de�ne the upper and lower Minkowski

dimension as

Mdim(K) = lim sup

�!0

logN(K; �)

log 1=�

;

Mdim(K) = lim inf

�!0

logN(K; �)

log 1=�

:

If the two values agree, the ommon value is simply alled the Minkowski

dimension of K and is denoted Mdim(K).

Consider a group G of M�obius transformations ating on the two

sphere S

2

. Suh transformations are identi�ed elements of PSL(2; C )

in a natural way and G is alled Kleinian if it is disrete in this topology

(i.e., the identity is isolated inG). G is alled elementary if it ontains a

�nite index Abelian subgroup. In this paper we will onsider only non-

elementary groups. For a non-elementary group, the limit set, �(G),

is the aumulation set (on S

2

) of the orbit of any point z

0

2 S

2

(and

is independent of the point). The omplement 
(G) = S

2

n� is alled

the ordinary set. In this paper we will always assume 
 is non-empty

and that the group is onjugated in PSL(2; C ) so 1 2 
.

For any Kleinian group, the quotient R = 
=G is a union of Riemann

surfaes. We say that G is analytially �nite if R = R

1

[ � � � [ R

s

is a

�nite union of �nite type surfaes (i.e., eah R

j

is ompat or ompat

with a �nite number of puntures). The Ahlfors �niteness theorem

says that if G is �nitely generated then G is analytially �nite.



2 CHRISTOPHER J. BISHOP

If z

0

2 
(G) then the ritial exponent (or Poinar�e exponent) is

de�ned as

Æ(G) = inffs :

X

g2G

dist(g(z

0

);�)

s

<1g;

where distane is in the spherial metri. It is easy to show it does

not depend on the hoie of z

0

. Usually Æ(G) is de�ned by extending

the ation of G on S

2

to a group of isometries of the hyperboli 3-ball

B

3

� R

3

, and then onsidering the series

X

G

exp(1� jg(0)j)

s

:

However, it is easy to see that this de�nition gives the same number.

Theorem 1.1. Suppose G is an analytially �nite, non-elementary

Kleinian group. If area(�(G)) = 0 then Æ(G) = Mdim(�(G)).

The assumption that G is non-elementary is needed in Theorem 1.1,

for if G is a rank 1, yli, paraboli group then Æ(G) = 1=2, but � is

a single point. De�ne the Hausdor� ontent

H

1

�

(K) = inff

X

r

�

j

: K � [

j

D(x

j

; r

j

)g;

(the in�mum is over all overings of K by disks ) and

dim(K) = inff� : H

1

�

(K) = 0g:

This is the Hausdor� dimension ofK and it is easy to see that dim(K) �

Mdim(K). Jones and I proved that Æ(G) � dim(�) for any non-

elementary Kleinian group (Theorem 1.1 of [4℄). Combining this result

and Theorem 1.1 we easily dedue
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Corollary 1.2. If G is an analytially �nite Kleinian group then the

Minkowski dimension of � exists and equals the Hausdor� dimension.

Corollary 1.3. If G is an analytially �nite, non-elementary Kleinian

group and �(G) has zero area then Æ(G) = dim(�).

Di�erent proofs of these results are given in [3℄ and [4℄ using esti-

mates for the heat kernel on the hyperboli 3-manifold assoiated to

the Kleinian group G. The proof given here does not require these

tehniques, i.e., it is a purely \two-dimensional" argument. As suh,

it may be easier to adapt to other settings, e.g., Julia sets of rational

mappings.

G is alled geometrially �nite if it is �nitely generated and there is

a �nite sided fundamental polyhedron for the ation of G on B . The

limit sets of suh groups must have zero area [2℄, so our results apply to

them. For geometrially �nite groups, Corollary 1.2 was independently

established by Stratmann and Urba�nski in [11℄. Corollary 1.3 is also

well known in this ase, e.g., [12℄.

The setions of the paper are organized as follows.

Setion 2: We de�ne a related ritial exponent Æ

Whit

and show

Æ

Whit

(K) � Mdim(K) for any ompatK, with equality if area(K) =

0.

Setion 3: We show Æ � Æ

Whit

for analytially �nite groups with

equality if 
(G)=G is ompat.

Setion 4: We de�ne good and bad horoballs and prove a lemma

giving some of their properties.
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Setion 5: We prove the main theorem when most horoballs of G

are good.

Setion 6: We prove the theorem in the ase dim(�) = 2.

Setion 7: We state a lemma and �nish the proof assuming the

lemma and dim(�) < 2.

Setion 8: We prove the lemma.

Notation: In this paper A ' B means that A=B is bounded and

bounded away from 0. Given a square S in the plane and � > 0, �S

denotes the onentri square with diam(�S) = �diam(S).

I thank the referee for arefully reading the manusript and supplying

many suggestions whih greatly improved the exposition.

2. Whitney squares and Minkowski dimension

A Whitney deomposition of a domain 
 � R

2

is a olletion of

disjoint (exept for boundaries) squares fQ

j

g suh that 
 = [

j

Q

j

and

diam(Q) � dist(Q

j

; �
) � 4diam(Q

j

):

The existene of a Whitney deomposition for any open set is a stan-

dard fat in real analysis (e.g., Theorem VI.1 of [10℄). One an simply

take a maximal olletion of dyadi squares in 
 suh that dist(Q; �
) �

diam(Q).

For any ompat set K � R

2

we an de�ne an exponent of onver-

gene

Æ

Whit

= Æ

Whit

(K) = inffs :

X

Q

j

:dist(Q

j

;K)�1

diam(Q

j

)

s

<1g:
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The sum is taken over all squares in a Whitney deomposition of 
 =

K



whih are within distane 1 of K (we have to drop the \far away"

squares or the series will not onverge). It is easy to hek that this

does not depend on the partiular hoie of Whitney deomposition.

Lemma 2.1. For any ompat set K, Æ

Whit

� Mdim(K). If, in addi-

tion, area(K) = 0 then Æ

Whit

= Mdim(K).

Proof. Suppose fQ

j

g is a Whitney deomposition of 
 = R

n

n K . For

eah Q

j

with diam(Q

j

) � diam(K), there is a dyadi ube Q

0

j

of the

same size whih hitsK and satis�es dist(Q

j

; Q

0

j

) � Cdiam(Q

j

). Clearly

eah Q

0

j

is assoiated to only a bounded number of Whitney ubes.

Therefore the number of dyadi ubes of size 2

�n

whih hitK is at least

C2

n(Æ

Whit

��)

(for n large enough, depending on �). Thus Æ

Whit

(K) �

Mdim(K).

Conversely, if K has zero area, Q is a dyadi square hitting K and

fQ

k

g is the olletion of Whitney squares for 
 ontained in Q, then

X

k

diam(Q

k

)

2

= diam(Q)

2

:

Hene for any s � 2, (sine diam(Q) � 1),

X

k

diam(Q

k

)

s

� diam(Q)

s

:

Sine there are more than C2

n(Mdim(K)��)

suh squares Q, the sum over

the whole Whitney olletion is greater than

C2

�ns

2

n(Mdim(K)��)

;

whih diverges if s < Mdim(K) � �. Thus Æ

Whit

(K) � Mdim(K), as

desired.
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We an have strit inequality if K has positive area. For example,

one an hoose a set of disjoint disks D(x

j

; r

j

) � D(0; 1), so that

K = D(0; 1) n [

j

D

j

, is nowhere dense, has positive area and r

j

! 0 as

fast as we wish. If we sum the Whitney deomposition of a single disk

we get

X

Q

k

�D

j

diam(Q

j

)

s

' r

s

j

;

if s > 1 and equals 1 if s � 1. By taking r

j

! 0 very fast, we an get

Æ

Whit

(K) = 1 < 2 = Mdim(K):



MINKOWSKI DIMENSION AND THE POINCAR

�

E EXPONENT 7

3. Whitney squares and the Poinar

�

e series

In this setion we explain the elementary relations between Æ and

Æ

Whit

.

Suppose 
 is a domain in S

2

with more than two boundary points.

Then 
 has a hyperboli metri � de�ned by the overing map from

the disk to 
. Let d(z) = dist(z; �
). For a general domain (e.g., [6℄,

Theorem 4.3),

(1 + o(1))jdzj

d(z) log 1=d(z)

� jd�(z)j � 2

jdzj

d(z)

: (3.1)

A set K � R

2

is alled uniformly perfet if there is a onstant C <1

so that

1

C

jdzj

d(z)

� jd�(z)j � 2

jdzj

d(z)

;

on eah omponent 
 of S

2

n K. (This is one of many equivalent

de�nitions; see [7℄ and [8℄.)

The limit set of any �nitely generated group is uniformly perfet, [9℄,

[5℄. In fat, the proof in Canary's paper [5℄ shows this is true under the

weaker assumption that there is an �

0

> 0 so that any losed geodesi

on 
=G has length � �

0

. This is ertainly true 
=G is a �nite union

of �nite type surfaes, so the result is still true for analytially �nite

groups.

Lemma 3.1. If G is any non-elementary Kleinian group with � 6= S

2

then Æ � Æ

Whit

. If 
(G)=G is ompat then Æ = Æ

Whit

.

Proof. Fix a point z

0

2 
(G) (not an ellipti �xed point). There is

a small hyperboli disk around z

0

(with radius r

0

depending on z

0

)
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whih projets injetively to R = 
=G under the quotient map. Thus

points in G(z

0

), the orbit of z

0

under G, are separated by at least r

0

in

the hyperboli metri. By (3.1) eah Whitney square has a uniformly

bounded hyperboli diameter and area. Thus eah Whitney square for


 = S

2

n � ontains at most a bounded number M (depending on z

0

and G) of points in G(z

0

). Therefore,

X

g2G

dist(g(z

0

);�)

s

� M

X

j

diam(Q

j

)

s

and hene Æ(G) � Æ

Whit

(�(G)).

Now suppose R = 
(G)=G = R

1

[� � �[R

s

is a �nite union of ompat

Riemann surfaes. We an hoose points E = fz

1

; : : : ; z

s

g � 
, so

that z

j

projets into R

j

, j = 1; : : : ; s under the quotient map. By

ompatness, any point z 2 
 is a bounded hyperboli distane from

G(E), the orbit of E under G. For eah square Q with dist(Q;�) �

1, hoose a losest point z

Q

2 G(E). Then z

Q

is only a bounded

hyperboli distane from Q so the uniform perfetness of � implies

diam(Q) � Cdist(z

Q

;�):

Furthermore, only a bounded number (say M) of the Q

j

's are assoi-

ated to any given point of G(E). Thus

X

j

diam(Q

j

)

s

� MC

s

X

z

j

2E

X

g2G

dist(g(z

j

);�)

s

;

and therefore Æ

Whit

(�(G)) � Æ(G).

One of the main results of [3℄ is that Æ

Whit

= Æ for any non-elementary

analytially �nite group. This fat and Lemma 2.1 imply Theorem 1.1,
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but the fat seems harder than the theorem. The purpose of this note is

to give a proof of the theorem that does not require proving Æ

Whit

= Æ.
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4. Good and bad horoballs

A horoball in 
(G) is a Eulidean ballB � 
 � S

2

whih is invariant

under a rank 1 paraboli subgroup of G. The �xed point p of the

paraboli element is on the boundary of the horoball and orresponds

to a usp on the surfae 
(G)=G. We say that B is doubly usped it

there is a another (disjoint) ball B

1

�xed by the same subgroup.

Suppose R = 
(G)=G is a �nite union of �nite type Riemann surfaes

R

1

; : : : ; R

N

, i.e., eah is a ompat surfae with at most a �nite number

of puntures. Let fp

1

; : : : ; p

m

g be the puntures in R = [

N

i=1

R

i

, and for

eah p

i

let B

�

i

be a neighborhood of p

i

whih lifts to a Eulidean ball B

i

in 
 whih is invariant under some paraboli element of G (see Lemma

1 of [1℄). Then X = R n [

j

B

�

j

is ompat, so we an hoose a �nite

set of points E = fz

1

; : : : ; z

P

g � 
(G) whih projet to an 1-dense

subset of X (i.e., every point of X is within hyperboli distane 1 of a

point of E). For the reminder of the paper we �x a �nite olletion of

suh horoballs B = fB

j

g, one from eah equivalene lass of horoballs

in 
. It will also be onvenient to assume that B

i

is ontained inside a

larger horoball

^

B

i

� 
 of twie the Eulidean diameter (we an always

do this by just taking smaller balls if neessary). If 1 2 
 then we

may also assume that1 is not ontained in any of the B

i

. Finally, if a

paraboli point is doubly usped, we require that B ontain horoballs

of equal size for both \sides" of the paraboli point.

For z 2 
(G) we de�ne d(z) = dist(z;�) in the Eulidean metri.

Normalize the group so that 1 2 
 and �(G) has diameter 1. Now
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suppose p is a paraboli �xed point of G and that B � 
 is a horoball

at p. By our remarks above, B must be the image of one of our �nite

olletion of horoballs fB

j

g under some element g of G, i.e., B = g(B

j

).

We would like to all B good or bad depending on whether the

map g : B

j

! B is \lose" to being linear. Using a linear M�obius

transformation we an map p to 0 and the horoball B to the disk

D(i=2; 1=2). The paraboli element of G �xing p is onjugated by the

linear map to a transformation of the form

�(z) =

z

1 + �z

:

We de�ne �(B) = j�j. Given � > 0, we say a horoball B = g(B

i

) is a

\�-bad" horoball if �(B) � �, and is �-good otherwise.

A helpful way to think about good and bad horoballs is as follows.

Suppose h is a generator of the paraboli subgroup �xing B. De�ne

�

0

(B) = sup

z2�B

jh(z)� zj

diam(B)

:

Then its easy to see �

0

' �. In other words, B is �-bad if the paraboli

subgroup �xing B has a generator whih is lose to the identity on B.

Alternatively, the group G looks less and less disrete on horoballs with

smaller and smaller �.

Lemma 4.1. Suppose G is analytially �nite and normalized so that

1 2 
(G) and diam(�) = 1. Fix a �nite olletion of horoballs B as

above, and assume 1 is not in any of these horoballs. Then
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1. There is a C

1

(depending only on �) so that for any �-good horoball

B, and any w 2 �B, there is a point z 2 G(E) suh that

C

�1

1

d(w) � d(z) � C

1

d(w);

C

�1

1

d(w) � jz � wj � C

1

d(w):

2. There is a �

2

so that if B is �

2

-bad then it is singly usped, i.e.,

there is not a disjoint horoball also tangent to p.

3. There is a �

3

> 0 so that if � � �

3

and B is �-bad and D(x; r) � 


with

3

2

diam(B) � dist(x;B) � diam(B)=(2�), then r � C

2

�dist(x;B)

2

,

where the onstant C

2

depends only on G.

4. For any Æ > 0 there is a �

4

> 0 (depending only on Æ) suh

that if B is a �

4

-bad horoball then there is a disk D � 3B suh

that diam(D) �

1

3

diam(B); and D n � ontains no balls of radius

� Ædiam(D).

5. There is �

5

> 0 so that if B

1

; B

2

are �

5

-bad horoballs with diam(B

1

) �

diam(B

2

) then dist(B

1

; B

2

) � 100diam(B

1

):

6. If B

1

; B

2

are horoballs with

diam(B

1

) � diam(B

2

) � 2diam(B

1

);

and dist(B

1

; B

2

) � Adiam(B

1

); then both B

1

and B

2

are A

�2

-good.

Proof. To prove (1), note that it is true for all the balls in B by �nite-

ness. If B is �-good then B is the image of some B

j

in our �xed, �nite

olletion under a map whih is the omposition of onformal linear

map and a map of bounded distortion (depending on �).
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To prove (2), suppose B

1

; B

2

2 B are paired horoballs at a doubly

usped paraboli point p with paraboli generator h. For i = 1; 2, let

z

i

be the point on �B

i

farthest from p and onsider the the ross ratio

of z

1

; h(z

1

); z

2

; h(z

2

). Now suppose B = g(B

1

) is some �-bad image of

B

1

, and suppose we have hosen g so jg(z

1

)�g(p)j is maximized among

elements mapping B

1

to B. Sine ross ratio is preserved by M�obius

transformations we an dedue that

jg(z

1

)� g(h(z

1

))j ' jg(z

1

)� g(z

2

)j ' jg(z

2

)� g(h(z

2

))j ' �diam(B):

Thus all four points are mapped within C�(B)diam(B) of g(z

1

). If � is

small enough, this is only possible if1 2 g(B

2

), ontrary to hypothesis.

To prove (3) note that it is enough to do it in the ase when p = 0,

B = D(i=2; 1=2) and the subgroup �xing p is generated by

h(z) =

z

1� �z

:

Then

jh(x)� xj = jx�

x

1� �x

j � 2�jxj

2

� C

0

�dist(x;B)

2

:

Suppose C

2

> 100C

0

and that r � C

2

�dist(x;B)

2

. Then both x and

h(x) are in the disk D(x; r) � 
 so the line segment onneting them

projets to a loop on 
=G of hyperboli length � 10C

0

=C

2

. If C

2

is

large enough (depending only on G), this implies the loop is ontained

in a neighborhood of a usp on 
=G, thus the lift is in a horoball of 


whih is tangent to 0. This horoball is obviously not B sine B does

not ontain x, so there is a seond horoball B

0

at 0. This ontradits

part (2),so we are done.
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The �nal three statements are all easy onsequenes of part (3).

We noted in the previous setion that if 
(G)=G is ompat then

there is a lose onnetion between the Poinar�e and Whitney sums.

When there are puntures in 
(G)=G we need to take aount of the

fat that horoballs ontain many Whitney squares, but no orbit points.

The next observation is very easy and left to the reader.

Lemma 4.2. Suppose 
 is an open set and B � 
 is a Eulidean ball

suh that �B \ �
 6= ;. Let fQ

j

g be a Whitney deomposition for 
.

Then if s > 1,

X

j:Q

j

\B 6=;

diam(Q

j

)

s

' diam(B)

s

;

where the onstants depend only on s.

The following will be useful later.

Lemma 4.3. Suppose G is analytially �nite and E � 
 is a �nite

set with one point in eah equivalene lass of omponents. Assume

the group has been normalized so 1 2 
. Suppose fQ

j

g is a Whitney

deomposition for 
(G), and let B be a hoie of horoballs for G as

above. Then if s > 1,

X

j:diam(Q

j

)�1

diam(Q

j

)

s

'

X

z2E

X

g2G

dist(g(z);�)

s

+

X

B2B

diam(B)

s

;

where the onstants depend on G; s; E;B. If � > 0 then

X

j:diam(Q

j

)�1

diam(Q

j

)

s

'

X

z2E

X

g2G

dist(g(z);�)

s

+

X

B2B;�(B)��

diam(B)

s

;

where the onstants depend on G; s; E;B; �.
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Proof. The �rst equation is simply the observation that Whitney squares

whih do not hit any horoballs an be assoiated (as in the previous se-

tion) to orbits of E, whereas the Whitney squares whih hit a horoball

are ontrolled by the previous lemma. The seond equation is proved

using part (1) of Lemma 4.1 to assoiate to eah �-good horoball a

nearby orbit point. Thus the part of the horoball sum we are omitting

is ontrolled by the orbit sum.

5. Theorem 1.1 when G has many good horoballs

We now start the proof of Theorem 1.1. It is enough to prove

Theorem 5.1. If G is an analytially �nite group and area(�(G)) = 0

then Æ(G) = Æ

Whit

(�(G)).

Let D = Mdim(�) = Æ

Whit

(�(G)) and d = dim(�). If G has no par-

aboli elements then 
(G)=G is ompat, and we have already proven

this ase in Lemma 3.1. Therefore we may assume G has parabolis.

This implies Æ(G) � 1=2. If D = 1=2, we have nothing to do, so we

may assume that D > 1=2.

Suppose � > 0 is so small that D� � > 1=2. Let E = fz

1

; : : : ; z

s

g be

a �nite olletion of points in 
, one projeting to eah omponent of


=G. We will show that

X

z2G(E)

d(z)

D��

=1;

and thus Æ(g) � D.

Choose an integer n

0

so that

N(�; 2

�n

0

) � 1000 � 2

n

0

(D��=2)

:
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By passing to a subolletion with at least 2

n

0

(D��=2)

elements we laim

that we may assume that for any two squares S

j

; S

k

we have 9S

j

\9S

k

=

;. This is easy. Just enumerate the list of squares and indutively

remove any square S

k

for whih there is a j < k with 9S

j

\ 9S

k

6= ;.

Sine 9S

j

\ 9S

k

6= ; implies S

k

� 15S

j

, eah S

j

an ause at most

30

2

= 900 later squares to be removed. Thus the �nal list has at least

2

n

0

(D��=2)

elements.

Let r = 3 � 2

�n

0

. Let S = fS

k

g be a olletion of 2

n

0

(D��=2)

squares

of size r so that the triples 3S

k

are pairwise disjoint and

1

3

S

k

\ � 6= ;

for eah k.

First we deal with the ase when most of the horoballs of size r are

good. Let � > 0 (to be �xed later). For eah �-good horoball with

diam(B) � r=3, let G

B

be the olletion of squares in S whih are suh

that

1

3

S hits B. Let G be the union of all the G

B

.

The proof breaks into three ases:

1. #(S \ G) �

1

2

#(S) for all large enough n.

2. dim(�) = 2.

3. #(S \ G) <

1

2

#(S) for in�nitely many n and dim(�) < 2.

If � is hosen small enough (depending on G) then one an show

the last ase is impossible (e.g., [4℄). However, this is hard result using

heat kernel estimates on hyperboli 3-manifolds and one of our purposes

here is to give a self-ontained proof that uses only two dimensional

tehniques.
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Proof of ase 1: By part (1) of Lemma 4.1 there is an orbit point

z 2 G(E) \ B suh that d(z) ' diam(B): For this point,

d(z)

D��

� C

X

S2G

B

diam(S)

D��

:

If more than half the squares in S belong to G then this argument

shows

X

z2G(E)

d(z)

D��

�

1

2

C2

n

0

�=2

:

If this happens for arbitrarily large n

0

then

X

z2G(E)

d(z)

D��

=1;

so we have shown that Æ(G) � D � �, as desired. This is the end of

ase (1).
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6. Proof of ase (2) of Theorem 1.1

Case 2 follows easily from the following.

Lemma 6.1. Suppose G is a analytially �nite Kleinian group, nor-

malized so 1 2 
(G) and diam(�(G)) = 1. If Æ

Whit

= 2 then Æ = 2.

Proof. We know the lemma if 
(G)=G is ompat (see Setion 2), so

we may assume that 
(G) ontains horoballs. Consider the sum over

all Whitney squares for 
,

X

j

diam(Q

j

)

2�2�

:

By the de�nition of Æ

Whit

, this diverges. Using Lemma 4.3 we an split

the sum into two piees; one orresponding to all squares Q

j

whih

hit some horoball and the other orresponding to all Whitney squares

whih miss every horoball, i.e.,

X

j:diam(Q

j

)�1

diam(Q

j

)

2�2�

'

X

z2E

X

g2G

dist(g(z);�)

2�2�

+

X

B2B

diam(B)

2�2�

:

If the �rst sum on the right diverges then Æ > 2 � 2� and we are

done. Thus we may assume the seond sum on the right diverges for

all � > 0. Thus if

B

n

= fB

j

: 2

�n�1

� diam(B

j

) < 2

�n

g;

and N

n

= #B

n

, we must have N

n

� 2

n(2�2�)

; for in�nitely many values

of n. Fix a value of n

0

where this holds and note that for at least half

the balls B in B

n

there is a seond ball B

0

2 B

n

suh that

dist(B;B

0

) � 2

�n(1��)

� diam(B)2

n�

;
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otherwise we would have so many disjoint balls of radius 2

�n(1��)

that

they ould not all be ontained in a bounded neighborhood of � (reall

that diam(�) = 1).

By part (4) of Lemma 4.1, this implies that for suh a pair both B

and B

0

are 2

�2�n

-good horoballs. Let G

n

0

� B

n

0

be the subolletion

of 2

�2�n

-good horoballs. For any �-good horoball B let z be the point

given in part (1) of Lemma 4.1 suh that d(z) � C�diam(B). Let H be

the paraboli subgroup �xing B

j

. Then an easy alulation shows that

there are at least C�

�1

orbits of z under H with distane � C�diam(B)

from �. Thus

X

h2H

d(h(z))

�

� Cdiam(B)

�

�

��1

;

for any 1 < � � 2 and some C depending on G and �.

Thus if z

j

is the good point in B

j

given by (1) of Lemma 4.1,

X

z2G(E)

d(z)

�

� C

X

B

j

2G

n

0

X

k2Z

d(h

k

(z

j

))

�

� C

X

B

j

2G

n

0

diam(B)

�

2

�2�n

0

(��1)

� C2

n

0

(2��)

2

�n

0

�

2

�2�n

0

(��1)

:

Taking � = 0 and solving for � we see this diverges for small enough �

if � < 2: Thus Æ � 2, as desired.

7. Theorem 1.1 when G has few good horoballs

We now do ase 3, i.e., we assume that fewer than half the elements

of S are in G for all large enough n

0

(i.e., we assume most horoballs

are bad) and that dim(�) < 2. We use a stopping time onstrution
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whih is desribed by the following lemma. Reall that d = dim(�)

and D = Mdim(�).

Lemma 7.1. Suppose � > 0 and r > 0. There is a onstant C

0

(de-

pending only on G and �) and onstants �

0

> 0 and �

0

(depending on

G, � and r) suh that the following holds: Suppose we have a square

S suh that

1

3

S \ � 6= ; and S does not interset any �

0

-good horoball

with diameter � diam(S)=3: Then either

X

z2S\G(E)

d(z)

D��

� �

0

diam(S)

D��

;

or there is a olletion of subsquares C(S) = fS

j

g � S with

1. diam(S

j

) � rdiam(S) for all j,

2. f3S

j

g � S and are pairwise disjoint,

3. S

j

n � does not ontain a ball of radius diam(S

j

)=10,

4.

P

j

diam(S

j

)

2

� C

0

diam(S)

2

:

We shall refer to the two possibilities as alternatives one and two re-

spetively.

Let us assume that the lemma holds and see how to �nish the proof.

We will prove the lemma in the next setion.

Suppose � > 0. Let C

0

= C

0

(�; G) be as given by the lemma. Let

r = C

1=�

0

and let �

0

; �

0

be as given by the lemma.

We de�ne generations of nested squares S

0

;S

1

; : : : as follows. Let

S

0

= S, be the olletion onsidered in the previous setion; i.e., S

0

is a

olletion of

1

2

� 2

n

0

(D��=2)

squares of size r = 2

�n

0

whih have disjoint
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triples, so that

1

3

S \ � 6= ; and suh that S does not hit any �-good

horoball of size � diam(S)=3.

Suppose S

n

has been de�ned. Let A

n

1

� S

n

be the subolletion of

squares for whih alternative one holds and A

n

2

be the subolletion for

whih alternative two holds. Then we de�ne

S

n+1

=

[

S2A

n

2

C(S):

In other words, given S

n

; we de�ne S

n+1

by throwing away all the

squares where alternative one of Lemma 7.1 holds and for eah square

S 2 S

n

where the seond alternative holds we replae it by the olletion

C(S) of subsquares satisfying (1)-(4) in Lemma 7.1.

To eah square S 2 S

1

= [

n

S

n

we assoiate a positive number �(S)

as follows. For S 2 S

0

let

�(S) = diam(S)

D��

: (7.1)

For S 2 S

n

, n � 1, there is a unique S

0

2 S

n�1

ontaining S (i.e., S

0

is its \parent") and by de�nition alternative two holds for S

0

. Set

�(S) =

diam(S)

2

P

S

0

2C(S

0

)

diam(S

0

)

2

�(S

0

): (7.2)

Note that

P

S

0

2C(S

0

)

�(S

0

) = �(S

0

): Let �(n) =

P

S2S

n

�(S): It is lear

that f�(n)g

1

n=0

is non-inreasing.

Lemma 7.2. If �(n) 6! 0 then dim(�) � 2� �. (Reall � depends on

�.)
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Proof. Suppose �(n) 6! 0. Then the numbers f�(S)g de�ne a measure

positive measure on the set Y = \

n

[

S2S

n

S � �: We laim that

�(S) � Cdiam(S)

2��

;

for every square with diam(S) � r where C is a onstant that depends

on the hoie of n

0

, but not on S.

We �rst verify this by indution for squares in S

1

. If S 2 S

0

, the

laim is true by de�nition with C = A

0

= 2

n

0

(2�D)

.

If S 2 S

n

is ontained in S

0

2 S

n�1

, then part (4) of Lemma 7.1

implies

�(S) =

diam(S)

2

P

S

0

2C(S

0

)

diam(S

0

)

2

�(S

0

) � A

0

diam(S)

2

C

0

diam(S

0

)

2

diam(S

0

)

2��

and hene

�(S) � A

0

C

�1

0

diam(S)

2

diam(S

0

)

��

� A

0

C

�1

0

r

��

diam(S)

2��

� A

0

diam(S)

2��

;

as desired. Also note (for future use) that this proves the weaker esti-

mate

�(S) � diam(S)

D��

: (7.3)
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Now onsider a general square S � S

0

2 S

0

. Let S

1

be the smallest

square in S

1

ontaining S. Suppose S

1

2 S

n�1

. Then by (7.2),

�(S) =

P

S

0

2S

n

;S

0

�S

diam(S

0

)

2

P

S

0

2S

n

;S

0

�S

1

diam(S

0

)

2

�(S

1

)

� A

0

diam(S)

2

C

0

diam(S

1

)

2

diam(S

1

)

2��

� A

0

C

�1

0

diam(S)

2

diam(S

1

)

��

� A

0

C

�1

0

diam(S)

2��

(

diam(S

1

)

diam(S)

)

��

� A

0

C

�1

0

diam(S)

2��

:

Thus the inequality holds for general squares with the onstant C =

A

0

C

�1

0

.

Thus if fS

j

g was any overing of � we would have

0 < �(�) �

X

j

�(S

j

) � C

X

j

diam(S

j

)

2��

:

Therefore, dim(�) � 2� �; as desired.

By the previous lemma if � < 2�dim(�), then we must have �(n)!

0. Assume this is the ase.

Reall that A

n

1

is the olletion of all squares in S

n

where alternative

one held (i.e., the onstrution above stopped) and A

n

2

are the remain-

ing squares where alternative two held. Note that [

n

A

n

1

is a union

of disjoint squares. For S 2 A

n�1

2

, let A

1

(S) be the olletion of all

squares in C(S) � S

n

where alternative one holds and let A

2

(S) be the

squares where alternative two holds. For S

0

2 A

1

(S) 2 A

n

1

, de�ne

�(S

0

) =

X

z2S

0

\G(E)

d(z)

D��

:
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Sine alternative one of Lemma 7.1 holds for S

0

, �(S

0

) � �

0

diam(S

0

)

D��

;

so by (7.3) �(S

0

) � �

0

�(S

0

); (�(S

0

) must be de�ned beause alternative

two holds for its parent). Thus,

X

S

0

2A

1

(S)

�(S

0

) � �

0

X

S

0

2A

1

(S)

�(S

0

) = �

0

[�(S)�

X

S

0

2A

2

(S)

�(S

0

)℄:

Therefore,

X

S

0

2A

n

1

�(S

0

) � �

0

[

X

S

0

2A

n�1

2

�(S

0

)�

X

S

00

2A

n

2

�(S

00

)℄

= �

0

[�(n� 1)� �(n)℄:

Hene, sine �(n)! 0, a telesoping series argument gives

1

X

n=0

X

S

0

2A

n

1

�(S

0

) � �

0

1

X

n=0

(�(n� 1)� �(n)) = �

0

�(0):

Thus by (7.1),

1

X

n=0

X

S

0

2A

n

1

�(S

0

) � �

0

X

S2S

0

diam(S)

D��

� �

0

#(S

0

)2

�n

0

(D��)

= �

0

2

n

0

(D��=2)

2

�n

0

(D��)

= �

0

2

n

0

�=2

Thus, sine the squares in [

n

A

n

1

are all disjoint

X

z2G(E)

d(z)

D��

�

X

n

X

S2A

n

1

�(S) � �

0

2

n

0

�=2

:

Taking n

0

! 1 proves Æ(G) � D � �. Taking � ! 0 shows Æ(G) �

D = Mdim(�); as desired.
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8. Proof of Lemma 7.1

The idea of the proof is that the two alternatives for S in the lemma

simply depend on whether S ontains many bad horoballs or not. If it

does not then the �rst alternative holds, but if it does then the seond

is true.

Let �

0

> 0 (we will show the lemma is orret if �

0

is small enough,

depending only on G, � and r). Let H

g

be the union of the �

0

-good

horoballs and let H

b

be the union of all the �

0

-bad horoballs. Let

U = 
 n (H

b

[H

g

) (this is part of 
(G) that projets to the \ompat

part" of 
(G)=G). The proof divides into three ases depending on the

relative sizes of S \ H

b

, S \ H

g

and S \ U . Fix � > 0 and let E � 


be a �nite set so that points in G(E) are at least hyperboli distane

� apart, but so that every point of U is within 10� of some point of

G(E).

Case A: First suppose that \a lot" of S orresponds to the ompat

part of 
(G)=G. More preisely, let U

S

=

1

3

S \ U and assume

area(U

S

) �

1

2000

area(S):

We will show that the �rst alternative holds for S. If � in the de�nition

of E is small enough (depending only of the uniformly perfet onstant

of �), then for eah point w 2 U there is a point z 2 G(E) suh

that jz � wj � d(z). Moreover, eah z 2 G(E) is the enter of a disk

D

z

= D(z;

�

100

d(z)). These disks are all disjoint, but they over a �xed

fration of the area of U . This is beause given any point of U we an

move hyperboli distane � 10� and reah one of the �-disks. Moreover,



26 CHRISTOPHER J. BISHOP

sine �\

1

3

S 6= ;, moving hyperboli distane 10� does not allow leaving

S from starting inside

1

3

S (if � is small enough).

Hene,

X

z2G(E)\U

S

area(D

z

) � A area(U

S

) �

A

2000

area(S):

Thus,

X

z2G(E)\

1

3

S

d(z)

2

� Cdiam(S)

2

:

Then sine d(z) � diam(S) for all z 2 G(E) \ S,

X

z2G(E)\

1

3

S

d(z)

D��

� Cdiam(S)

D��

;

and we are done.

Case B: Now we assume \a lot" of S lies in H

g

. Let V

S

=

1

3

S \H

g

,

and suppose

area(V

S

) �

1

2000

area(S);

(i.e., the part of S in good horoballs has large area). By hypothesis,

the only �

0

-good horoballs hitting

1

3

S have diameter �

1

3

S, and so we

an assoiate to eah suh horoball B a point z 2 G(E) \ CS so that

d(z) ' �diam(B): Thus, as above,

X

z2G(E)\CS

d(z)

2

� C

X

good horoballs in S

diam(B)

2

� Cdiam(S)

D��

' area(S):

Sine D � � < 2, this and bounded overlaps of the squares CS imply

X

z2G(E)\CS

d(z)

D��

� Cdiam(S)

D��

:

Thus alternative one holds in this ase also.

Case C: Now assume

area(U

S

) + area(V

S

) �

1

1000

area(S):



MINKOWSKI DIMENSION AND THE POINCAR

�

E EXPONENT 27

Sine � has zero area, the \bad" part of S must have large area, i.e.,

area(

1

3

S \H

b

) �

99

100

area(S):

Next we want to show that we may assume that

1

3

S does not hit any

bad horoball of omparable size.

Suppose that

1

3

S hits a �

0

-bad horoball with diam(B) �

1

10

diam(S).

If �

0

is small enough then part (3) of Lemma 4.1 implies that B an be

the only �

0

-bad horoball hitting

1

3

S with diameter �

1

50

diam(S). Thus

we an �nd another square S

0

� S with diam(S

0

) =

1

3

(S) whih only

hits small horoballs. More preisely, we an hoose S

0

� S so that

area(S

0

\H

b

) �

1

100

area(S

0

);

and suh that S

0

does not hit any �

0

-bad horoballs with diameter �

1

10

diam(S

0

).

So by replaing S by S

0

if neessary, we may now assume that S is

a square suh that

area(S \W

g

) �

1

100

area(S);

and suh that S does not hit any �

0

-bad horoballs with diameter �

1

10

diam(S

0

). Let fB

j

g be the olletion of bad horoballs whih hit

1

3

S.

Sine they all have diameter � diam(S)=10, they are ontained in S

and their areas sum to be at least Carea(

1

3

S).

The horoballs are all disjoint, so by the simple Vitali overing lemma

(e.g., Lemma 7.4 of [13℄) there is a subolletion of these balls f

^

B

j

g

whih have disjoint triples and whose areas sums to be more that

C

0

area(S).
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By part (2) of Lemma 4.1, to eah of these balls we an assoiate a

square S

j

� 3

^

B

j

suh that

diam(S

j

) =

1

2

diam(

^

B

j

);

and so that S

j

n� ontains no balls of radius Ædiam(S

j

). Here Æ may be

as small as we wish, assuming we take �

0

small enough. Choose �

0

so

small that Æ < r=1000 (where r is the number given in the statement

of Lemma 7.1). Inside S

j

hoose a olletion fS

jk

g of r

�2

squares of

diameter r=100 whih have disjoint triples. Then [

j

[

k

S

jk

obviously

has all the desired properties.
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