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Abstract

This note describes examples of all possible equality and strict inequality relations between upper

and lower Abel and Cesàro limits of sequences bounded above or below. It also provides applications

to Markov Decision Processes.
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1 Introduction

For a sequence {un}n=0,1,... consider lower and upper Cesàro limits

C
¯
= lim inf

n→∞

1

n

n−1∑
i=0

ui, C̄ = lim sup
n→∞

1

n

n−1∑
i=0

ui

and lower and upper Abel limits

A
¯
= lim inf

α→1−
(1− α)

∞∑
n=0

unα
n, Ā = lim sup

α→1−
(1− α)

∞∑
n=0

unα
n.

If a sequence {un}n=0,1,... is bounded above or below then, according to a Tauberian theorem (see,

e.g., Sennott [12, pp. 281, 282]),

C
¯
≤ A

¯
≤ Ā ≤ C̄, (1)

and, according to the Hardy-Littlewood theorem (see, e.g., Titchmarsh [14, p. 226]), if A
¯
= Ā then

C
¯
= A

¯
= Ā = C̄. (2)
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In view of the Tauberian and Hardy-Littlewood theorems (1) and (2), either equalities (2) hold or only

the following relations can be possible:

C
¯
< A

¯
< Ā < C̄, (3)

C
¯
= A

¯
< Ā = C̄, (4)

C
¯
< A

¯
< Ā = C̄, (5)

C
¯
= A

¯
< Ā < C̄. (6)

Hardy [6], Liggett and Lippman [9], Sznajder and Filar [13, Example 2.2], Sennott [12, p. 286],

Keating and Reade [8], and Duren [2, Chapter 7] provided at different levels of details examples of

bounded sequences for which inequalities (3) hold. This note demonstrates that inequalities (4)–(6) may

also take place for bounded sequences. Example 1 demonstrates the possibility of (4), and Example 2

demonstrates the possibility of (5). Of course, inequalities (6) hold for the sequence {−un}n=0,1,..., if

inequalities (5) hold for a sequence {un}n=0,1,....

The Tauberian and Hardy-Littlewood theorems are important for many applications. For example,

they are used to approximate average costs per unit time by total discounted costs for Markov Decision

Processes (MDPs) and stochastic games; see e.g., [5, 7, 9, 11, 12]. They are also used to evaluate long-

run behavior of stochastic systems by using Laplace-Stieltjes transforms, see e.g., Abramov [1]. This

study was motivated by applications to MDPs; see Section 4.

2 Auxiliary facts

Lemma 1. Let {L(n)}n=0,1,... and {M(n)}n=0,1,... be two sequences of nonnegative numbers, fn(α) =

αL(n) − αM(n), n = 0, 1, . . . , and f∗(α) =
∑∞

n=0 fn(α). If L(n) → ∞ and L(n)/M(n) → 0 as n → ∞,

then:

(i) there is a sequence αn → 1− such that fn(αn) → 1 as n → ∞;

(ii) lim supα→1− f∗(α) ≥ 1.

Proof. Since limα→1− fn(α) = 0 for all n, lim supα→1− f∗(α) = lim supα→1−
∑∞

n=m fn(α) for any natural

m. Choose m such that L(n) < M(n) and L(n) > 1 when n ≥ m.

Observe that (i) implies (ii). So, in the rest of the proof we prove (i).

By differentiating fn for each n > m, observe that this function reaches its maximum on [0, 1] at

the point

αn =

(
L(n)

M(n)

) 1
M(n)−L(n)

, (7)
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and the maximum value is

fn(αn) =

(
L(n)

M(n)

) L(n)
M(n)−L(n)

−
(

L(n)

M(n)

) M(n)
M(n)−L(n)

.

Since L(n)
M(n) → 0 as n → ∞, we have M(n)

M(n)−L(n) → 1 as n → ∞. Therefore,

lim
n→∞

fn(αn) = lim
n→∞

(
L(n)

M(n)

) L(n)
M(n)−L(n)

= lim
n→∞

(
L(n)

M(n)

) L(n)
M(n)

M(n)
M(n)−L(n)

= 1. (8)

In addition, for n > m

1 ≥
(

L(n)

M(n)

) 1
M(n)−L(n)

≥
(

L(n)

M(n)

) L(n)
M(n)−L(n)

→ 1 as n → ∞.

Thus, in view of (7) and (8), αn → 1− and fn(αn) → 1 as n → ∞.

Recall that

lim
n→∞

∑n−1
k=1 k!

n!
= 0 and lim

n→∞

∑n
k=1 k!

n!
= 1. (9)

Indeed,

0 ≤ lim
n→∞

∑n−1
k=1 k!

n!
= lim

n→∞

[∑n−2
k=1 k!

n!
+

(n− 1)!

n!

]
≤ lim

n→∞

{
(n− 2)[(n− 2)!]

n!
+

1

n

}
= 0.

3 Examples

For a sequence {un}n=0,1,..., define the function

f(α) = (1− α)
∞∑
n=0

unα
n, α ∈ [0, 1). (10)

Example 1. For D(k) =
∑k

i=1 i!, k = 1, 2, . . . , let

un =


1, if D(2k − 1) ≤ n < D(2k), k = 1, 2, . . . ,

0, otherwise.

(11)

Proposition 1. Inequalities (4) hold with C
¯

= A
¯

= 0 and C̄ = Ā = 1 for the sequence {un}n=0,1,...

defined in (11).

Proof. By using properties of geometric series, observe that

f(α) =

∞∑
n=1

fn(α), (12)

3



where

fn(α) = αD(2n−1) − αD(2n) ≥ 0. (13)

In view of (9), D(2n − 1) → ∞ and D(2n − 1)/D(2n) → 0 as n → ∞. Formulas (12), (13) and

Lemma 1(ii) imply that 1 ≥ Ā = lim supα→1− f(α) ≥ 1. Thus, Ā = 1. In view of (1), Ā ≤ C̄. Since

C̄ ≤ 1, then C̄ = 1.

Now we show that A
¯
= 0. For each k = 1, 2, . . . , consider the sequence {ukn}n=0,1,...

ukn =


1, if n < D(2k) or n ≥ D(2k + 1),

0, otherwise.

Let fk be the function f from (10) for the sequence {ukn}n=0,1,.... Since un ≤ ukn for each n = 0, 1, . . . ,

f(α) ≤ fk(α) for all α ∈ [0, 1), k = 1, 2, . . . . Therefore, to prove that A
¯
= 0, it is sufficient to show the

existence of a sequence αk → 1− as k → ∞ such that limk→∞ fk(αk) = 0.

Observe that

fk(α) = (1− α)

D(2k)−1∑
n=0

αn +
∞∑

n=D(2k+1)

αn

 = 1− αD(2k) + αD(2k+1).

In view of Lemma 1(i), there exist αk → 1− such that α
D(2k)
k − α

D(2k+1)
k → 1 as k → ∞. Thus,

fk(αk) → 0 as k → ∞, and A
¯
= 0. This implies C

¯
= 0 since 0 ≤ C

¯
≤ A

¯
.

Example 2. Let

un =


0, if k! ≤ n < 2k!, k = 1, 2, . . . ,

1, otherwise.

(14)

Proposition 2. Inequalities (5) hold with C
¯

= 1
2 , A¯

= 3
4 , and C̄ = Ā = 1 for the sequence {un}n=0,1,...

defined in (14).

Proof. By (9)

C
¯
= lim

n→∞

1 +
∑n−1

k=2 [(k + 1)!− 2k!]

2n!
= lim

n→∞

∑n
k=3(k)!−

∑n−1
k=2 2k!

2n!
=

1

2
,

and

C̄ = lim
n→∞

n!−
∑n−1

k=1 k!

n!
= 1.

By using the formula for the sum of geometric series,
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f(α) = 1− α+
∞∑
n=1

(
α2n! − α(n+1)!

)
.

By Lemma 1(ii), Ā ≥ 1. However, Ā ≤ C̄ = 1. Thus, Ā = 1.

To compute A
¯
, define

g(α) = 1− f(α) =
∞∑
n=1

(
αn! − α2n!

)
and B̄ = lim supα→1− g(α). Then A

¯
= 1− B̄.

We compute B̄ first. Let gn(α) = αn! − α2n!, n = 1, 2, . . . . When α ∈ [0, 1], the function gn(α)

reaches its maximum at αn = 2−
1
n! and gn(αn) =

1
4 . In addition, this function increases on the interval

[0, αn] and decreases on the interval [αn, 1].

Let βk = 2
− 1

(k−1)!
√

k , k = 1, 2, . . . . When α ∈ [βk, βk+1] , k = 1, 2, . . . , then, if n < k, the function

gn(α) decreases and reaches its maximum on this interval at the point βk; if n > k then it increases and

reaches the maximum at the point βk+1; and, if n = k, it achieves the maximum at αk. Thus,

g(α) =
k−1∑
n=1

gn(α) + gk(α) +
∞∑

n=k+1

gn(α) <
k−1∑
n=1

gn(βk) + gk(α) +
∞∑

n=k+1

gn(βk+1). (15)

Observe that

k−1∑
n=1

gn(βk) =

k−1∑
n=1

βn!
k

(
1− βn!

k

)
<

k−1∑
n=1

(
1− βn!

k

)
<

∑k−1
n=1 n!

(k − 1)!
√
k
ln 2 → 0 as k → ∞, (16)

where the last inequality follows from 2−x > 1− x ln 2 for x > 0, and

∞∑
n=k+1

gn(βk+1) <

∞∑
n=k+1

βn!
k+1 =

∞∑
n=k+1

2
− n!

k!
√

k+1 = 2−
√
k+1

∞∑
n=k+1

2
−n!−(k+1)!

k!
√

k+1 ≤ 21−
√
k+1, (17)

where the last inequality holds because n!−(k+1)!

k!
√
k+1

≥ n − (k + 1) when n ≥ (k + 1). Thus (16) and (17)

imply that

lim
k→∞

(
k−1∑
n=1

gn(βk) +
∞∑

n=k+1

gn(βk+1)

)
= 0. (18)

In conclusion,

B̄ = lim sup
k→∞

sup
α∈[βk,βk+1]

g(α) ≤ lim
k→∞

(
gk(αk) +

k−1∑
n=1

gn(βk) +

∞∑
n=k+1

gn(βk+1)

)
=

1

4
,

where the first equality holds since βk → 1, the inequality holds because of (15) and because the function

gk reaches its maximum at αk on the interval [0, 1], and the last equality holds because of gk(αk) =
1
4

and (18). In addition, B̄ ≥ limk→∞ g(αk) ≥ limk→∞ gk(αk) =
1
4 . Thus B̄ = 1

4 and A
¯
= 1− B̄ = 3

4 .
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4 On approximations of average costs per unit time by normalized

discounted costs for MDPs

Average costs for an MDP can be defined either as upper or as lower limits of expected costs per

unit time over finite time horizons as the time horizon lengths tend to infinity. For each of these two

definitions of average costs, the minimal value is the infimum of average costs taken over the set of all

policies. As shown below, if the state space is infinite, Example 2 implies that it is possible that one

of these two minimal values can be approximated by normalized total expected discounted costs, while

such approximations for another one are impossible.

Consider an MDP with a state space X, action space A, sets of available actions A(x), transition

probabilities p, and one-step cost c. Here we assume that:

(i) the state space X is a nonempty countable set,

(ii) the action space A is a measurable space (A,A) such that all its singletons are measurable subsets,

that is, {a} ∈ A for each a ∈ A;

(iii) for each state x ∈ X the set of available actions A(x) is nonempty and belongs to A;

(iv) if an action a ∈ A(x) is chosen at a state x ∈ X, then p(y|x, a), where y ∈ X, is the probability

that y is the state at the next step; it is assumed that p(·|x, a) is a probability mass function on

X and p(y|x, ·) is a measurable function on A(x);

(v) if an action a ∈ A(x) is selected at a state x ∈ X, then the one-step cost c(x, a) is incurred;

it is assumed that the values c(x, a) are uniformly bounded below, and the function c(x, ·) is

measurable on A(x) for each x ∈ X.

Let Hn = X × (A × X)n be the set of trajectories up to the step n = 0, 1, . . . . For n = 1, 2, . . . ,

consider the sigma-field Fn on Hn defined as the products of the sigma-fields of all subsets of X and

A. A policy π is a sequence {πn}n=0,1,... of transition probabilities from Hn to A such that: (i) for

each hn = x0a0x1...anxn ∈ Hn, n = 0, 1, . . . , the probability πn(·|hn) is defined on (A,A), and it

satisfies the condition πn(A(xn)|hn) = 1, and (ii) πn(B|·) is a measurable function on (Hn,Fn) for each

B ∈ A. A policy π is called stationary if there is a mapping ϕ : X → A such that ϕ(x) ∈ A(x) for all

x ∈ X and πn({ϕ(xn)}|x0a0x1 . . . xn) = 1 for all n = 0, 1, . . . , x0a0x1 . . . xn ∈ Hn. Since a stationary

policy is defined by a mapping ϕ, it is also denoted by ϕ with a slight abuse of notations. Sometimes
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in the literature, a stationary policy is called nonrandomized stationary, deterministic stationary, or

deterministic. Let Π be the set of all policies.

The standard arguments based on the Ionescu Tulcea theorem [10, Chapter 5, Section 1] imply that

each initial state x and policy π define a stochastic sequence on the sets of trajectories x0a0x1a1, ... .

We denote by Eπ
x expectations for this stochastic sequence.

For an initial state x ∈ X and for a policy π, the average cost per unit time is

w∗(x, π) = lim sup
N→∞

1

N
Eπ
x

N−1∑
n=0

c(xn, an) = lim sup
N→∞

1

N

N−1∑
n=0

Eπ
xc(xn, an).

In general, if the performance of a policy π is evaluated by a function g(x, π) with values in [−∞,∞],

where x ∈ X is the initial state, we define the value function g(x) = infπ∈Π g(x, π). For ϵ ≥ 0, a policy

π is called ϵ-optimal, if g(x, π) ≤ g(x) + ϵ for all x ∈ X. A 0-optimal policy is called optimal.

For a constant α ∈ [0, 1), called the discount factor, the expected total discounted costs are

vα(x, π) = Eπ
x

∞∑
n=0

αnc(xn, an) =
∞∑
n=0

αnEπ
xc(xn, an).

In general, proofs of the existence of stationary optimal policies for expected average costs per unit

time are more difficult than for expected total discounted costs. Average costs per unit time are often

analyzed by approximating w∗(x, π) with (1− α)vα(x, π) for the values of α close to 1. Let

w̄(x, π) = lim sup
α→1−

vα(x, π).

In addition to the upper limit of the average expected costs (4), consider the lower Cesàro limit

w∗(x, π) = lim inf
N→∞

1

N
Eπ
x

N−1∑
n=0

c(xn, an) = lim inf
N→∞

1

N

N−1∑
n=0

Eπ
xc(xn, an)

and the lower Abel limit

w
¯
(x, π) = lim inf

α→1−
vα(x, π).

In view of the Tauberian theorem

w∗(x, π) ≤ w
¯
(x, π) ≤ w̄(x, π) ≤ w∗(x, π), x ∈ X, π ∈ Π.

Therefore, the same inequalities hold for the values,

w∗(x) ≤ w
¯
(x) ≤ w̄(x) ≤ w∗(x), x ∈ X.

The natural questions are whether w∗(x) = w̄(x) and whether w∗(x) = w
¯
(x)?
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Let the state space X be finite. Then, according to Dynkin and Yushkevich [3, Chapter 7, Section

3], for each stationary policy ϕ

w∗(x, ϕ) = w
¯
(x, ϕ) = w̄(x, ϕ) = w∗(x, ϕ), x ∈ X. (19)

Though for some ϵ > 0 stationary ϵ-optimal policies may not exist for MDPs with finite state and

arbitrary action sets (see Dynkin and Yushkevich [3, Chapter 7, Section 8, Example 2]), as proved in

Feinberg [4, Corollary 1],

w∗(x) = w
¯
(x) = w̄(x) = w∗(x), x ∈ X. (20)

Equalities (19) may not hold, when a stationary policy π is substituted with an arbitrary policy π. In

fact, all four situations presented in (3)–(6) are possible with C̄ = w∗(x, π), Ā = w̄(x, π), A
¯
= w

¯
(x, π),

and C
¯

= w∗(x, π). Indeed, consider an MDP with a single state and two actions, that is, X = {x}

and A = A(x) = {a, b}. Let also c(x, a) = 1 and c(x, b) = 0. In addition, p(x|x, a) = p(x|x, b) = 1

since the process is always at state x. Let at each step n = 0, 1, . . . a policy π select actions a and

b with probabilities πn(a) and πn(b) respectively. For a sequence {un}n=0,1,..., let πn(a) = un. Then

Eπ
xc(xn, an) = un, n = 0, 1, . . . , and the values of w∗(x, π), w̄(x, π), w

¯
(x, π), and w∗(x, π) are equal to

the corresponding Cesàro and Abel limits for the sequence {un}n=0,1,.... Since all the inequalities (3)–(6)

are possible for Cesàro and Abel limits of bounded sequences {un}n=0,1,..., these inequalities are also

possible for C̄ = w∗(x, π), Ā = w̄(x, π), A
¯
= w

¯
(x, π), and C

¯
= w∗(x, π). .

Now let X be countably infinite. For each sequence {un}n=0,1,... consider the MDP with the state

space X = {0, 1, . . .}, a single action a, that is A = {a}, transition probabilities p(x + 1|x, a) = 1, and

one-step costs c(x, a) = ux, x ∈ X. For this MDP, there is only one policy, and this policy is stationary.

We denote this policy by ϕ and observe that Eϕ
0c(xn, an) = un, n = 0, 1, . . . . Thus, equalities (19) and

(20) may not hold. In addition, all the inequalities (3)–(6) are possible with C̄ = w∗(x, ϕ), Ā = w̄(x, ϕ),

A
¯

= w
¯
(x, ϕ), C

¯
= w∗(x, ϕ) and with C̄ = w∗(x), Ā = w̄(x), A

¯
= w

¯
(x), C

¯
= w∗(x). In particular,

w∗(x) = w̄(x) does not imply w∗(x) = w
¯
(x), and w∗(x) = w

¯
(x) does not imply w∗(x) = w̄(x).
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