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How anisotropy beats fractality in two-dimensional on-lattice diffusion-limited-aggregation growth
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We study the fractal structure of diffusion-limited aggregation (DLA) clusters on a square lattice by extensive
numerical simulations (with clusters having up to 108 particles). We observe that DLA clusters undergo strongly
anisotropic growth, with the maximal growth rate along the axes. The naive scaling limit of a DLA cluster by
its diameter is thus deterministic and one-dimensional. At the same time, on all scales from the particle size to
the size of the entire cluster it has a nontrivial box-counting fractal dimension which corresponds to the overall
growth rate, which, in turn, is smaller than the growth rate along the axes. This suggests that the fractal nature
of the lattice DLA should be understood in terms of fluctuations around the one-dimensional backbone of the
cluster.
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I. INTRODUCTION

Diffusion limited aggregation (DLA) was first introduced
by Witten and Sander [1,2] as a model of irreversible colloidal
aggregation and then rapidly became a basic model of
nonequilibrium growth phenomena such as electrodeposition
and dendritic growth, viscous fingering in fluids, dielectric
breakdown, mineral deposition, bacterial colony growth, and
pattern formation, to name but a few [3–11]. The growth
is driven by a Laplacian field and is modeled by adding
particles, one at a time, to a growing cluster via either a random
walk on a lattice or Brownian motion. In spite of these very
simple growth rules, only a few rigorous mathematical results
about DLA are available [12,13]. Most properties of both
on-lattice and off-lattice DLA clusters are known either from
numerical simulations or from theoretical approximations (see
Refs. [14–21] and references therein). In particular, numerical
simulations have revealed that DLA clusters on a square
lattice are inhomogeneous [22–24], anisotropic [17,25–28],
and multifractal [29,30]; their properties are lattice dependent
(i.e., nonuniversal) [27], their scaling is not determined by a
single exponent [24,31], and the involved “exponents” change
with the number of particles suggesting a transient regime
[24,27]. To some extent, all these properties are caused by the
local anisotropy of the lattice growth rules. As a consequence,
even the mere existence of the scaling limit of the on-lattice
DLA remains controversial. This situation contrasts with the
significant progress made over the last decade in the analysis
of other lattice models such as percolation and Ising models.
The identification of stochastic Loewner evolution (SLE)
processes as the scaling limit of lattice models led to numerous
breakthrough discoveries in this field of statistical physics and
mathematics [32–34].
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In this paper, we provide theoretical arguments and exten-
sive numerical simulations to shed a light onto the scaling
limit of on-lattice DLA clusters. Our main conclusion is that
the naive but widely used scaling limit, in which the cluster is
rescaled by its diameter, is a deterministic one-dimensional
crosslike shape. Figuratively speaking, anisotropy of the
cluster beats fractality, resulting in a trivial, nonfractal limit. To
explain this point, let us consider a graph of a one-dimensional
random walk (with unit-size steps) versus the number of
steps t . This is a random curve on the plane. Rescaling of
this curve by its diameter (which is equal to t in this setting)
yields a trivial deterministic limit: the unit interval. In order
to obtain a nontrivial limit (the Brownian path), anisotropic
rescaling has to be performed, by t and

√
t , along the horizontal

and vertical axes, respectively. While the choice of rescaling
factors is elementary for this toy example, the proper rescaling
of an anisotropic on-lattice DLA cluster remains unknown.

The scaling properties of DLA clusters are usually char-
acterized by two observables: the growth rate β and the
fractal dimension D. Most authors compute the latter using the
former. Indeed, if one covers a regular fractal of diameter 1 by
disks of size ε, then the number of disks scales as N ∝ ε−D ,
where D is the Minkowski dimension of the fractal. Rescaling
the fractal by ε−1 yields the diameter ∝ ND . Hence the growth
rate is the inverse of the dimension. This relation that was first
put forward by Stanley for percolation clusters [35] (see also
Ref. [36]), was often used to get the fractal dimension of
both on-lattice and off-lattice DLA clusters by computing the
growth rate for the radius of gyration (e.g., Ref. [27]). It is
important to stress, however, that this relation does not hold
in general, it is valid only under some regularity assumptions.
The simplest counterexample is an aggregate of 2t particles,
half of them forming a disk of radius ∝ √

t , and the other half
forming an interval of length ∝ t . For this aggregate the fractal
dimension is 2 (determined by the disk) but the growth rate is
1 (determined by the interval). The naive rescaling by the di-
ameter ∝ t results in a trivial limit (the unit interval) because
the part with the higher dimension but smaller growth rate (the
disk) is shrunk and thus fully eliminated in the limit t → ∞.

2470-0045/2017/96(4)/042159(6) 042159-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.042159


DENIS S. GREBENKOV AND DMITRY BELIAEV PHYSICAL REVIEW E 96, 042159 (2017)

FIG. 1. A large DLA cluster with 145 199 976 particles. In
this coarse-grained picture of resolution 2048 × 2048, each pixel
represents a 64 × 64 block of the original cluster image of size
217 × 217.

To our knowledge, the above regularity assumption and the
consequent equality between the inverse of the growth rate β

and the fractal dimension D were never properly verified for
the on-lattice DLA. The first goal of our work is to check
this important equality. Although we obtain slightly different
numerical values for D and 1/β (see below), they cannot
be distinguished within the numerical accuracy. The second
goal consists in emphasizing the role of anisotropy. For this
purpose, we introduce the angular growth rate and show that
DLA clusters grow faster along the axes of a square lattice. In
particular this implies that if the DLA cluster is rescaled by
its diameter, then the scaling limit becomes deterministic and
one-dimensional. In other words, the parts of the DLA cluster
with lower growth rates are eliminated, as in the above example
with a disk and an interval. One can interpret this result as a
kind of the law of large numbers for DLA clusters. On the other
hand, branches of DLA exhibit a strong prefractal behavior
that suggests that fluctuations of DLA branches around the
axes may have nontrivial scaling limit. This observation can
be interpreted as an analogue of the central limit theorem.

II. NUMERICAL RESULTS

Our strategy to support the above claims consists in two
parts: (1) numerical computation of both the growth rate β

and the fractal dimension D and (2) profound analysis of the
cluster anisotropy. For this purpose, we adapted a bias-free
algorithm by Loh to generate DLA clusters on a square lattice
[37]. The growth of each cluster was stopped when it reaches
the edges of the square computational domain, 2�max × 2�max ,
with a prescribed scale �max. As a result, the number of particles
in various clusters is not identical. We generated 100 clusters
with �max = 16 that have the minimal and the maximal number
of particles, 41 003,402 and 51 514 999, respectively. We
also generated one larger cluster with 145 199 976 particles
by setting �max = 17 (Fig. 1). To our knowledge, this is the
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FIG. 2. (a) Radius of gyration R(t) as a function of the cluster
size t for one cluster (symbols). A linear fit at loglog scale (line),
ln R(t) = 0.594 ln t − 0.796, was obtained over sizes from 210 to 225.
(b) Number of nonempty boxes, N�, at scale �, for the same cluster.
Solid line shows a linear fit at loglog scale, lnN� = −1.664 ln � +
18.351, obtained for scales ranging between 22 and 213.

largest on-lattice DLA cluster ever generated (in contrast, off-
lattice DLAs of similar sizes have been reported earlier, e.g.,
in Ref. [38]).

A. Fractal dimension versus growth rate

Knowing the history of growth of each generated cluster, we
compute two conventional characteristics: the cluster radius,
R(t) and the radius of gyration, R(t), as functions of the cluster
size t (i.e., the number of particles)

R(t) = max
1�k�t

{√
x2

k + y2
k

}
, (1)

R(t) =
[

1

t

t∑
k=1

(
x2

k + y2
k

)] 1
2

, (2)

where (xk,yk) are the coordinates of the kth attached particle
[with the seed point of the cluster, (x0,y0), being located at the
origin]. We checked that R(t) and R(t) behave similarly on
the numerically accessible scales and differ by a factor around
1.5. For this reason, we focus on the radius of gyration which
exhibits less fluctuations. Figure 2(a) illustrates a power law
growth of R(t) with the cluster size t for one DLA cluster. For
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this cluster, we get the growth exponent β ≈ 0.594. This value
is by 2% larger than the earlier reported growth exponent of off-
lattice DLA, 0.583 [39]. For the same cluster, we also compute
its box-counting dimension by evaluating the number N� of
nonempty boxes at scale �, ranging from 1 (the size of one
particle) to 2�max (the size of the whole cluster). Figure 2(b)
shows a power law scaling N� ∝ �−D , which enables us to
determine the Minkowski (box-counting) dimension D. For
this DLA cluster, we get D ≈ 1.664. We conclude that the
fractal dimension is smaller than 1/β ≈ 1.684 by 1%. In order
to check the relevance of this difference, we repeated the above
analysis for 100 independently generated clusters. We obtain
the empirical mean and standard deviation for two exponents:

D = 1.666 ± 0.004, β = 0.596 ± 0.004. (3)

The average fractal dimension D is smaller than the average of
the inverse of the growth rate, 1/β = 1.678 ± 0.011, by only
0.7%, and this difference is below the statistical uncertainty.
For this reason, we cannot exclude the relation D = 1/β for
on-lattice DLA clusters. We also found that the box-counting
fractal dimension D is remarkably close to the theoretical value
5/3 predicted by mean field theories [14,15], an analytical
diamond-shaped model [17], and a continuous-time random
walk theory [16].

B. Role of anisotropy

Various measures have been introduced in 1980s to char-
acterize the anisotropy of DLA clusters on a square lattice
[17,25–28]. We propose another quantity, the angular growth
rate, which is particularly adapted to study anisotropic but
mostly starlike structures. We cover the plane by ns equal
sectors S1, . . . ,Sns

(of angle 2π/ns) centered at the origin (the
center of the cluster) and define the angular radius of gyration
up to cluster size t :

Rθ (t) =
[

1

nθ (t)

t∑
k=1

(
x2

k + y2
k

)
I(xk,yk )∈Sθ

] 1
2

, (4)

where I(xk,yk )∈Sθ
is equal 1 if the point (xk,yk) belongs to the

sector Sθ of a discretized polar angle θ , and zero otherwise,
while nθ (t) is the number of cluster points belonging the
sector Sθ up to t . The angular growth rate, βθ , is defined
from the expected power law scaling: Rθ (t) ∝ tβθ as t → ∞.
In this way, one can probe whether the growth rate depends on
the direction and, in particular, whether the growth rates along
square lattice axes and along diagonals are different.

The left column of Fig. 3 shows the progressive growth of
the largest DLA cluster shown in Fig. 1. One can clearly see
how an isotropic structure of a small cluster (with 104 particles)
slowly evolves into the crosslike anisotropic structure of
larger clusters (e.g., with 107 particles). For comparison, the
right column of Fig. 3 shows a gray-scale representation of
the density of points, averaged over 100 DLA clusters, at
the same t . The average density is defined as the sum of
indicator functions of 100 independently generated clusters.
For small clusters (t = 104 and below), the density is almost
isotropic, meaning that the typical cluster has almost a round
shape. For larger clusters with t = 105, the diamond shape
emerges, indicating a directional preferential growth along

(a) t = 104 (b) t = 104

(c) t = 105 (d) t = 105

(e) t = 106 (f) t = 106

(g) t = 107 (h) t = 107

FIG. 3. Left column: A DLA cluster at various cluster sizes t :
104, 105, 106, and 107, from the top to the bottom (coarse-grained
512 × 512 pictures); Right column: Gray-scale representation of the
density of points, averaged over 100 DLA clusters, at the same t ; thin
outer contour shows the maximally distant points from the center [an
angular version of the maximal distance R defined by Eq. (1)]; thick
inner contour shows the angular radius of gyration, with the angular
resolution of 1◦.

the four axes. At t = 106 and t = 107, the diamond shape
progressively transforms into a crosslike shape. These features
are particularly well seen by looking at two contours: the
outer contour showing the maximally distant points from the
center, and the inner contour showing the angular radius of
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gyration. These two contours were computed by identifying
the points of all 100 clusters that lie within a sector between
angles θ and θ + δθ (with the angular resolution δθ = 1◦,
i.e., ns = 360). In each sector, the distance between the
center and the most distant point and the angular radius of
gyration Rθ (t) were computed and then plotted versus the polar
angle θ from 0 to 360◦. The outer and inner contours illustrate
respectively the positions of extreme and average points of
DLA clusters. Remarkably, these two contours evolve with
the cluster size in a very similar way. Note that the evolution
of a commonly observed diamond-like structure of the square
DLA clusters into a crosslike shape with four distinct arms
was first conjectured by Meakin [27] and then confirmed by
numerical simulations on large clusters in Ref. [24]. Moreover,
the scaling exponents for the length and width of the four
main arms were claimed to be different [16,19,24]. We note,
however, that the arguments elaborated in these papers rely on
(over)simplified assumptions (e.g., the diamond-like limiting
shape of DLA clusters), whereas predictions of the scaling
exponents were sometimes different. While there was no doubt
about anisotropic character of the on-lattice DLA growth, its
explanations remained rather controversial.

After this visual inspection, we proceed to quantify the
anisotropic effects. Figure 4(a) shows how the angular radius
of gyration depends on the direction θ at different cluster
sizes t . One can see how the anisotropy is progressively
established (with four maxima along axes and four minima
along diagonal directions). For comparison, Fig. 4(b) shows
the angular radius of gyration Rθ (t) for an average cluster
obtained by superimposing 100 clusters. As expected, this
plot resembles that for one cluster, but the average over 100
clusters yields smoother curves. The emergence of anisotropy
is particularly clear at semilogarithmic scale [Fig. 4(c)]: flat
profiles of Rθ (t) versus θ at small cluster sizes t progressively
become uneven, with prominent peaks in four axial directions.

In order to reveal the different growth along axes and
diagonals, we aggregate the angular radii of gyration Rθ (t)
for four directions of square lattice axes to define Raxis(t),
and for four diagonal directions to define Rdiag(t). Since the
number of points in each sector is significantly smaller than
in the whole cluster, fluctuations are much stronger. To reduce
fluctuations, we choose relatively large sectors of angle 11.25◦
(with ns = 32), and we average the aggregated radii over 100
DLA clusters. The resulting axial and diagonal radii Raxis(t)
and Rdiag(t) are shown in Fig. 5(a). One can see the faster
growth along the axes than along the diagonals, with the growth
rates 0.612 and 0.535, respectively. Finally, Fig. 5(b) presents
the angular growth rate βθ obtained by linear fits at loglog scale
of Rθ (t) versus t (to reduce fluctuations, the angular radius of
gyration was averaged over 100 DLA clusters). We observe
variations of βθ from 0.53 to 0.61, the minimal and maximal
growth rates corresponding to the diagonals and to the axes,
respectively.

III. DISCUSSION

With the aid of extensive numerical simulations, we have
shown that DLA clusters on a square lattice exhibit strong
anisotropic behavior driven by the local aggregation rules.
In particular, the growth rate depends on direction, with

45 90 135 180 225 270 315 360

0.5

1

1.5

2
x 10

4

angle

ra
di

us

(a)

0 45 90 135 180 225 270 315 360
0

0.5

1

1.5

2
x 10

4

angle

ra
di

us

(b)

0 45 90 135 180 225 270 315 360
10

1

10
2

10
3

10
4

angle

ra
di

us

(c)

FIG. 4. (a) Angular radius of gyration Rθ (t) as a function of
the angle θ for one cluster, at cluster sizes t = 211,212, . . . ,225

(corresponding curves are arranged from bottom to top). (b), (c)
Angular radius of gyration Rθ (t) as a function of the angle θ , averaged
over 100 clusters, at cluster sizes t = 211,212, . . . ,225, at linear (b) and
semilogarithmic (c) scales. For all plots, we set ns = 360.

the maximal growth rate along the axes and the minimal
one along the diagonals. This implies that after rescaling by
cluster’s diameter, the mean size of the cluster in all nonaxial
directions converges to zero, hence the scaling limit becomes
deterministic and one-dimensional. On the other hand, on all
scales from the particle size to the size of the entire cluster it has
nontrivial box-counting fractal dimension which corresponds
to the overall growth rate of the cluster. The latter is a sort of
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FIG. 5. (a) Aggregated angular radii of gyration for four axes,
Raxis(t), and for four diagonals, Rdiag(t), averaged over 100 DLA
clusters, at cluster sizes t = 1,2,22, . . . ,225. Linear fits at loglog
scale (lines) are ln Raxis(t) = 0.612 ln t − 0.923 and ln Rdiag(t) =
0.535 ln t − 0.340. (b) The angular growth rate βθ as a function of
the angle θ , obtained from linear fits at loglog scale of Rθ (t) versus t .
For both plots, we set ns = 32.

a (nonarithmetic) average of the angular growth rates. This
average fully ignores distinctions between growth rates in
different directions and thus partly neglects anisotropic effects,
in particular, the fastest growth along the axes. This suggests
that the fractal nature of the lattice DLA should be understood
in terms of fluctuations around one-dimensional backbone of
the cluster.

The crucial impact of the lattice anisotropy on the DLA
growth naturally disappears for the intrinsically isotropic
off-lattice DLA that had also been extensively investigated

(see Refs. [38–44] and references therein). This leads to an
important question: how to explain the qualitative difference
between on-lattice and off-lattice DLA. There are two evident
distinctions. First, the growth of the on-lattice DLA is con-
trolled by the discrete harmonic measure versus the continuous
one for the off-lattice model. We believe that this is not really
an issue, since the discrete measure converges rapidly to the
continuous one as the size of the aggregate increases [45,46].
The second reason is that the models have different rules for the
local particle attachment. The effect of the local rules on the
anisotropy of the clusters has been reported earlier [47]. Given
a cluster, the distribution of places where a new particle will get
close to the cluster is almost the same for particles performing
random walk and for particles performing Brownian motion.
By the concentration of the harmonic measure, the particle
which is started near the cluster will attach to the cluster very
close to its starting position, with a large probability. The main
difference is that for the lattice there are very few places where
the particle can attach, especially in the vicinity of a “tip” in the
cluster. This has two consequences: (1) the on-lattice particle
is more likely to attach to the tip in the direction of the fastest
growth than the Brownian particle would do, and (2) a growing
tip of an on-lattice cluster is less likely to be split into two
competing branches. As a result, the branches of off-lattice
DLA are more wiggly. In summary, although the growth rules
for on-lattice and off-lattice DLA look similar, the lattice
anisotropy greatly affects the structure of on-lattice DLA and
its fractal properties. In particular, the fractal dimension of
the square lattice DLA, 1.666 ± 0.004 (that we computed
numerically by box-counting method) is smaller than that
of the off-lattice DLA, 1.715 ± 0.004 (computed numerically
in Ref. [39]).

We conclude that the naive but widely used scaling limit of
on-lattice DLA fails due to anisotropy. The future analysis
needs to account for anisotropic effects and to potentially
focus on individual branches of large DLA clusters. Our results
present thus the first step towards finding a proper rescaling of
DLA clusters that is crucial to understand the fractal properties
of the on-lattice DLA model and its scaling limit.
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