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Abstrac t .  We consider several results,  each  o f  which uses  some  type o f " L  2' '  
es t imate to provide information about harmonic  measure  on planar domains.  The 
first gives an a.e. characterization of  tangent  points o f  a curve in terms of  a certain 
geometric square function. Our  next  result is an LP est imate relating the derivative 
of  a conformal  mapping  to its Schwarzian derivative. One consequence  of  this is 
an est imate on harmonic  measure  ~eneralizing Lavrent iev 's  est imate for rectifiable 
domains.  Finally, we consider L z es t imates  for Schwarzian derivatives and the 
quest ion of  when  a Riemann  mapping  ~ has  log ~ in BMO.  

1. Introduct ion 

In [49] Stein and Zygmund showed that a real valued functionf on the real line, 
R, has an ordinary derivative at almost every point of a set E iff both 

f ( x  + t) + f ( x  - t) - 2f(x) = O(Itl), t ~ 0, 

ftl<_6 dt  I f ( x +  t) + f ( x  - t) - 2f (x )12~  < oo, 

for almost every x E E (also see [48, VIII.5.1]). This result is an excellent 
example of the power of so called "L 2 techniques" in studying classical smoothness 

properties of functions, and is the starting point of a whole series of results which 
relate "square Dini conditions" to the smoothness properties of various objects. 
Examples include Carleson's result on quasiconformal mappings [ 12], Dahlberg's 

theorem on the absolute continuity of elliptic measures [17] and similar results 
by Fefferman, Kenig and Pipher [21], [22]. Recently there have been attempts to 

study the smoothness properties of sets by using L 2 theory in a similar way. In 
large part this has been motivated by the desire to understand the L 2 boundedness 

of the Cauchy integral on a Lipschitz graph and on a general planar set of finite 
1-dimensional Hausdorff measure, AI. In particular, the sets in the plane which 
are subsets of rectifiable curves can be characterized precisely by a "geometric 
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square function" [31 ], in a way which is very reminiscent of  use of  classical square 

functions in real analysis.  

In this paper  we consider several distinct, but related questions. The first 

concerns the behavior  of  a curve near its tangent points. In particular, we obtain an 

a.e. characterization of  tangent points analogous to the S t e in -Zygmund  theorem 

mentioned above. The second relates the derivative of  a Riemann mapping  

to certain "area integrals" involving its Schwarzian derivative. Next,  we obtain 

some L 2 estimates involving these area integrals and relate them to geometrical  

properties of  ~. Finally, we state the pointwise versions of  these results which 

give several conditions which are a.e. equivalent to the existence of  nontangential  

limits for ~ ' .  

We start by recalling the definitions of  inner tangent and tangent points. Suppose 

f~ is a simply connected domain. We call x E 0f~ an inner tangent point if there 

exists a 00 E [0, 27r) such that for every E > 0 there exists a 6 > 0 such that 

{x + re i~ :O < r < 6, lO-Oo[ < T r - e } C  

and this is not true for any ~ < 0. In other words, x is the vertex o f  a cone in f~ and 

the angle can be taken arbitrarily close to 7r, but no larger. I f  r : D ---, f~ is univalent 

then (except for a set o f  zero measure) r  has a finite, non-zero,  non-tangential  

limit at e iO i f f x  = ~(e iO) is an inner tangent o f  f~ [41, pages 305, 328]. I f  F is a 

closed Jordan curve then a point x E F is a tangent point of  F if and only if it is an 

inner tangent for each of  the two complementa ry  domains.  

We would like to have an almost  everywhere  characterization of  these tangents 

points in terms of  some average behavior  of  F that would be analogous to the 

characterization of  differentiability described above. A conjecture of  Car leson 's  

along these lines is as follows. For any x E F and t > 0, let Oi(t) denote the 

angle measure of  the longest arc in { ] z - x  I = t} O ~]i, i = 1,2. Let  e(x,t) = 
max(17r - 01(t)l , [71" - 02(t)]). Then except  for a set o f  zero Ai measure  F should 

have a tangent at x iff  

fO t" dt s It<~176 
The necessity of  this integral condition follows f rom an estimate of  Beurling on 

harmonic measure.  Let f~l and f~2 denote the two complementary  components  of  

F in C.  Fix a point in each domain and let ~01 and w2 denote the harmonic  measures  

on F with respect to these points. Then it follows f rom the Ahlfors  distortion 

theorem and the fact that 01 + 02 < 27r that 

~ '  1 1 ~ dt] wl(D(x,r))w2(D(x,r))<_Aexp(-Tr {0-~ + O--~j-~.-/ < A r  2, 
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where A depends only on the choice of base points for the harmonic measures. This 

is due to Beurling [6] and is also in [9]. The set of tangent points of a Jordan curve 

has sigma-finite A~ (a tangent point must be the vertex of a cone in the complement; 

by taking unions of these cones one can construct a countable family of Lipschitz 

domains whose boundaries contain every tangent point). Furthermore, on the set 

of tangent points the harmonic measures wl and w2 are both mutually absolutely 

continuous with A~. Thus for A~ almost every tangent point x 

l imWi(FnD(x'r))  >0,  i =  1,2. 
r ~ O  r 

A simple calculation shows 

1 1 2 2 / , ( x . t~ ' ,  2 

o, ( t--5 + >- + - 

so by Beurling's estimate 

(D(x, r))w2(D(x, r ) )  al I 
< Ci exp ( - C2 e2(x, t) 

r 2 --  �9 

On almost every tangent point of 1" the left hand side is bounded away from zero 

so the integral on the right must remain bounded as r --* 0. The converse is open. 

The first goal of this paper is to prove a version of "e squared" conjecture using 

"3"'s coming from the second author's work on rectifiable curves. For x E F and 

t > 0 define 3(x, t) as 

3(x , t )  inf { sup dist(z'L) } = - -  : z E F M D ( x , 4 t )  
t 

where the infimum is taken over all lines L passing through D(x, t). 

T h e o r e m  1 There exists C > 0 such that i f  K is a compact set o f  diameter 1 

and if  for  every x E K, 

fo I t" dt 32(x' )-i- ~- M 

then K lies on a rectifiable curve F o f  length at most Ce cM. 

The estimate e T M  is best possible, as shown by an example in Section 2. We 

will also show 

T h e o r e m  2 Except fo r  a set o f  zero Al measure, x E F is a tangent point o f f  

iff 
fo I t ' dt •2(X' ) - T  "( O~3. 
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Equivalently, w~ and w2 are mutually absolutely continuous exactly on the set where 
this integral is finite. 

We introduce the second part of the paper by recalling the E and M. Riesz 

theorem [44]: if ~ has a rectifiable boundary then harmonic measure, w, and 

arclength, At, are mutually absolutely continuous on Oft. Using Jensen's inequality 

and the subharmonicity of  log I~'[ (~I, the Riemann mapping onto ft), Lavrentiev 

gave the estimate 
C log g( Oft ) 

< 
[ log s + 1' 

with the normalization that harmonic measure is taken with respect to a point z0 

satisfying dist(z0, 0fl) _> I. Since this estimate is crucial to what follows let us 

recall the proof. 

Let �9 : D --o f~ be a Riemann mapping with ~(0) = z0. Since dist(z0, 0~q) > 1 

we have I~I,'(z)[ >_ 1 and since 0~q is rectifiable, ~ '  E LI(T)  with norm at most 

M = 2A1 (Oft). Then log I~I,'[ is subharmonic so 0 _< fT log I~'](ei~ Thus if 

log + = max(0, + log) Jensen's inequality implies 

II log-I '1 IIL'(T) --< II l~  + I "l IIL,(a-) _< logM. 

Tchebyshev's inequality gives 

M 
[{x E T :  log [~t I < -A}I < -~--. 

Now suppose we have a set E C Oft with w(E) = a > 0 (i.e., IF) = [ ~ - I ( E ) [  = 5). 

If A = 2M/a then }if') > exp( -2M/a)  on at least half of F. Thus 

AI(E) = f [r > -~ -2M/a > e-(2M+2)/a. 
- - 2  e 

JF 

Taking logarithms we get 

1 2 + 21ogAl(0ft)  
log AI(E) -< w(E) 

Rearranging (and using the fact that Al (Oft) _> 270 gives the desired estimate. 

Lavrentiev's estimate is sharp in the sense that given M, E one can construct an 

l't and E C 012 with AI (Oft) = e M, w(E) = ~ and AI (E) ,,~ e -g/~. Recall that an 

analytic function on the disk is said to be in the Bloch space if 

[f'(z)[ 
Ilfl)* = sup ~-- ~ < oo. 

zEO 
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~urthermore, if l[ f l [ .  is small enough, t h e n f  = logF '  for some univalent F [41]. 

For a finite measure # on T let u denote its harmonic extension to D and v the 

harmonic conjugate. Given M it is possible to construct a probability measure # 

which is singular to Lebesgue measure but which is "smooth"  in the sense that 

Mllu + ivll. is small (see [20], [321, [47]). Thus M(1 - u) + iMv = log ~ '  for some 

univalent ~. By the construction of  the measure we can find disjoint intervals {lj} 

such that ~ Iljl ~ c and tz(lj) ~ Iljl/~. T h u s  if  f~ = ep(D) and E = '~(LJlj), then 

Al(0f~) = 27reM, w(E) ~ e and log AI (E) .-~ - M / e .  One can also give a geometrical 

construction of  f~ by adapting the construction of  the von Koch snowflake with a 

certain stopping time rule. 

If A1 (0f~) = oo it is possible for there to be a set E C 0f~ with ~v(E) > 0 but 

AI (E) = 0 [35]. However,  MacMillan showed that harmonic measure is mutually 

absolutely continuous to A1 on the inner tangents of  [2 and results of  Makarov [36] 

and Pommerenke [43] imply that harmonic measure is singular to Ai on the rest of  

the boundary, i.e., a Lavrentiev type example occurs whenever the inner tangents 

have less than full measure. In [10l we proved a generalization of  the E and M. 

Riesz theorem: i f E  C 0f~ ~ F  where F is a rectifiable curve then A1 (E) = 0 implies 

0;(E) = 0. One of  the main steps of  this proof  is to estimate ~'  in terms of  the 

Schwarzian derivative o f  ~, defined as 

[,V'(z) 1' 1[ "(z)12 
= L - 2 L " 

The Schwarzian can be considered as a type of  second derivative, measuring the 

rate of  change of  the best approximating M6bius transformation (rather than linear 

function). Our next result is motivated by the results of  [10] as well as the classical 

results for the area integral. 

T h e o r e m  3 I f  ~ is univalent and 

A = A(~) = [~'(O)I + [ [  [~'(z)f[S(~)(z)[2(1 - ]z[2)3dxdy < oo~ 
J J  D 

then ~' �9 H�89 for  every ~1 > 0 and [[{'[[�89 -< C07)A. 

Considering the M6bius transformation r from the disk to the half  plane we note 

S(r)  =- O, r' �9 H p, 0 < p < 1/2 but r ~ H I/2. Thus the most we could expect is 

that the finiteness of  this integral implies { '  �9 Hp for every p < 1/2. 

The proof  of  this result will show that the finiteness of  the Schwarzian integral 

implies that f~ can be approximated by rectifiable curves in the following sense. 

C o r o l l a r y  1 Suppose r : D ~ f~ is univalent and A(~)  < oo. Then for  every 

> 0 there is a C(~I) such that for  any E > 0 there exists a curve P c D with 

g(P n T)  _> 1 -  e and  g(~(P)) <_ C( r l )Ac  1-n. 
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The proof of  Lavrentiev's estimate given above still works if  r  E LP for some 

p > 0 (with a constant depending on p). Thus we obtain: 

C o r o l l a r y  2 With �9 and A as above, f o r  any E C 0~2, 

C logA + 1 < 
I log g(E)] + 1" 

By adapting the proof of  Theorem 3 to Lipschitz domains and certain covering 

maps which arise from the argument in [10] we can also prove: 

C o r o l l a r y  3 There exists a C > 0 such that i f  ~ is simply connected,  F is a 

rectifiable curve and oJ is measured with respect to a point  zo with dist(z0, E) > 1 

then E C On ;q F implies 

I logw(E)l  + 1 
C l~ g(r') + 1 

< -- I l - ~ g  e - ~  + 1" 

In particular, i f  E is a subset  o f  a rectifiable curve then A1 (E) = 0 implies w(E) = O. 

The log w(E) prevents this from being an actual generalization of  Lavrentiev's 

estimate and is probably unnecessary. The final statement has an easier proof which 

does not require Theorem 3 and which will be sketched in Section 6. Replacing 

[10, Theorem 2] by Corollary 3 gives an easier proof of  [10, Theorem 3]: F is an 

Ahlfors-David regular curve iff there exists C > 0 such that AI(~- I (F) )  _< C for 

every univalent �9 on D. See [10] for details. 
An integral similar to that in Theorem 3 occurs in work of Astala and Zinsmeister 

who show that log ~ '  is in BMO iff ]S(~)(z)[2(1 - [z[)3dxdy is a Carleson measure 

on D. Recall that a Carleson square in D is a set of  the form 

Q = Ql = {re i~ : e i~ E l ,  l - lll ~ r _< 1}. 

We let ZQ denote the center of  the top half of  Q, 

T(Q) = {re i~ : e iO E I, 1 - Ill < r < 1 - 111/2}. 

A positive measure # on the disk is called Carleson if  there is a C > 0 such that for 

every Carleson square Qt, #(Q1) < Clll. The following theorem extends the result 

of  Astala and Zinsmeister and was inspired by their paper [4]. 

T h e o r e m  4 Suppose f~ is simply connected and ~ : D ~ f~ is conformal. Then 

the fo l lowing are equivalent: 

(1) ~ = log~ '  is in BMO(T).  
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i~  (2) There exists a 6, C > 0 such that for  every Zo E f~ there is a rectifiable 

lngbdomain D C f~ such that g( OD ) <_ Cdist(z0, 0f~) and w( zo, OD f3 0f~, D) >_ 6. 

~,, (3) There exists a 6, C > 0 such that for  every zo E f~ there is subdomain 

D C f] which is chord-arc with constant C and such that D(zo, 6) c D, g(OD) <_ 

Cdist(z0, On) and g(OD M Of~) >_ 6d. 

(4) There exists C > 0 such that for  every Carleson square Q, 

ff ala(r - Izl)3dxdy < Cg(Q). 

(5) There exists 6,C > 0 such that for  every wo E D, there exists a chord-arc 

domain D C D such that w(Wo, OD M T,D)  > 6 and 

f f  olr - - <  -Iw01). Izl ) 3 dxdy CIq"(w0)l(1 

Chord-arc means that there is a C > 0 such that the shorter arc connecting two 

points zl,z2 E 019 has length at most Clzt - z2l. These are also called Lavrentiev 

curves and are exactly the bi-Lipschitz images of  circles. Since condition (3) is 
clearly bi-Lipschitz invariant, we get 

C o r o l l a r y  4 The collection of  domains satisfying (1) - (5) is invariant under 

bi-Lipschitz homeomorphisms of the plane. 

Harmonic measure on a chord-arc curve is in the Muckenhaupt class A~  with 

respect to arclength [28], so condition (3) could be restated by saying D satisfies 

w(zo, 019 N Of~, D) >_ 6. 

A quasicircle is the image of the unit circle under a quasiconformal mapping. 

They can be characterized more geometrically by the condition that there is aM > 0 

such that the smaller arc between any two points zl, z2 on the curve has diameter at 

most Mlzl - z2[. Given a quasicircle one can find a bi-Lipschitz involution fixing 

the curve and exchanging the two complementary components [3]. Thus 

C o r o l l a r y  5 A quasidisk satisfies ( 1 ) - (5) iff its complement does. 

These corollaries answer questions from [4]. The implication (1) =~ (4) of 

Theorem 4 was noted by Zinsmeister, [50, Lemma 7] and the implication (4) 

(1) is due to Astala and Zinsmeister, [4, Lemma 1]. For a general domain let A(f~) 

denote those measures # such that 

Ilullc = supr-II#[(D(x,r))  < oo 

where the "sup" is over all x E 0f~ and r > 0. These are called the Carleson 

measures for f~. The class of  domains defined by Theorem 4 have previously been 
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studied by Zinsmeister, who showed that log r E BMO iff there is a M > 0 such 

that if/~ E A(f~) then u = 1r162 E A(D)  with II~'llc <- g l lu l l c .  This condition is 

equivalent to saying f fa  ~]d/~ < Mllullclbell~,(a) where Ibql~,,(~ = I~ e o ~-  ~'[[~,(m. 
See [52] for the proof of  these equivalences and some other properties of  these 

domains. 
The conditions of  Theorem 4 do not imply 

~ jogt(z)jls(o))(z)12(1 -. lz[)3dxdy < oo, 
D 

as is seen by taking an infinite strip f~ = {z : - 1  < Im(z) < 1 }. 
A standard characterization of BMO(T) states that v) E BMO iff either (hence 

both) 

Jqa'(z)J2(1 -Jzl)dxdy, I~"lz(a -JzJ)3dxdy 

are Carleson measures. Since S(ff) ~" 1 (9)~)2, the equivalence of (1) and (4) 

is not too surprising. The proof of  (4) =~ (1) will also show: 

C o r o l l a r y  6 We have C -1 l[S(~)Jla2,~ < I[~a - ~(0)[[L2(T) < C + CJlS(~)[JAz.~ for  
any univalent ~. 

Here we have saved space by using the notation of  weighted Bergman spaces 

[16], i.e., 

JJfl[A.,' = ( [ /  [flP(1 --]zl2)rdxdy) 1/p 
JJ D 

The only use of  univalence in the previous result is that if  r is univalent, then 

= log ],I~'] is in Bloch, i.e., J]~'(z)][. 5 6 [19]. The argument remains true if we 

forget about �9 and think of  it as a result about ~. The left hand inequality is not 

true for general analytic functions, but the proof of  the right hand inequality can 

be made to work without the assumption that ~ is in Bloch, so we get 

C o r o l l a r y  7 We have I1~ - ~(0)IIL~(T) _< Cl~'(0)l  + Cll~" - (~')2/211a2.3 for  any 
analytic ~a on D. 

Our final result is the "almost everywhere" pointwise result which follows 

naturally from the estimates of  Theorems 3 and 4. First we define a version of  the 

fl's adapted to inner tangents. For e iO E T and t > 0 let x = ,b(e iO) and let C be the 

collection of all line hitting D(x, t) such that at least one component of D(x, 4t) \L 
both hits r ei~ and is contained in f~ and let 

rl(d~ = t -~min(  max dist(z, Of~)). 
C zELnD(x,t) 

I f C = O w e s e t r l = l .  
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T h e o r e m  5 Suppose  fl is s imply connec ted  and  �9 : D ~ f~ is conformal.  Then 

except f o r  a set o f  zero measure the fo l lowing  condi t ions are equivalent .  

(1) O' has a non- tangent ia l  limit at  e i~ 

(2) fo 1 rl2(ei~ oo. 

(3) fw S(r - I z t )2dxdy  < oo. 
(o) 

(4) fw r162 -Izl)Zdxdy < oo. 
(o) 

Since (1) is a.e. equivalent to tb(e iO) being an inner tangent of  f~, this is an analog 

of Theorem 2. It should be compared to more classical results, as in [48], which 

say ~'  has a limit a.e. where 

L W,(z)12( 1 -Izl)2dxdy < ~ .  
(o) 

Also note that the integral in (2) is a version of  the integral of  Marcinkiewicz (e.g. 

[48]), 

f .MF(y )=  d i s t ( y - x , F )  , F c R .  
l 

The main difference is that whereas rl measures the approximation to a line in a 

L ~ sense, the Marcinkiewicz integral measures in a L 1 sense. 

Theorems 3, 4 and 5 each say that if either 

(1.1) fD IS(r - Izl)3dxdy < oo, 

or 

(1.2) fl> lr162 - Izl)3dxdy < oo, 

then f~ is "almost" rectifiable in some sense. In particular, almost every (a;) point 

of  af~ is an inner tangent point. In fact, for bounded quasicircles (1.2) implies 

rectifiability (Lemma 4.9). Conversely, if 0f~ is rectifiable then the second integral 

must be finite but the first need not (Lemma 4.7). However, by considering a map 

from the disk to a half  plane, one sees that the finiteness of  the integrals does not 
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imply 0~2 has finite length and one can even construct domains for which both 
integrals are finite but 0f~ has positive area. 

In Section 2 we prove Theorems 1 and 2. The proof of Theorem 1 is only a 

modification of an argument given in I31 ] so will only be sketched. In Section 3 we 

review some facts concerning the Schwarzian derivative. We will prove Theorem 

3 in Section 4 and deduce its corollaries. In Section 5 we prove Theorem 4, and in 
Section 6 we prove Theorem 5. 

An earlier version of  this paper had a harmonic measure estimate analogous 

to Beurling's estimate with ~(x, t) replaced by/3(x,t) .  However, Juha Heinonen, 

Pekka Koskela and Steffen Rohde pointed out an error in its proof. 

2. P r o o f  o f  T h e o r e m s  1 and  2 

We start this section be recalling some definitions and results from [101, [31]. 

Suppose E c R 2, x E R 2 and t > 0. Let C be the collection of  all lines hitting 

D(x, t). As in the introduction we define 

fiE(x, t) = t - i  infdist(E n D(x, 4t), L). 
c 

This measures how close E is to lying on a straight line. Let L be a line for which 

/3 is minimized and let E" denote the perpendicular projection of E f l  D(x, 4t) onto 
L. Let 

7L-(x,t) = t -I sup dist(z ,E') ,  
:cLnD(a,4t) 

i.e., 7 measures the largest "gap" in L\E*.  
These definitions are sometimes stated in terms of  dyadic squares, i.e., squares 

of  the form 

O = [k2",(k+ 1)2"1 x [j2", (j + 1)2"] 

with j,  k, n E Z. Let e(Q) denote the side length of  Q and for a > 0, let aQ denote 

the concentric square with side length ae(Q). Given a dyadic square Q there is a 

unique dyadic square Q' containing Q such that e(Q') = 2 " e ( Q ) .  We denote this 
square by Q~. The functions defined above can also be given by replacing D(x, t) 
by a dyadic square of  size ,-~ t containing x, i.e, 

/3(Q) = g(Q)-~ inf  dis t (E,L n 3Q), 
r 

where s is the collection of lines hitting Q, By adjusting the constants in the 
definitions one gets 

f01 ~ ~ / 3 ( Q ) 2 ,  
.2de /3(x, t) ~- 

x~O 



HARMONIC MEASURE, L 2 ESTIMATES AND THE SCHWARZIAN DERIVATIVE 8 7  

2 fl(x, t)2dxdy ~ Z fl(Q)Zg(Q). 
Q 

The dyadic square notation is used, for example, in [ 10] and [31 ]. 

L e m m a  2.1 ([31, T h e o r e m  1]) 

(1) I fV  c C is connected then ~ Q  flZ(Q)g(Q) <_ Cg(P). 

(2) l f  E C D satisfies flZ(E) = ~ Q  flZ (Q )g(Q ) < cx~, then there exists ~ connected 
with E c P and g(P) _< 4diam(E) + Cofl2(E)). 

This result has been extended to sets in R" by K. Okikiolu [39]. The hypothesis 

of Theorem 1 can be restated in this notation to read: for every x E E 

(2.1) Z ~ E ( Q )  2 < m 
xEQ 

(the sum is over all dyadic squares containing x). Note that Theorem 1 and Lemma 

2.1 show that (2.1) implies fl(E) <_ C + Ce cM. If we had a direct proof of this 

we could then deduce Theorem 1, but we know of no such argument. Note that 

such a direct argument cannot be merely arithmetic, but would have to use some 

geometry. (Let Q0 be a unit square and define numbers fl(Q) = l / n  if g(Q) = 2-" 
and Q c Q0 and zero otherwise. Then the sum in (2.1) is finite but the sum in 

Lemma 2.1 is not. This is possible since these numbers do not come from any 

set E.) We can also note that the e cM is the correct constant by considering the 

snowflake formed as follows. Fix an E > 0 and for any line segment I consider the 

isosceles triangle with base I and height e. Replace the line segment by the path 

formed by the 2 opposite sides and repeat the construction of each of them. After 
N iterations we have a curve of length (1 + e2) N ,~ C e  Nee and such that the sum in 

(2.1) is bounded by CNe 2. 
In proving Theorem 1, we assume the reader is familiar with [31]. Suppose E 

is a set of diameter less than 1 satisfying (2.1). In [31 ], one constructs a collection 

of  finite sets s s  s  c E such that 

(2.2) I z j -  zkl < 2 -n, zj,zk E E., 

(2.3) infd is t (z , s  _< 2-" ,  z E E, 
zEE 

and a sequence of  polygonal curves {P. ) containing s  whose lengths can be uni- 

formly bounded in terms of fl(E). To prove Theorem 1 we modify the construction 

slightly and instead of estimating the length of  I ' .  directly we build functions {f. } 

on I~. such that 

(2.4) 0 <<_f~(x) <_ C + C Z f l 2 ( Q ) ,  x E P,, 
xEQ 



88 c. J. BISHOP AND P. W. JONES 

(2.5) [~ exp(-fn)ds < C, 
n 

for some C > 0. Passing to the limit, we obtain a curve P which contains E and 

has length at most Ce c~t. 
To define F0 choose 2 points z0, zl in E with Iz0 - Zl] > d iam(E) /2  and let Eo be 

the segment [2z0 - zl, 2Zl - z0] containing these points and extending beyond them. 

Let f0 - 0. In general, suppose we have a finite set s  c E satisfying (2.2) and 

(2.3) and E, is a polygonal curve containing s Consider points z0, zl E s  with 

fz0 - Zl I "~ 2-" .  Let L C En denote the line segment connecting these points. There 

are essentially 2 cases depending on whether E contains a point near the midpoint 

o f  L or not. 

First suppose E contains a point z2 with dist(z0, z2) ,-~ dist(zt, zz) -,~ 2-" .  Let  Q 

denote a dyadic cube of  size 2 -~- l  containing z2. Then define P,+l by replacing 

the line segment L by the 2 segments [z0, z2] and [z2, zl]. These segments have total 

length less than Izo - zl I(1 + C/3(Q)2). Define L+I  (x) = f~(x) + C/3(Q)Zx3Q(X). 
Thus 

fr exp(-f'+'(x))ds <- fr exp(-fn(x))ds <_ C. 
?1~  [ tl 

In the second case, the only other points of  E near L are very close to either 

z0 or zl. For example, suppose z2 E E is close to zo. Let Q be a dyadic square 

containing ze with g(Q) ,,~ lzo - zzl. We define Pn+1 by keeping L and adding the 

segment [z0, 2z2 - z0]. Let  I be the middle third of  L and define 

fn~-i (x) =fn(x)  + C/3(Q)2X3Q(X) + CXt(X). 

Since g(I) >> g(Q) we get as above 

fv exp(-f~.l(x))ds < fr exp(-fn(x))ds <_ C. 
n t - I  n 

In the proof  of  [31, Theorem 1 ] there are actually 6 cases considered in passing 

from Fn to Fn+l. However, each of  these cases can be dealt with by one o f  the two 

arguments above (more precisely, cases 1 and 2 of  that paper are dealt with by the 

first argument and cases 3 to 6 by the second argument). With this modification 

we obtain a proof  of  Theorem 1. 

The deduction of  Theorem 2 from Theorem 1 consists of  known arguments, 

although the details may not have been recorded together before. If  E is the 

set of  tangent points of  F then it is known that E has sigma-finite length and 

Besicovitch regular. In fact, except for a set of  measure zero we can write E 

as a union of  set E~ so that each En (after rotation and dilation) is of  the form 

{x + iy : f (x )  = y = g(x)} w h e r e f ,  g real valued Lipschitz functions on [0, 11 with 
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f < g and P N [0, 1] 2 C {x + iy : f ( x )  < y < g(x)} (this all just says that locally 

F is trapped between two Lipschitz graphs which agree on the set E; this is a 

standard construction and is recorded in [7]). If we let PI, F2 denote the graphs of  

the func t ions f  and g, they are clearly rectifiable and therefore the/3-sum over all 

dyadic squares corresponding to Fl U F2 is finite. This easily implies the pointwise 

B-sum is finite at almost every point of  PI u F2 (integrating the pointwise sum over 

the curves gives a lower bound for the sum over all squares) and hence at a.e. point 

of  En. 
To deduce the other direction of  Theorem 2, suppose E is a set where the /3 

integral is bounded. Passing to a subset of  positive measure we may assume E is 

compact and the integral is bounded by some M at each point of  E. By Theorem 1 

E lies on a rectifiable curve. We may use a point of  density argument to assume it 

lies on a Lipschitz graph G = {(x, g(x))} with very small constant. Let  x E E be a 

point of  density and choose r > 0 so small that A1 (E fq D(x, t)) _> (1 - e)2t for all 

0 < t < r and fo/32( x, t)dt/t < 4. Rescale so that x = 0, r = 1 and let z E D(i, 1/4). 

Then z r F for otherwise/3(x, t) _> 1/2 for t ,,~ 1. But this contradicts the integral 

estimate. A similar argument works for z E D ( - i ,  1/4) so we see x is the tip of  two 

cones, one on either side of  F. Standard arguments now imply that (except for a 

set of  zero Al measure) x is a tangent point of  F. 

3. S o m e  b a c k g r o u n d  on the S c h w a r z i a n  derivat ive 

In this section we state some basic results concerning the Schwarzian derivative 

and review certain results from [10]. The Schwarzian derivative of  a locally 

univalent function F is defined by 

[ F " ( z ) ] ,  1 [ F " ( z ) ] 2  
S(F)(z) = LF~-7~ J - ~ LF--~J 

[F ' " (z )  ] 3 [F" (z ) ]  2 
= t F'(z) J - 2 L F--'7~)J 

If  we write F' = e * then it can be rewritten as 

S(F)(z) = ~" - 1(q9')2. 

Recall that S(F) =_ 0 iff  F is a Mrbius  transformation and that S satisfies the 

composition law 

S(F o G) = S(F)(G') 2 + S(G). 

In particular, if G is Mrbius  then 

S(F o C) = S(F)(~ ' )% 
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S(G o F) = S(F). 

In addition, given an e > 0, hyperbolic disk D and a compact neighborhood K of  

D, there is a 6 > 0 so that IS(F)I < r on D implies F uniformly approximates a 

M6bius transformation on K to within e. The relevance of  the Schwarzian to the 

study of  univalent mappings is described by (e.g., [19]): 

L e m m a  3.1 Suppose F is analytic on D. I f  F is univalent and r = l o g F '  then 

6 6 
IS(F)(z)l <_ (1 - Iz l2)  2 and ko'(z)l ___ 1 - I z l  - - - - - 7 "  

Conversely, if 

2 2 
IS(F)(z)l ~ or I~o'(z)l 

(1 - Iz l2)  2 (1 - Iz12)  ' 

then F is univalent. I f  the 2 is replaced by a small constant, e, then the image o f  

the disk is a quasidisk with small constant. 

If  f2 is a domain, ff~ : D ---, f2 univalent and e iO E T let x = r iO) E 0f2 and 

t > 0. Let  C be the subcollection of  lines hitting D(x, t) such that a component  of  

D(x, 4 t ) \L  is contained in f2 and hits the geodesic ~([0, ei~ and set 

~1~ (x, t) = t -  l inf sup dist(z, 0f2). 
C zELnD(x,4t) 

The condition involving the ray is to prevent the situation where 0f2 looks like the 

complement  of  an arc which looks fiat f rom at least one side at every scale, but for 

which the fiat side switches infinitely often as the scales change (this can occur). 

There are some fairly obvious relations between the/3, -y (defined in Section 2) 

and r /which we state as a lemma. 

L e m m a  3.2 Suppose f~ is simply connected, and/3 =/3e, ~/ = "YE and rl = rl~. 

(1) / f E  = 0f2 then r/(x, t) </3(x, t). 

(2) I f  E = Of 2 is a quasicircle then/3(x, t) + "/(x, t) < Crl(x, t) where C depends 

only on the quasicircle constant o f  f2. 

(3) I f E  = 0f2 fq {z : dist(z,L) < r/(x, t)} then/3(x, t) + "y(x, t) < Ol(x ,  t) (here L 

is a minimizing line in the definition o f  77). 

Next we note that this geometric quantity controls the Schwarzian. 

L e m m a  3.3 Suppose q~ : D --+ f2 is univalent on D(w,  e(1 - Iwl)). Then 

lr Is(~)(w)l(1 -Iw12) 2 < c ,  -2 r/(x, t) y 
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where r = dist(ff(w), 0f~) The number  # satisfies 0 < # < 1 but can be taken as 

close to 1 as we wish. The constant C depends only on the choice o f  #. 

This is proven in [ 10, Lemma 3.1 ] with r/n replaced by/3E +'yE and ff the universal 

covering map of  the complement of E. The lemma can be proven by repeating the 

proof (with minor changes) given in [10] or can be deduced from that result using 

part (3) of  Lemma 3.2. The following results quantify the idea that ff behaves like 

a Mtbius transformation if S(~) is small. 

L e m m a  3.4 Given t, n > 0 there exists C = C(Q > O, 6 = ~(e, n) > 0 such that 

i f  Q is a Carleson square and 

6 
IS( )(z)l <_ 

(1 - Izl2) 2 

for  all z E T(Q),  then there is a geodesic 7 such that evely  point  z E Q such that 

1 - ]z l  > 2-"g(Q) and I~o'(z)] >_ , /(1 - [zl 2) lies within hyperbolic distance C of'y. 

Moreover, ~ '  grows like (1 - ]zl) -2 along 7. In particular, f o r  every r 1 > 0 there is 

a 6 > 0 so that if'lo is an arc o f  y f rom zo E T(Q) to zt E Q fq {Izl = 1 - 2-"g(Q)} 
then IcI"(Zl)] > 22"(1-0/14"(z0)1. 

The proof is fairly easy and we will only sketch it. If  6 is small enough 

(depending on n) then ff is unformly approximated by a Mtbius  transformation r 

on Q ~ {[z I < 1 - 2-he(Q)} and so Iff'(z)(1 - Izl=) 2 - , - ' (z ) (1  - Izl2)21 ___ , / 2  by the 

Cauchy estimate (a similar estimate clearly holds for the higher derivatives). The 

lemma is true for Mtbius  transformations (by a direct calculation) and so follows 

for �9 by the estimate above. 

L e m m a  3.5 ([10, L e m m a  5.2]) Given , > 0 there is a 6 > 0 with the 

fol lowing property. Suppose zo = roe iO E I)  and let "~ = [roe i~ rl e iO] be a radial 

line segment with endpoint zo. Suppose [qd(z0)[ _< ,/(1 -[z0[ 2) and f o r  all z E 2/ 

Then fo r  all z E "y 

IS( )(z)l (1 -[zl2) 2" 

6. 

I~'(z)[-< 1 - I z l  ----------~ 

Moreover, f o r  z E 7 and p(z, zo) large enough (depending only on d5 and E) we have 

I '(z)l 1 - Iz l  

The following is a well known version of Green's theorem 
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L e m m a  3.6 ([14], [28], [33]) Suppose 0 E 79 is chord-arc with constant M, that 

we have dist(0,079) ~ diam(79) = 1 and that F is holomorphic on D and satisfies 

g vlf'(z)12d(z)dxdy < oo, 

with d(z) = dist(z, 079). Then F E H2(79) and 

or IF(z)12ds(z) ~ IF(O)I2 + g v  IF'(z)lzd(z)dxdy 

with constants depending only on M. Similarly, 

or  IF(z)12ds(z) ~ IF(0)12 + IF'(0)12 + g v  IF''(z)12d(z)3dxdy" 

Moreover, the constants grow at most like polynomials in M. 

See [14] for a simple proof when 79 is a Lipschitz domain. We shall use this 
result with F = (~,)1/2, ~ univalent. Then if ~ = log(~'),  

F '=  ~_(~,,);/2(r 

and 
F ' t  = l ( ( I ) ' ) l /2(~"  + l ( ~ t )  2) 

= �89 ) + (r 

L e m m a  3.'1 I f  ~ : D ---+ f~ is univalent and Of~ is rectifiable then 

/ D l ~ ' ( z ) l l S ( ~ ) ( z ) 1 2 ( 1  -Izl)3dxdy < oo 

To prove this note 

f f  Dl,~'(z)llS(,~ )12(1 - Izl)3dxdy < c f f  ol~'(z)lla( ~)(z) + (~0'(z))212(1 - IzD3dxdy 

+ C g  I~'(z)lJ(z)14(1 - Iz])3dxdy 
D 

< C f f  IF"(z)im(1 - Izi)3dxdy 

D 

+ CIl~ll 2, f f  rF'(z)lm(1 - Izl)~dy 
D 
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is univalent so II~ll. is uniformly bounded and so by the formulas above, each 

of  the two terms on the right is bounded by CII~"IIH,. That proves the lemma. 
To construct a map �9 onto a rectifiable domain ft such that 

f IS(~)(z)[2(1 - Izl)3dxdy = oo, 

D 

we mimic the proof of  sharpness of  Lavrentiev's estimate. Consider a positive 

measure/z on T which is singular to Lebesgue measure but which is "smooth",  

i.e., such that its harmonic extension ~ to the disk satisfies II~'(z)[I. ___ ~. The 

construction of  such measures is given in [20], [32], [40]. The function # defined 

by Re(log I~'1) = - ~  is univalent by Lemma 3.2 and I~"1 is bounded so if(D) 
is rectifiable. However, log # '  is only in weak L I and certainly not in L 2, so by 

Corollary 6 the integral above cannot be finite. 

Suppose r is univalent on the unit disk and that 79 c D is a Lipschitz subdomain. 

Let {Qj} be the dyadic squares in the Whitney decomposition of f~ = ~(D) (see 

[48, Chapter VI]). Let e, 6 > 0 and define a collection of  "bad squares" B,,6 by 

putting Qj E B,,6 if 

I~'(z)l(1 - I z l  z) ___ ~, 

for some z E ~ - i  (Qj) and 

IS(~)(z)l(1 -Iz12) z ~ 6, 

for every z E ~-1 (aj). Also let d(z) = dist(z, 079) for z E 79. 

L e m m a  3.8 ([ 10, Lemma 4.2]) There are universal constants ~o > 0 and C > 0 

such that whenever  ~ < eo and 6 > 0 then 

or I~'(z)lds <_Cl,I,'(0)l + C(1 + 6 - 2 )  I f  I,~'(z)llS(,~)(z)lZd(z)3dxdy 
D 

+c E 
QjEB,,6 

(Our definition of  "bad square" above is slightly different from the one in [ 10] 

where we only required S(~) to be small at one point of  Qj. This does not effect 

Lemma 3.8, since if the Schwarzian is large at one point of  Qj then its integral over 

Qj is large (by normal families) and this is all the proof of  Lemma 3.8 uses.) In 

[ 10] it is mentioned without proof that the final term is unnecessary if ~ is assumed 

to be a quasicircle. More precisely, 
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L e m m a  3.9 Suppose [2 is a quasidisk and �9 : D ~ f~ is conformal. Then there 

is a C > 0 (depending only on the quasidisk constant) such that 

g(Of~) ~ diam(f~) + f f  I +'(z) lla(O)(z) 12d(z)3dxdy. 

D 

The same holds fo r  a Lipschitz subdomain o f  D. 

To prove this we claim that all the bad squares (if any exist) lie within a bounded 

hyperbolic distance o f  some fixed hyperbolic geodesic, % so the sum of  their 

lengths is at most a constant times the length of  ~(-J .  Since f~ is a quasidisk 

g(ff(7)) is bounded by Cdiam(f~), as desired. 

To prove the claim, first suppose 0 is mapped to the "center"  o f  the quasidisk, 

i.e., dist(ff(0), 0f~) ~ diam(f~). We will show that all bad squares occur within 

a bounded hyperbolic distance of  ~(0). For suppose Q is a bad square with 

g(Q) << diam(f~). Then if 6 is small enough in the definition of  bad squares, 

looks like a half plane near Q and ff-I  looks like an inversion at a point 

z0 E 0f~ with dist(z0, Q) ~ e(Q). This means that if l , J  c 0f~ are two arcs 

with diam(1) ~ diam(J) ,,~ g(Q) and with z0 E I and dist(J, z0) ~ e(Q) then the 

harmonic measure of  I will be much larger then the harmonic measure o f  J and 

this contradicts the doubling property of  harmonic measure on quasicircles. 

Now suppose 0 is mapped to a point very near 0D. Let w E D be a point such 

that dist(4}(w), 0f~) ,-~ diam(f~) and let 7- : D -~ D be a Mbbius transformation 

mapping 0 to w. Then ff o -r satisfies the conditions of  the previous case so all 

its bad squares occur in a bounded hyperbolic region. Using the composit ion law 

for the Schwarzian and the conformal invariance of  17-'(z)l(1 - Izl 2) we see that 

S(F)(z)(1 - [z12) 2 is invariant under Mbbius transformations. Moreover, 

F" o 7-(z) 7-"(z) (F o T)"(Z)(1 - Izl 2) - r ' (z)(1 - Izl 2) + Iz12), 
(F o 7-)'(z) F-7o ~ T--~ -(1 - 

The first term on the right is invariant and the second term is large only near the ray 

from 0 to w. Therefore  the only bad points for �9 can occur  in a bounded hyperbolic 

neighborhood of  w and within a bounded hyperbolic distance of  the geodesic from 

0 to w. This proves the claim and finishes the proof  of  Lemma 3.9. 

4. P r o o f  o f  T h e o r e m  3 

T h e o r e m  3 I f  �9 is univalent and 

A = [~'(0)l + ff I+'(z)lIS(+)(z)12(1 - [z])3dxdy < c x )  ~ 

D 
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then ~' 6 H�89 for even ~ > 0 and 11~'11�89 ~ C(o)A. 

Divide the dyadic Carleson squares into three classes, 

s = { a :  IS(~)(z)l _ ~/(1 - Izl2) 2 some z 6 T(Q)}, 

B -- { a  ~ z:: I~'(z)l _ , / ( 1  - Izl z) some z 6 T(Q)} ,  

~= {Q r EuB}. 

The letters stand for "large",  "bad" and "good".  For any Carleson square Q we let 

ZQ denote the point in the center of  T(Q). 
Given M, rt > 0 we will construct a region R c D and a constant C > 0 

(depending on 7/but not on M) such that 

f f  l~'(z)llf'(z)12(1 -Izl)~dy <CM f f  I~'(z)llS(~)(z)12(1 Izl)a~dy l 

(4 .1 )  ~ D 
, I  d 

+ Cl,~'(O)l, 

and 

(4.2) IT\aT"~l _< CM -1+~ 

I f Q  6 B u ~ define D 0 = Q\ UQ, cQ,Q,eC Q'. Each dyadic square is contained in a 

"mother" square of  twice the size and we shall call a square in each class maximal 

if its mother is of  a different type. We shall build R and verify (4.1), (4.2) by 

tal~ng unions of  three types of  domains: T(Q), for all Q 6 s and DQ, for maximal 

squares in ~ u B. 

Since ~ is in Bloch, (4.1) is trivially true on T(Q) for any Q 6 s with constant 

Cl6. 
To handle DQ, Q 6 G, apply Lemma 3.6 (as well as the identities following it) to 

I,I,'lln, 

f f  l '(z)ll#(z)12(l - Izl)dxdy C f f  I,~'(z)llS(~)(z)12(1 Izl)adxdy <_Cl~'(zQ)l + 

c f f  I~'(z)lld(z)14(l - [zi)adxdy. + 

ve 

Since Q 6 ~ then Lemma 3.5 implies every subsquare hitting DQ is also in G. Thus 

the last term above is at most Ce 2 times the left hand side. Subtracting we get 

f f  l~'(z)ll#(z)12(1 - Izl)axdy < f f  - C I~' (z)llS( ~ )(z)12( l [z[)3~dy 
J q l  

Z~Q ~0 

+ CI@'(ZQ)Ie(Q). 
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However, since Q E G is maximal the first term on the right dominates the second 

since Q is adjacent to a square in s and so IS(~)(z)l is large on T(Q) (by normal 

families). 
Thus we are reduced to considering bad squares. Suppose Q E 13 and v > 0 is 

small (to be chosen below). First assume 

f f  l~'(z)llS(~)(z)12(1 - Izl)3dxdy ~ ~'l~'(za)le(Q). 

If v is small enough (depending on E and 6) this cannot occur if Q is the daughter 

of a square in s for then by normal families the Schwarzian is large on most of 

T(Q). Thus this case can only occur if Q is the square containing the origin and so 

(since t(Q) ~ 1) 

f f  [~'(z)ll~'(z)12(1 - Izl)dxdy ~ Cl~"(0)l. 

Next suppose that 

f l~'(z)lls(~)(z)12(1 -Izl)3dxdy = n >_ vl~'(zo)te(a). 
~Q 

Using Lemma 3.4 there is a geodesic ray 3' so that any subsquare Q' E B intersecting 

7) 0 must be within a bounded hyperbolic distance of 3", i.e., they lie with in some 

Stolz cone S. Drop down along 3" until we either leave Q or leave tonT(Q) or reach 

a square Q' E I3 such that z O, satisfies I~'(za,)le(Q') > MB > Mvl~'(zo))le(Q). Let 
H denote the collection of"ugly"  squares Q' which arise in this way from maximal 

"bad" squares Q. Let 7~Q = 79Q\Q'. We claim that 

f I~'(z)ll~'(z)12(1 -Izl)dxdy ~ CM H I~'(z)lIS(~)(z)12(1 -Izl)adxdy" 

"b e ~e 

Define R = D\ t-Ju Q'. The claim clearly implies (4.1). 

To prove the claim we would like to apply Lemma 3.6 to "DQ\S, but this may not 

be possible because the chord-arc constant of this domain might be too large (the 

edge of the cone might pass near the top of some s square in the definition of DQ). 

We get around this by dividing ~Q\S into chord-arc domains with fixed constant 

by adding vertical lines to the boundary. More precisely, recall that DQ = Q\ to Qj 
for some dyadic squares {Qj} and suppose L denotes one edge of the cone S which 

meets the circle at a point so. Suppose Qj is to the left of s0. We will joint Qj to L by 
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a vertical line segment from Qj's upper right comer if dist(Qj,L) < e(Qj)/2. The 
resulting domains are certainly chord-arc with a fixed constant and only a bounded 
number of Qj of the same size are ever chosen (since L has positive slope). Thus the 

diameters of the new domains Dj can be chosen to have geometrically decreasing 

diameters (depending on S). Let zj denote points in the top of each domain. Lemma 
3.6  now applies to each 79j so 

f f  I~ -[zl)dxdy <_ Y~ f f  I ~i''(z)ll~o'(z)lz(1 -Izl)dxdy 
z3 a J vj 

< C ~ I~,'(zj)l(l -Izjl)  
J 

+ c ~ f f  I~'(z)llS(O)(z)l=(1 -Izl)3dxdy. 
J vj 

The values IO'(zj)l(1 - Izjl) are dominated by the values at nearby points along 7. 
These are growing geometrically, so the sum is dominated by the last term, namely, 

ClO'(zo,)le(Q'). This proves the claim and hence (4.1). To prove (4.2) we need 
two lemmas. 

L e m m a  4.1 For any ~ > 0 there exists 6 and e such that if Q E 13 is maximal 
and Q' is the corresponding ugly square, then g(Q') < M-I+ng(Q). 

This follows because if 6 is small enough on the "bad" geodesic 7 then ~ must 
be growing almost like (1 - Izl) -2 .  In particular, by Lemma 3.4 and induction we 
have 

I~'(z)l > Cl~'(zo)l( 1 -Izl  ) 2 + 0 ,  
- 1 - - I ~ 1  

if 8 is small enough. Given the definition of ugly squares, this proves the lemma. 

L e m m a  4.2 For every ~ > O there is a C = C 07 ) such that ~ u  e ( Q' ) < C M -1+ 2'7 
i f M > C .  

To prove this we associate to each square Q' E H the set ODQ n T. Since these 
sets are disjoint, by Lemma 4.1 it suffices to show g(79Q n T) > CM-0e (Q) .  

Normalize so e(Q) = 1 and ~'(ZQ) = 1. Choose a square Q" with Q' c Q" c Q 
and 

IO'(z)le(Q') ~ M~ = MO / /  I,~'(z)lla(O)(z)12(1 - Izl)3dxdy, 
ve 

for z E T(Q"). Let l)" = Q" c179Q. We claim that e(OD" f3 T) > �89 and  hence 

> CM-Oe(Q). Let z" = ZQ,,. Clearly diam(O(7?")) > Cl,~'(z")le(a"). Also  by 
Lemma 3.8, 

e(~(079")) < Cl,~'(z")le(a") § c n  <_ Cl~'(z")le(a"), 
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since B < Cu -11,~'(zQ)le(Q) < Cl,~'(z")le(Q"). Let E denote the union on the top 

edges of the maximal large squares in Q (i.e., the squares removed in the definition 

of DQ). Since S(~) is large near the s squares, 

e(~(E)) : fE I,~'(z)lds ~ C H I~'(z)lla(~)(z)12(1- lzl)3dxdy = CB. 
"Do 

However since ~(0D") has both diameter and length ,,~ I~'(z")le(Q") ~ CM'TB, 
Lavrentiev's estimate says that ~(E) has small harmonic measure if M is large 

enough. Thus E has small harmonic measure in D" and since l)" is a chord-arc 

domain this means E has small length compared to e(Q"), say < e(Q")/2. This 

proves Lemma 4.2. 

We have now verified (4.1) and (4.2) and proceed to deduce Theorem 3. Suppose 

1 = A = I~'(0)l + ff I'~'(z)llS('~)(z)12(1 - Izl)3dxdy. 

D 

(It is sufficient to consider A = 1 by scaling.) Note that i fx E T \3L /=  T \  Uu 3Q 

then the Stolz cone W(x) with vertex at x is contained in R. Recall that the area 

integral of a holomorphic functionf on the disk, 

A(f)(x) ( f f  ,1/2 = [f'(z)12dxdy) , 

w(x) 

characterizes the Hardy spaces, i.e., f E H p iff A(f) E L p. Motivated by this and 

applying the identities following Lemma 3.6, we define 

A(x) =. A((~')l/2)(x) = ( f f  I~'(z)ll~'(z)12dxdy) '/2 
W(x) 

x e T\JU,  

and A(x) = oo otherwise. 

Suppose A > 0 (to be chosen later). There is a C = C(r/) such that 

(4.3) 

1 fT A2(x)dx [{x E T:A(x)  >_ ~}[ _< [3b/[ + ~ \3u 

<- CM-~§ + V I~'(z)ll~'(z)lZ(1 -Izl)dxdy 
7~ 

M 
< CM-1+'7 + ~ .  
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Choose A so these two terms are the same size, i.e., )~2 = M2-V. Then 

I{x E T : A(x) >_ )~}l <- CM-1+'7 = C/~( -2+2~/ ) / (2 - r l )  ~ C / ~ ( - l + r l / 2 ) .  

Thus A(x) I-~ E L 1 with norm at most C + Cr1-1 and so Ilff'llk_o < C(r/). This 

completes the proof  of  Theorem 3. 

To prove Corollary 1, fix 7/, e > 0. By (4.2) there is a domain R such that 

g(T\O'R.) S CM -l+~. 

Using (4.1), Lemma 3.6 and the usual identities for (~,)x/2, 

g(,~(OTZ) ) <_ g I,I,'(z)ll~0(z)12(1 - Izl)drdy < <  CMA. 
R 

Choosing M so E = CM -1+'7 gives g(ff(0R)) < CAe -1-2~, as desired. 

To prove Corollary 2, simply repeat the proof  of  Lavrentiev's estimate in Section 

1, using the fact that II log + !~'IIIL'(T) < !l~'llLt'(w) �9 

The proof  of  Corollary 3 requires some modifications to the proof  of  Theorem 

3. We assume the reader is familiar with [10]. Suppose f~ is simply connected, 

E C 0~ and w(zo,E, ft) = e for some z0 with dist(z0,0f~) > I. Let  ff : D ~ C \ E  

be a uniformizing map with ~(0) : z0. By results of  Pommerenke [42] there 

is a (hyperbolically) convex fundamental domain ~" for �9 with the property that 

IT o 0~'l > Ce. To prove [10, Theorem 2] we passed to a subset W C ~" which was 

a CcX-Lipschi tz  domain 14; c D such that �9 is 1 to 1 on }4;, IT M OW I > ~/2, the 

hyperbolic distance from W to 0U is at least Ce. 

What we wish to observe here is that we can actually take W to be Lipschitz 

with a constant close to 1 by modifying E slightly and dropping the condition that 

be univalent on W, instead requiring that it satisfy estimates similar to those 

for univalent functions. We will add a set to E as follows. Consider a Whitney 

decomposition of  C \ E .  We need only consider boxes with size < diam(E). For 

each square Q that hits Oft choose a point z E Q n Oft. By throwing away some of  

the points, if necessary, we may assume 

Izj - zkl > Cmin(dist(zj, E),dist(zk,E)), j ~ k, 

and for all z E Oft there is a zj such that 

I z -  zjl < Cdist(z,E) and dist(zj, E) > Cdist(z,E). 
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We now take a subset of  these points by choosing zj if dist(zj, E) < 1 and there is a 

point x E E such that 

{z: Ix- zjl/lO <_ Ix- zl <_ lOIx- zj[)nE=O. 

By iterating the construction we could take E to be uniformly thick with respect 

to logarithmic capacity, instead of  countable. More precisely, fix zj and scale so 

dist(zj, E) = 1. Choose another point 2j E Oft with Izj - zjl = ~0" For each of  

these two points choose points in Oft at distance _2~. Continuing in this way we 

associate to zj a Cantor set Fj C 0f~ of  small Hausdorff  dimension (as small as we 

wish by replacing V0 by smaller numbers). Moreover  each Fj lies on a rectifiable 

curve Fj with length comparable to diam(Fj) ~ dist(zj, E) (it only requires length 

2 n 10 -n to connect the nth generation points to the (n - 1)st points). 

Let F be the union of  E and the se t s  {Fj}.  Let �9 be the covering map of  C \ F  and 

~- the fundamental domain described above. It will also be convenient to assume 

that the base point z0 for harmonic measure satisfies 

dist(z0,E) ~dist(zo,F\E),  

but this is easy to get. Moreover, by the maximum principle we may assume 

dist(z0, E) = 1 (if z0 is far f rom E we can find points closer to E which give E at 

least as much harmonic measure). 

The set F lies on a rectifiable curve P whose length is at most CAI(F) + 1. 

This is because we can build F by adding the curves Fj and connecting them to 

E by a line segment of  length dist(z/,E). To show the sum of  these lengths is 

bounded, associate to each zj an arc Aj C F with A(Aj) ~ d i s t ( A j ,  E) ~ d i s t ( z j ,  E) 

and dist(zj, A j) < Cdist(zj, E). This can be done because F must cross the annulus 

in definition of  the collection {zj}. Moreover each Aj can be used at most a bounded 

number of  times (because there are only a bounded number of  Whitney squares 

of  the right size and distance which can contain a zj). If diam(F) << 1 there may 

be some points zj with no associated arc, but these have distances to E which sum 

with a uniform bound. Thus A1 (I ~) < CAI (F) + C. 

Since each Fj has small Hausdorff  dimension, it has zero harmonic measure in 

f~ [6], [131, [36]. So F has the same harmonic measure in f~ as E does. Therefore  

OU hits the circle in length at least w(E). Furthermore,  i f z  is any point in the disk, 

by our construction there must exist points x, y E F such that 

I~(z) - xl ~ I~(z) - Yl ~ Ix - Yl. 

Comparing the hyperbolic metric on C \ F  to the metric on C \{ x ,y }  we see that e9 

must be univalent on some uniform hyperbolic ball centered at z (this is equivalent 
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to saying F is uniformly thick with respect to logarithmic capacity). In particular, 

we have C 

I~'(w)l _< 1 -Iwl - - - - ~ '  
C 

IS(O)(w) l  ___ (1 -Iw12) 2' 

I~ ' (w) l  ~ I~ ' (z) l ,  w ~ O(z ,  �89 - Izl)). 

In [10] we constructed a Ce -1 Lipschitz domain W inside the fundamental 

domain ~" and so that S = O W n  T has length > e/C. We want to enlarge W by 

replacing the cones of  angle e by larger cones of  angle 7r - c, i.e., let V be the union 

of  Stolz cones of  angle 7r - E  with vertices in S. Then V is a 1 4-Ce Lipschitz domain 

on which �9 satisfies the usual estimates for univalent functions (with larger, but 

uniform, constants depending on the choice of  F). 

We claim that 4) is at most CE -c  to 1 on the domain V. To see this, first note that 

W \ V  consists of  a countable number of  regions, each of  which is the difference of  

two tents, one with slope e and the other of  slope e-  i. Thus any point of  V is within 

hyperbolic distance C log e-  1 of  W. Suppose B is a ball of  hyperbolic radius ,-, 1 

in W \ V  and draw the geodesic P from B to W (which has length < C log ~- 1 by 

our previous remark). We take a disjoint collection of  balls {Bj} = {B(zj, e)} C W 

with hyperbolic area ~ ~2 and dist(zj, OW) = e and associate to 3' the ball Bj closest 

to its endpoint on OW. 
Let {Wl , . . . ,  WM} be points in V with the same image under 4). Because of  our 

choice of  F,  4) is 1 to 1 on a hyperbolic ball of  diameter ,,~ 1 around each point. 

Draw the geodesic from wt to V and associate to wj the ball Bj = By(k) as above. 

Since each wj is a uniform hyperbolic distance from the other points, a simple 

volume estimate shows that each Bj is associated to at most e - c  different points. 

Moreover, the collection of  Bj's used have disjoint images which all lie within 

distance Clog~ -1 of  a given point, so area(uBj) < c c. Thus 

M M 

M < Ce-Z Z area(Bj(k)) < C, -c  a r e a ( U  Bj ( , ) )<  Ce -2c. 
k=l k=l 

This proves the claim that 4) is at most Ce -c  to 1 on Y. 

The argument in [ 10] now shows that 

f lr162 -]zj)3dxdy ~ ce-cA < ce-c(Al(r)  + 1). 
V 

By standard conformal mapping estimates for  Lipschitz domains, 

w(O,S,W) > CIS) I+c" > Cd  +c" > Ce. 
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Repeat the proof of  Lavrentiev's estimate (using harmonic measure on V instead 
of  dO on T) to get 

C Iog(CcCA)  
CE ~ w(0, S, 1;) < 

[log A~ (E)I 

Since e = w(E, ft), this easily implies the desired inequality 

~(E)  logA + 1 
< C  

l o g ~ ( E ) - i  + 1 I logA~(E)I + 1" 

5. P r o o f  o f  T h e o r e m  4 

T h e o r e m  4 Suppose �9 : D ~ ft is univalent. Then the following are equiva- 

lent: 

(1) ~ = log ff~' is in BMO. 

(2) There exists a 6, C > 0 such that for  every zo E f~ there is a rectifiable 

subdomain l)  c ft such that g( OD ) < Cdist(zo, Oft) and ~( zo, OD M Oft, D) >_ 6. 

(3) There exists a 6, C > 0 such that for  every zo E ft there is subdomain 

D C ft which is chord-arc with constant C and such that g(OD) < Cdist(zo, Oft) 
and g(OD M Oft) >__ 6d. 

(4) There exists C > 0 such that for  every Carleson square Q, 

f IS(~)(z)[2(l - Iz l)3dxdy ~ Cg(Q). 
Q 

(5) There exists 6,C > 0 such that for  every w0 E D, there exists a Lipschitz 

domain D C D such that ,;(wo, OD N T, D) > 6 and 

f f  l~'(z)lla(F)(z)12( l -Izl)3dxdy ~ Cl~'(w0)l(1 - [wol) .  

We will prove the implications (1) =r (2) ~ (3) ~ (1); (1) r (4); (1), (4) =~ (5) 
and (5) =~ (2). 

(1) ~ (2): Let w0 = i f -  t (zo). Since ~ is in B M O  we can find a chord-arc domain 

D containing w0 of  diameter -,~ (1 - I w0[) such that w(wo, 079 f3 T, D) > 1/2 and 

I~(w) - ~(w0)l ~ CII~IIBMo, 

for all w E D. One just  applies the usual stopping time construction of  throwing out 
dyadic squares where I~o(w) - ~(w0)l > M is too large on the top half. The lengths 
of  the omitted squares is controlled by the maximal function of  the characteristic 

function of  the set where I~o(e i~ - ~o(w0)l _< CM which is small i f M  _> Cll~ollaMo. 



HARMONIC MEASURE, L 2 ESTIMATES AND THE SCHWARZIAN DERIVATIVE 103 

~t(W0) 
e-C < ~'(w-------~ < ec' 

for w E /), so 79' = ~( / ) )  is a rectifiable domain with g(0D') < Cdist(z0, 0 f )  and 

w(z0,019' n Of~, 79') > 6. It may not be chord-arc however. 

(2) =~ (3): Condition (3) will follow as a special case of  the following result. 

L e m m a  5.1 Suppose f is simply connected, AI ( 0 f )  = M, 0 E fl, dist(0, Of)  = 

1 a n d E  C Off with w(E) = ~. Then there exists f '  c f~ which is a C(M, e) chord-arc 

domain and satisfies AI (Off' fq Off M E), w(Of '  n O f  n E) >_ 6(M, e). 

To prove this we will use: 

L e m m a  5.2 ([30]) S u p p o s e f  : [0, 1] m ~ R m+~ satisfies I[fllLw = 1. Then for  

every 6 > 0 there is a M(6) > 0 and closed sets K1, . . .  , KM, N < N(6) such that 

N 

h( f (Qo) \  U Kj)) <_ 6, 
j=l  

and such that 

6 [f(x)-f(y)l>~lx-yl, x, y E K j ,  1 5 j < N .  

Here h denotes m-dimensional Hausdorff  content, h(E) = i n f ~  1 ~ ,  where 

the infimum is over all coverings of  E by balls of  radius {rj}. 

To prove Lemma 5.1 let �9 : D ---, f~ be univalent with ~(0) = 0. Since 

I~"(0)1 _> 1, II Iog I'I"IIIL'(T) < II'I"llt-~(T) -< 2M. Thus the nontangential maximal 
function of  ~ = log I~'1 is in weak L 1 and so we can choose a C = C(M, e) and 

a 2-Lipschitz r e g i o n / )  where e - c  < I~'1 <_ e c and which hits ~ - I ( E )  in length 

bigger than e/2. We want to apply Lemma 5.2 to the mapping �9 on the set 0D, but 

we will want the exceptional set to have small AI measure, not just small Hausdorff  

content. 

To get this we need to  establish that the image curve F = ~(0D) is Ahlfors-  

David regular. Fix x E F and r > 0 and let F = ~-1  (1" M D(x, r)). Define a new set 

by 

P = U D(x, re - c )  M OD. 
x c F  

To each component  interval I of  P associate a maximal collection of  points {zj} 
with zj E / ) ,  Izjl <__ 1 - re - c ,  dist(zj, F)  < re - c  and Izj - zkl = re - c  f o r j  ~ k. To 

each point we associate a disk Dj = D(zj, re-C~2). Since I~'1 ___ e C o n / )  and every 

zj is in/), every disk has image in D(x, 3r). On the other hand, the {~(Dj)} are all 

disjoint and each has diameter > re - c .  Thus there are at most Ce 2c such disks and 
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so Al(F) _< AI(/~') _< Cre 2c. Thus AI(F ND(x ,r ) )  < Ce3Cr. This proves the claim 

that E is regular. 

Now we return to the proof  of  Lemma 5.1. Since F is Ahlfors-David regular, 

for any E c F, A1 (E) < Ce3Ch(E). Applying Lem m a  5.2 to �9 and 079 gives sets 

K 1 , . . . ,  Ks  such that r is Ce-C6-bi-Lipschitz on each and 

h(f(Qo)\  u Kj) < Ce3C6. 

By our remark above this implies 

A10C(Q0)\ U Kj) _< Ce6C6. 

So if we take 6 so small that Ce6C6 < e/4, then one of  the sets Kj hits the set 

D n r in measure at least e/(4N). The proof  of  Lemma 5.1 now reduces to 

the following claim: there is a M > 0 such that given a sawtooth domain W c D 

and a univalent mapping q~ on D which satisfies e - c  <_ [~'1 _< e c on W and which 

is 6-bi-Lipschitz on K = O W n  T then that ~ is Mf-bi-Lipschi tz  on all on W. 

To prove the claim we need only establish the lower estimate. Choose points 

zl, z2 r  and let dl -- 1 - [zl 1, d2 = 1 - [z21 and without loss of  generality assume 

d2 < dx. We consider three cases. First assume [zl - z21 <_ d l /2 .  Then using the 

Koebe 1/4 theorem, 

-  (z2)l Clza - z21l~'(za)l ~ C e - C l z l  - z21. 

For the second case assume d l / 2  <_ Izl - z 2 1  <__ Adl  (where A will be chosen in case 
3). Then the distortion theorem implies 

] ~ ( z l ) -  ~(z2)] ~ Cdll~'(Zl)[ > CA- le -C[z  1 - z2 l .  

Finally assume Izl - z21 > Adl .  Pick points (1,(2 e OW r T which are closest 

to Zl,Z2 respectively. Then since W is a sawtooth domain, [(1 - (2[ _> A d l / 2 ,  so 

since �9 is bi-Lipschitz on the circle, [~(r - ~((2)[ > -~e-Cdl. By the triangle 

inequality, 

I ~ ( Z l )  - -  ~ ( Z 2 ) t  >-- l ~ ( f f l )  - -  ~ ( ~ 2 ) 1  - -  I ~ ( Z I )  - -  t I ) (~ l ) t  - -  1 0 ( 2 2 )  - -  ~ ( f f 2 ) l  

A - c  >_ -~e da - eCBdl - eCBd2 

>_ A e - C  dl 

>_ t~e-Clzl - z21, 
q.  
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i fA is large enough depending on B, C. This completes the proof  of  the claim and 

therefore the proof  of  (2) ~ (3). We note that if f~ is a quasidisk, the proof  becomes 

easier by avoiding Lemma  5.2. This is because if D c D is Lipschitz, then ~(D) 

is also a quasidisk. In this case 14'1 being bounded away from zero easily implies 

is bi-Lipschitz on OD. 
(3) ~ (1): Let  79' = ~-1(79), w0 = ~- l (z0) .  Condition (2) implies that for 

each w0 there exists a compact  set E c 079' N T such that w(wo,E,D) > 6 and 
[~(w) - qo(w0)l < M on E for some uniform M (in fact we may assume this 

inequality holds on a subdomain of  79' containing E in its boundary, e.g, the region 

where the nontangential maximal function of  Xe is bounded by some appropriate 

constant). In particular, we may assume IEI _ 6(1 - ]w0[) and E C D(wo, 1/6). If 

I is a complementary interval of  E with center r let Wl = (1 - ~1I[)r Note that 

[~o(wl) - ~(w0)[ < CM by Hamack 's  inequality. We obtain a subset E1 C I with 

IEII - 6111 and I~(w) - ~(w0)l < 2CM on El .  Applying this argument to every 

complementary intervals for n generations we obtain a set F with 

w(wo,F,D) > 1 - ( 1  - 6 ) "  > 3 /4  

on which [~'1 <_ (CM)". This implies ~ = log 1~'1 is in BMO (e.g., [25, Exercise 

VI.41). 
(1) =~ (4): This is due to Zinsmeister [50, Lemma 7]. Since ~ E BMO both 

I~'(z)12(1 -[z[)dxdy, I~"(z)12(1 -Izl)3dxdy 

are well known to be Carleson measures (e.g., [25, Theorem VI.3.4]). Since ~ is 

in Bloch, this implies 

[qo'(z)[4(1 - [z l )3dxdy,  

is also a Carleson measure. Since S(O) = ~" 1 , 2 - ~(~ ) a simple calculation shows 

the measure in (3) is dominated by the sum of  these three, hence is Carleson. 

(4) =~ (1): This is due to Astala and Zinsmeister [4], but we include a proof  for 

completeness. Fix a square Q0. We will show 

f [ ~ ' ( z ) 1 2 ( 1  - Izl)dxdy ~ Cg(Qo) + C f f  I S ( ~ ) ( z ) [ 2 ( 1  - [zl)3dxdy, 

Oo ao 

for absolute C > 0. This implies I~'(z)[2(1 - [zl)dxdy is a Carleson measure and 

hence qo E BMO. 
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Fix a 6, r > 0 to be chosen later. We define three collection of dyadic squares, 

as in the proof of Theorem 3: 

z: --- { a :  Is(~)(z)l ___ ~/(1 - Iz12) 2 some z E T(Q)}, 

/3 = {a  r s  I~o'(z)l _> ~/(1 - Izl 2) some z E T(Q)}, 

G = {a  r s  

Since ~ is Bloch we have for Q E s 

(5.1) ff I~'(z)12(1-1zl)dxdy<_Ce(Q) <_ ~ ff IS('~)(z)12(1-lzl)3dxdy, 
T(Q) T(O) 

for any Q E s Thus the estimate is o.k. on the s squares. 

If Q E/3 is maximal define 79 = Q\ ua,~z:u a Q'. Then Lemma 3.4 implies there 

are at most C nth generation daughters of Q with T(Q) in 79. Thus 

e(Q') <_ Ce(Q). 
Q' C:D 

Since Q is maximal, by Lemma 3.5 it must either be Q0 or the daughter of a s 

square Q". Thus since ~ is in Bloch either 

ffl~0 '(z)12(1 Izl)dxdy <_ ce(ao), i 

S 

o r  

(5.2) # I~'(z)12(1 - Izl)dxdy ~ Ce(Q) < ~ f f  Is(~)(z)12(1 -Izl)3dxdy. 

s r(O,,) 

In either case we have controlled the integral over the tops of all the squares in/3. 

This leaves only the squares in ~. If Q E ~ is maximal (with respect to inclusion) 

form a region 79 = Q\ UcuB Q'. Then 79 is a chord-arc domain and 

s 

I~'(z)l ___ 1 - I z l  2' 

everywhere in 79. If w is the center of Q then Lemma 3.6 shows 

f I~o'(z)12(1 - Izl)dxdy < C[~p'(w)I2g(Q) 3 + c f f  I~"(z)12(1 - I z l ) 3 d x d y  

< Cl~o'(w)12g(a) 3 + C f f  IS(~)(z)12(1 - Izl)3dxdy 
"D 

+ C ,  2 g I ~'(z)I2(1 -- Izl)Zdxdy. 
~D 
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far right term is small compared to the left hand side and so can be subtracted. 

Thus is only remains to estimate y~ IH'(wj)12(1 -I~,)1) 3 where the sum is over all the 

regions {Dj} arising from maximal ~ squares. However, by maximality each such 

square is the daughter of  a/2 or a/3 square so wj is within a bounded hyperbolic 

distance of a square Q in s u/3. Thus 

IH'(wj)lZe(Qj) 3 ~ C ~_~ g(Q). 
s  

But we have already noted that the sum on the right is bounded by 

cg(Oo) + C g IS(~,)(z)12(1 - Izl)3dxdy, 

12o 

so the proof is complete. 
(1), (4) =~ (5): Take a Lipschitz region as in proof of  (1) =~ (2) where ~'  is 

bounded and bounded away from zero and then use (4). 

(5) =~ (1): This follows by applying the proof of  Theorem 3 to the Lipschitz 

domain given by (5). We obtain a region R C D with q '  E L l (7"Z) and which hits 

T in positive length, each with estimates. This is (2). 

This completes the proof of  Theorem 4. Corollary 6 follows immediately from 

the arguments (1) =~ (3) and (3) =~ (1). To prove Corollary 7 we need to change the 

part of the argument of  (3) =~ (1) where we used that H was in Bloch, i.e., the proof 

of (5.1) and (5.2). (Also note that on the domains D constructed in the proof the 

~o does correspond to a univalent function because the Schwarzian is small there). 

By rescaling it is enough to show: 

L e m m a  5.4 There exists a C > 0 such that if H is analytic on the unit disk and 

f f  LH"(z) - �89 a2 < oo, 
D 

with A > 1 then 

g lH'(z)lZdxdy < CA. 

�89 

Of course, this must fail for small A because of M6bius transformations. How- 

ever, it says that if a function is far from linear functions in some sense, then it is 

also far from the Mtibius transformations. 

To prove Lemma 5.4 this let Dl = {Iz[ < 1/2}, D2 = {Izl _ 3/4} and F = 

~o" - (H')2/2. The hypothesis and Cauchy's  estimate imply [El _< CA on Dz. 
Suppose the second integral is large, say > IOOCA. Then there is a point z0 E Dl 
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where I~'(z0)l ~ IOOCA > 100lF(z0)l. Consider the path starting at z0 obtained by 

following the path of steepest ascent for I~'1 (i.e., follow the vector field arg(~') - 

arg(~")). We obtain a differential inequality for I~o'1 along this path namely 

~l~l~d, 1( j l2 /2_  IFI) ~ i ,12/8, 

(ds is arclength) which is valid as long as the path stays in D2. But since I~'(z0)l > 

100, the inequality above implies [~'1 blows up within distance 1/8 of z0 (and thus 

inside D2). This is impossible since ~ is assumed to be analytic on all on D. Thus 

the desired inequality must hold. 

6. Proof  of Theorem 5 

Theorem 5 Suppose f~ is simply connected and 09 : D ~ f~ is conformal. Then 

except fo r  a set o f  zero measure the fol lowing conditions are equivalent: 
(1) 09' has a non-tangential limit at e iO E T .  

(2) fo ~ t" dt r12(09(ei~ ) t < oo. 

(3) is(09)(z)lZ( 1 -Izl)Edxdy < ~ .  
(o) 

(4) fw 09'(z)lla(09)(z)12(1 -Izl)2dxdy < ~" 
(o) 

We will prove (1) =~ (2), (3), (4); (2) =~ (1); (3) ~ (1); (4) =~ (1). Note that to 

prove each implication it is enough to show that if one condition holds on a set of 

positive measure then the next holds on some subset of  positive measure. 

(1) =~ (2), (3), (4): If  (1) holds on a set of  positive measure then it is easy to 

find a Lipschitz domain D such that E = 0D n T has positive length and 09(D) is a 
Lipschitz domain with boundary F. Let F = 09(E). Then 

fo t" dt "riF(x' ) T  < ~ '  
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a.e. on F. Together with part (2) of  Lemma 3.1 these imply 

fo  I t - d t  02(x' }T < oo, 

a.e. on F, which shows (2) holds. Since {1}(/9) is rectifiable, Lemma 3.7 implies 

f l~'(z)lla(~)(z)12(1 - Iz l )3dxdy < Cg(~(79) )  < ~ ,  

D 

so (4) holds for a.e. cone with vertex in E. Finally, ~ '  is bounded and bounded 

away from zero in 79 so (3) holds a.e. on E. 

(2) =~ (1): I f (2)  holds on a set of  positive measure then for any e > 0 there is a 

6 > 0 so that 

f06r / (x , t )2~  < , ,  

on a subset F of positive measure. Using Lemma 3.3 we can find a Lipschitz 

domain D c D such that 1019 n TI > 0 and IS(~')(z)l(1 - Izl) 2 ___ e for z E D. By 

Lemma 3.1 ~(79) is a quasicircle, say with boundary F, and by part (2) of  Lemma 

3.2 I 

f0 ~r(x ' t)2-~ < o %  

for x E F, i.e., points of F are tangents of P, thus inner tangents of f~ by Theorem 

2. 
(3) =~ (1): By taking a union of  small cones where (3) holds we can build a 

Lipschitz region 79 such that IOD n TI > 0 and 

g IS(~,)(z)12(1 - Izl)3dxdy < oo. 
2} 

The proof of Corollary 3 applies to Lipschitz domains and shows log if' E L2(0D), 

which implies r  has nontangential limits a.e. 
(4) =~ (1): By taking a union of cones where the integral in (4) is finite we can 

build a Lipschitz region 79 such that 

f l~'(z)lla(~)(z)12(1 - Izl)3dxdy < oo. 
l )  

The proof of  Theorem 3 applied to 79 shows iI~' E Lp for some p > 0 which is 

enough to imply ~I,' has non-tangential limits a.e. on 79. This completes the proof 

of  the theorem. 
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We should point out that one implication of  the theorem holds pointwise, (2) 
(3). If  Q is a Whitney square in D then Lemma 3.3 implies 

f f  ( f l  (t]_~dt] 2 I~'(z)l[a(e~)(z)12(1 -Izl)3dxdy < C ~(x, t) , , r  / ~- /  r, 

a 

where r = dist(ff(Q), 0f~). Thus by breaking a Stolz cone into a union of  Whitney 

squares, 

fw( o) IS(~)(z)12(1- Izl)2 dxdy <- ~ C( ~l rl(x, t ) ( ~j ) _tz d~ ) 2rj, 
J 

where rj = dist(r 0f~). Condition (2), normal families and induction imply 

(see e.g. [10, Section 3]) 

C- l (1  - I w l )  1~ ~ dist(~(w), 0f~) < C(1 - I w l )  9/1~ 

for w E W(O) so the rj tend to zero geometrically. Now apply Minkowski 's  
inequality and we are done. 

We should also point out that one can give simple proofs of  (3), (4) ~ (1) without 
appealing to Theorems 3 or 4. Given (3) one can take D not simply with finite 
integral but (passing to a smaller set if necessary) so that IS(~)(z)l(1 - [z[) 2 < 6 on 
all of  7). Applying Lemma 3.5 one then passes to a subdomain (which still hits T 

in positive length) where I C ( z ) l ( 1  - Izl)  ___ E. One can then apply Lemma 3.6 and 
bootstrap to show ~'  E L 1 (7)). 

To show (4) =~ (1) let u > 0 (to be chosen later) and choose a Carleson square 

Q such that 

f l~'(z)liS(~)(z)12(1 - [zD3dxdy < ug(a),  
Q 

IOn  07) n TI >_ g(Q)/2. 

This is possible since these conditions hold all small enough Q at almost every 
point of  07)n T. Form the region 7) = Q\  uc  Q' = Q \  u Qj by removing the maximal 

"large" subsquares of  Q. We claim D still hits T in positive length because 

e(Qj) ~ C 6 - 1 Z  # IS(~)(z)(1 - Z Izi )2 dxdy 
J J Q) Jd 

<_ c6-~e(Q) 
< g(a)/4, 
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if u is small enough.  Using Lemma 3.5 we can pass to a subdomain D' which 

has no bad squares but still hits T in positive length, and then use I_~mma 3.8 to 

deduce ~(7)') is rectifiable. In particular, it has tangents a.e., which implies f~ has 

inner tangents a.e. on 7) n T,  as required. 
The reason for discussing this independent argument is that gives a simpler proof 

of [10, Theorem 1]: if f~ is simply connected and E C 09t lies on some rectifiable 

curve then AI(E) = 0 implies w(E) = 0. Suppose E is a subset of  a rectifiable 

curve and has positive harmonic measure in some simply connected domain. As 

in [10, Section 4] we let �9 : D ~ C\E be the uniformizing map and let 79 c D be 
i 

a Lipschitz domain on which ff is 1-1 and such that 10D n T I > 0 (see [10, Lemma 

4.1]). The argument in [10, Section 4] shows 

f l~'(z)lla(~)(z)12(1 - IzI)3dxdy < o~, 
D 

so part (4) of Theorem 5 holds for a.e. point in 079 n T. Thus ,I~(7)) has inner 

tangents a.e. and E must have positive length, as desired. 

We noted fol lowing Corollary 1 that the finiteness of  those integrals did not 

imply 0f~ was "nice". One can see this by building an open set ft which is a union 

of disks {Dj} each overlapping slightly with the previous one. This can be done so 

f~ is simply connected and 0f~ has positive area. If the overlaps are chosen small 

enough then the integrals in Corollary 2 can both be made finite. 
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