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Abstract. We answer a question of Itai Benjamini by showing that there can be
ǫ-dense discrete sets in the hyperbolic disk that are homogeneous with respect to
a set of K-biLipschitz maps for the hyperbolic metric, where K > 1 is fixed, but
ǫ > 0 may be as small as we wish.

1. Introduction

Let D = {z : |z| < 1} denote the unit disk in complex plane C. Let ρ denote the

hyperbolic metric on D. A set X ⊂ D is called discrete if it has no accumulation

points in D, and for ǫ > 0 it is called ǫ-dense if every x ∈ D is within hyperbolic

distance ǫ of some point of X. A set X is called homogeneous with respect to a set

F of homeomorphisms if for any x, y ∈ X there is a f ∈ F so that f(X) = X and

f(x) = y. In other words, F acts transitively on X (we emphatically do not assume

F is a group; see below).

We say that X ⊂ D is a (K, ǫ)-net if it is a discrete ǫ-net that is homogeneous

with respect to the set of hyperbolic K-biLipschitz maps from D to itself. More

concisely, X is a K-biLipschitz homogeneous discrete ǫ-net. (Note that our maps are

biLipschitz on D, not just X; one could consider just biLipschitz maps f : X → X,

but this is a less restrictive concept since not every biLipschitz map on X need extend

to a biLipschitz map on D). Define

ǫ(K) = inf{ǫ : (K, ǫ)-nets exist}.

This is clearly a decreasing function of K and we shall prove it is eventually zero:

Theorem 1.1. Kc = sup{K : ǫ(K) > 0} < ∞.
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It is well known that ǫ(1) > 0. For K = 1, the maps f are hyperbolic isometries

and generate a subgroup H of the group G of all hyperbolic isometries mapping X

to itself. Since X is a discrete set, G is a discrete group, i.e., a Fuchsian group,

and R = D/G is a (possibly branched) Riemann surface and the set X projects to

a single point x ∈ R. A famous result of Každan and Margulis [3], says that there

is a positive constant ǫ1 > 0 (the Margulis constant) so that the injectivity radius is

at least ǫ1 at some point of R and hence R contains disk of radius at least ǫ1/2 that

does not contain x. Thus ǫ(1) ≥ ǫ1/2. Alternate proofs of the Margulis lemma for

Fuschsian groups are given in [4], [6], [8]; the latter gives the sharp value.

The question of whether Theorem 1.1 holds was raised by Itai Benjamini as a

result of considering whether the Margulis lemma really requires the machinery of

hyperbolic isometries, group actions and fundamental domains, or might have an

analog for sets of biLipschitz mappings.

Next we observe that Theorem 1.1 cannot hold if X is homogeneous with respect

to some group H of K-biLipschitz maps on D. Such a group would consist of K2-

quasiconformal maps, and a result of Tukia [7] says that H = hGh−1 for some

quasiconformal map h : D → D and some Möbius group G acting on D. By Mori’s

theorem [5] (see also Chapter 3 of [1]) the image of a hyperbolic ǫ-disk under h or

h−1 contains a hyperbolic disk of radius ≥ 1

16
ǫK

2

. Since h(X) is invariant under G,

the previous paragraph shows it omits some disk of hyperbolic radius ǫ1, and hence

X omits some disk of radius ǫK depending only on K. Thus Theorem 1.1 says there

is a significant difference between a discrete ǫ-net being homogeneous with respect to

all K-biLipschitz self-maps of (D, ρ) and being homogeneous with respect to a group

of such maps.

2. The construction

Our (K, ǫ)-net X will consist of the vertices of a infinite quadrilateral mesh of D

that was constructed for different purposes in [2] (it is part of the proof that any

simple planar n-gon can be quad-meshed in time O(n) using elements with all new

angles between 60◦ and 120◦). We start with a standard tesselation of D by hyperbolic

right pentagons. Connect the center of each polygon to the midpoint of each edge;

this divides the pentagon into five quadrilaterals. Choose a positive integer N and
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divide each quadrilateral into a N × N quadrilateral mesh as shown in Figure 1 so

that each boundary arc of the larger quadrilateral is divided into N sub-arcs of equal

length. This implies the mesh in each quadrilateral matches the mesh in its neighbors

and defines a quadrilateral mesh of the whole disk and every element of the mesh

has hyperbolic diameter ≃ 1/N . The vertices of this mesh will be our (K, ǫ)-net XN

with ǫ ≃ 1/N . Below we will drop the N and refer to XN simply as X.

Figure 1. Hyperbolic right pentagons tessellate the disk. Each pen-
tagon is divided into five quadrilaterals which are then each divided
into a N ×N quadrilateral mesh (here N = 3). The elements all have
diameter ≃ 1/N .

We will show that there is a fixed 1 < K < ∞, independent of N so that any

element x ∈ X can be mapped to any other y ∈ X by a hyperbolic K-biLipschitz

map f that also maps X to itself. This will prove Theorem 1.1

Because the pentagonal tesselation is invariant under a group of hyperbolic isome-

tries, it is enough to prove this when x and y belong to the same pentagon. Indeed,

by composing two maps, it suffices to assume y is the center of the polygon. We will

show that any vertex in a pentagon can be mapped to the center vertex by composing

two K-biLipschitz maps called “discrete rotations” that we now describe.

Fix an element of A0 of our quadrilateral mesh. Let A1 be the collection of mesh

elements (other than A0) that hit A0; here we consider all elements to be closed sets,

so a mesh element Q is in A1 if is shares an edge or vertex with A0. Unless one of

the vertices of A0 was a center point of a pentagon, A1 will be the union of eight

quadrilaterals. Four of these are “side quadrilaterals” meaning they share one side

with A0 and four are “corner quadrilaterals”, meaning they share a vertex, but no

side, with A1. Let B1 = A0 ∪ A1.
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In general, we let An be the union of mesh elements that are not in Bn−1 = ∪k<nAk,

but that share an edge or vertex with a quadrilateral in An−1. As above, side elements

share a side with some element of An−1 and corner elements do not. The number

of corner elements will remain four until the first time that An contains a vertex

that is the center of a polygon in our tesselation. Such points are vertices of five

quadrilaterals, and if such a point x occurs on the boundary of Bn, then An+1 will

contain either three or four quadrilaterals containing this point: three if x is a side

vertex of An and four if x is a corner vertex.

The number of pentagon centers included in Bn is bounded by the number of

distinct pentagons of the tesselation hit by Bn, which is bounded in terms of its

hyperbolic diameter, which is ≃ n/N . In particular, for n = O(N) (which is the only

case we will consider) it is uniformly bounded.

Note that vertices on ∂Bk form a cycle; a shift by j on ∂Bk is a map from this cycle

to itself that moves every element by j positions clockwise (and thus preserves the

adjacencies among vertices and preserves the orientation of the cycle). A “discrete

rotation” will be a biLipschitz map from Bn that is the identity on ∂Bn (i.e., a shift

by zero) and for 0 ≤ k < n is a shift by j(k) where |j(k) − j(k + 1)| ≤ C. It is

clear this map on vertices can be extended to a map in Bn that maps each Ak to

itself and is biLipschitz with constant depending only on C. The biLipschitz constant

is determined by mapping each quadrilateral in Ak (which are all drawn from some

compact family of quadrilaterals) to a quadrilateral inside Ak whose outer edge has

been shifted by j(k) and the inner edge has been shifted by j(k− 1); this is for a side

quadrilateral that has one edge on each of ∂Bk−1 and ∂Bk (we call these the inner

and outer edges, respectively), but the idea is the same for corner quadrilaterals that

have two edges on ∂Bk and a single vertex on ∂Bk−1. See Figure 2 for an example

on a square grid; combinatorially this is the same as a B7 on our grid which does not

contain any pentagon centers.

If there are pentagon centers in Bn then instead of ∂Bk+1 having four more vertices

than ∂Bk it might have as many 4 + 4c vertices, where c is the number pentagon

centers occurring on ∂Bk. However, this remains bounded as long as n = O(N) so

the biLipschitz constant of interpolating between a shift by j(k) on ∂Bk and a shift

by j(k+1) on ∂Bk−1 is bounded by some constant depending on C and the hyperbolic
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Figure 2. A discrete rotation on a square grid. This map is the
identity at the center and on the outer boundary. in the center levels is
acts a clockwise shift by varying amounts. We can map any vertex on
∂Bn/2 to any other vertex on the same curve by such a discrete rotation
that is the identity on ∂Bn and K-biLipschitz on the interior, with K
independent of n.

diameter of Bk (these determine how far the outer edge of a quadrilateral in An is

shifted compared to its inner edge (or two outer edges and inner vertex in the case

of a corner quadrilateral).

An alternate approach to constructing the discrete rotations would to biLipschitz

map Ak to a round Euclidean annulus {k ≤ |z| ≤ k + 1}, do the interpolation there,

then map back to Ak.

Discrete rotations can similarly be constructed in discrete balls that are centered,

not on a quadrilateral in the mesh, but on a mesh vertex x. Then A1 contains four

quadrilaterals if x is not the center of a polygon, or five quadrilaterals if it is. In

both cases, all elements of A1 are corners. Examples of discrete balls around centers

of pentagons are illustrated in the center (radius 3) and right (radius 9) of Figure 1.

All the estimates described above hold for these balls and the corresponding discrete

rotations as well.

The final step is to observe that two such discrete rotations can map any vertex

x inside a pentagon to the center of that pentagon. First rotate around the center

of the pentagon in a discrete ball of radius 2n to move the point to the segment

connecting the center to a midpoint of a boundary segment of the pentagon. This

point is then on the boundary of one of our n × n grids and we can discrete rotate



6 CHRISTOPHER J. BISHOP

around the center of this grid (in a discrete ball of radius 2n) to bring the point to

the center. This completes the proof of Theorem 1.1.

Although we have not attempted this, it should be possible to give a bound for K

by constructing the discrete rotation maps explicitly.

3. A phase transition

Can K be taken close to 1 in Theorem 1.1? We can’t do this in the above construc-

tion because the discrete rotations sometimes must map of the inner and outer edges

of a side quadrilateral into a quadrilateral whose inner and outer sides are separated

by a corner vertex and hence are almost perpendicular to each other; this requires a

fixed amount of distortion to accomplish and keeps K bounded away from 1.

I currently expect the following holds:

Theorem 3.1. Kc = inf{K : ǫ(K) = 0} > 1.

Here is a sketch of how we might prove this, but I have not checked it carefully

and some details are missing, so it may be incorrect.

Proof. Suppose that there were a sequence {Xn} of (Kn, ǫn) nets with Kn → 1 and

ǫn → 0. By making ǫn smaller, if necessary, we may assume that Xn is a (Kn, ǫn)-net

and also omits some disk of radius ǫn/2 around a point w. Since w is within distance

ǫn of some point of X, and X is biLipschitz homogeneous with constant Kn close to

1, every point of X is within 2ǫn of the center of an omitted disk of radius ǫn/4. By

translating we may also assume 0 ∈ Xn.

Restrict Xn to D(0,
√
ǫn) neighborhood of and and expand it by a factor of 1/ǫn.

We get a sequence of sets that are Euclidean 1-nets in D(0, 1/
√
ǫ), and by passing to

a subsequence we may assume that {Xn} converges locally in the Hausdorff metric

to a closed set X ⊂ C so that (1) X is a 1-net, (2) X is homogeneous with respect

to Euclidean isometries, (3) every point of X is within distance 2 of a point that is

distance 1/4 from X.

The set of Euclidean isometries that map X into itself is a closed subgroup of the

Euclidean isometry group that acts transitively on the 1-net X. Thus it is a closed,

infinite Lie subgroup of the isometry group of the plane and hence is either a discrete

group (and X is a Euclidean lattice) or it is R×Z (and X is a union of evenly spaced

parallel lines).
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In the first case, assume the minimum separation between elements of X is δ. We

can choose n large enough so that elements of Xn/ǫn ∩ D(0, 100) each lie within a

δ/100 neighborhood of X, and every such neighborhood of X ∩D(0, 1000) contains a

point of Xn/ǫn. The chosen points define quadrilaterals that correspond to the funda-

mental parallelograms of X and we can map each parallelogram to the corresponding

quadrilateral quasiconformally (with uniformly bounded dilatation). By starting at

one point of Xn and working our way outwards, this implies D can be written as

a quadrilateral mesh isomorphic to Z × Z where each quadrilateral comes from a

compact family. This implies there is a quasiconformal map from C into D, which

is impossible (together with the measurable Riemann mapping theorem, it violates

Liouville’s theorem that D and C are conformally distinct).

In the other case, X consists of parallel lines that are between distance 1/2 and 2

apart (since X is within 1 of every point and its complement contains disks of radius

1/4.) Thus for n large enough, Xn/ǫn locally approximates parallel lines separated by

≃ ǫn and we can choose a subset of Xn that approximates a square 10× 10 grid on a

neighborhood of some point. By using the homogeneous property of Xn we can map

the center of the grid to one of its boundary points and extend the approximation.

Continuing in this way we can find a subset of Xn that approximates a square grid

of fixed size in a neighborhood of any of its points. We can use this subset as the

vertices of a quadrilateral mesh whose elements are approximate squares, and use to

construct a quasiconformal map between the disk and the plane. As above, this is

impossibility. Thus the existence of the sequence {Xn} leads to a contradiction, so

no such sequence exists. �

4. Questions and remarks

Is the function ǫ(K) strictly deceasing on [1, Kc]? Is ǫ(Kc) = 0? Is ǫ(K) contin-

uous? Smooth? Does ǫ(K) tend to the Margulis constant as K ց 1? Is the set of

(K, ǫ) in Q = [1,∞) × (0,∞) for which a (K, ǫ)-net exists a closed set in Q; if we

take a sequence of such nets, we can extract sequence converging to a K-biLipschitz

homogeneous ǫ-net X, but is X discrete? What can happen if X is a K-biLipschitz

ǫ-net, but we don’t require X be discrete? Then we could have X = D; what else

is possible? What can happen if in the definition of homogeneous we only require
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f(X) ⊂ X instead of f(X) = X? What if we consider K-biLipschitz maps of X

instead of D?

It seems like there should be an alternate approach to proving Theorem 3.1 using

discrete curvature of meshes. The mesh we constructed in Section 2 looks very

Euclidean at most points, indeed, it is a union of N × N grids. But there are

occasional vertices of degree 5 where 4 of the Euclidean grids meet. These special

vertices introduce the negative curvature into the mesh structure. We can make this

more precise by defining the curvature at a vertex x of a mesh as

C(x) = 1− 1

2
deg(x) +

∑

f :x∈f

1

#(f)
,

where deg(x) is the degree of the vertex x, the sum is over all faces with x as a vertex,

and #(f) is the number of sides of the face f . If we sum this over all the vertices of

a finite planar mesh we get
∑

xC(x) = V −E+F where V is the number of vertices,

E the number of edges and F the number of faces. By Euler’s formula this is 2.

For a quadrilatal mesh, C(x) = 1 − deg(x)/4. Hence for the mesh constructed

in Section 2, we have C(x) = 0 everywhere except at the pentagon centers, where

C(x) = −1/4. If we took a large but finite piece of the mesh, e.g., a discrete ball Bn

for n ≫ N , then the sum of C(X) over the interior vertices is a large negative value,

so the sum over the boundary vertices must be a large positive number (recall the

total sum is 2). Suppose ∂Bn has m edges; this is #(f) for the unbounded face of the

finite mesh. Then at boundary vertices of degree 3, C(X) = 1− 3

2
+(1

4
+ 1

4
+ 1

m
) = 1

m

and at corner vertices C(x) = 1 − 2

2
+ (1

4
+ 1

m
) = 1

4
+ 1

m
. The 1/m terms sum to 1

over the boundary, so we deduce there are about as many corners on the boundary

as there are degree five vertices in the interior. Each corner gives rise to an “extra”

vertex in ∂Bn+1, so this means the number of boundary elements grows exponentially

with n. This is what we expect for a reasonable mesh in hyperbolic space.

However, if the mesh was biLipschitz homogeneous with constant close to 1, we

might hope that C(x) = 0 at “most vertices” might imply C(x) = 0 at all vertices,

which would imply the number of corners of ∂Bn is small compared to the number

of interior vertices (perhaps even bounded). This should mean that the mesh is

“not reasonable”, e.g., a sub-exponential number of mesh elements cover up the
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exponentially long boundary of Bn. Thus it seems that there are mesh elements of

arbitrarily large size, not what we would expect from a biLipschitz homogeneity.

Since given a set of points X, not a mesh, so we would have to introduce our own

mesh associated to X, e.g., the Voronoi diagram or the dual mesh. It is easy to see

the Voronoi cells of an ǫ-net have diameters bounded by O(ǫ), so perhaps the idea

in the previous paragraph could be applied. The proof we gave of Theorem 3.1 is

another variation on this; we showed that a (K, ǫ) net with K near 1 and ǫ near zero

would have to look like the vertices of a Euclidean mesh that has curvature zero at

every vertex.

Thus one way to explain why the Margulis lemma holds is that hyperbolic space

is not scale invariant, i.e., on small scales it looks Euclidean (i.e., tiny triangles have

angle sum close to π) but it looks negatively curved at larger scales. So if a mesh

in the hyperbolic disk is very fine, it looks like a Euclidean mesh on small scales,

and if it homogeneous enough, this means it will look Euclidean everywhere, and

thus have the wrong properties (area growth, discrete curvature,..) to be a mesh

in a negative curved space. Either a mesh in hyperbolic space can be very fine but

not very homogeneous, or homogeneous and coarse enough that the pieces exhibit

“enough” negative curvature. It would be interesting to try to make this vague idea

into an actual proof.
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