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This course is about fractals with some sort of invariance under conformal maps.

DLA, Brownian motion, Harmonic Measure

A fundamental tool for understanding such sets are conformal invariants, i.e.,

numerical values that can be associated to a certain geometric configurations

and that remain unchanged (or at least change in predictable ways) under the

application of conformal or holomorphic maps.

There are three conformal invariants that will be particularly important through

the book: extremal length, harmonic measure and hyperbolic distance.



Of these, extremal length is the most important because it can be defined in

many situations and estimated by direct geometric arguments.

The other two are defined on the disk and then transferred to other domains by

a conformal map.

Our goal is to estimate harmonic measure on simply connected domains using

extremal length.

Ahlfors distortion theorem and Beurling projection theorem are examples of

this. These are used in Kesten’s theorem on DLA.

Much of material we will cover can be found in:

“Harmonic Measure”, Garnett and Marshall

“Conformal Invariants”, Ahlfors







1. Extremal length



Suppose Ω is a domain (open, connected set).

Consider a positive function ρ on a domain Ω. We think of ρ as analogous to

|f ′| where f is a conformal map on Ω.

Just as the image area of a set E can be computed by integrating
∫
E |f ′|2dxdy,

we can use ρ to define areas by
∫
E ρ2dxdy. Similarly, just as we can define

ℓ(f (γ)) =
∫
γ |f ′(z)|ds, we can define the ρ-length of a curve γ by

∫
γ ρds.

For this to make sense, we need γ to be rectifiable (so the arclength measure ds

is defined) and it is convenient to assume that ρ is Borel (so that its restriction

is also Borel and hence measurable for length measure on γ).



Suppose F is a family of locally rectifiable paths in a planar domain Ω and ρ is

a non-negative Borel function on Ω.

We say ρ is admissible for F if

ℓ(F) = ℓρ(F) = inf
γ∈F

∫

γ

ρds ≥ 1.

“paths” need not always be connected. Often are in examples.



Suppose F is a family of locally rectifiable paths in a planar domain Ω and ρ is

a non-negative Borel function on Ω.

We say ρ is admissible for F if

ℓ(F) = ℓρ(F) = inf
γ∈F

∫

γ

ρds ≥ 1.

Define the modulus of the path family F as

Mod(F) = inf
ρ

∫

M

ρ2dxdy,

where the infimum is over all admissible ρ for F .

The extremal length of F is defined as λ(F) = 1/M(F).



Lemma 1.1 (Conformal invariance). If F is a family of curves in Ω and f

is conformal from Ω to Ω′ then M(F) = M(f (F)).

conformal = 1-1, holomorphic = angle and orientation preserving.

Proof. This is just the change of variables formulas∫

γ

ρ ◦ f |f ′|ds =
∫

f(γ)

ρds,

∫

Ω

(ρ ◦ f )2|f ′|2dxdy =

∫

f(Ω)

ρdxdy.

These imply that if ρ ∈ A(f (F)) then |f ′| · ρ ◦ f−1 ∈ A(f (F)), and thus

M(f (F)) ≤ M(F). We get the other direction by considering f−1. �



Lemma 1.2 (Monotonicity). If F1 and F2 are path families so that every

γ ∈ F1 contains some curve in F2, then

M(F1) ≤ M(F2) and λ(F1) ≥ λ(F2).

The proof is immediate since A(F1) ⊃ A(F2).



Lemma 1.3 (Grötsch Principle). If F1 and F2 are families of curves in

disjoint domains then M(F1 ∪ F2) = M(F1) +M(F2).

Proof. Suppose ρ1 and ρ2 are admissible for F1 and F2. Take ρ = ρ1 and ρ = ρ2

in their respective domains. Then it is easy to check that ρ is admissible for

F1 ∪ F2 and, since the domains are disjoint,
∫
ρ2 = ρ21 +

∫
ρ22.

Thus M(F1 ∪ F2) ≤ M(F1) + M(F2). By restricting an admissible metric ρ

to each domain, a similar argument proves the other direction. �



The Grötsch principle and monotonicity combine to give

Corollary 1.4 (Parallel Rule). Suppose F1 and F2 are path families in

disjoint domains Ω1,Ω2 that connect sets E,F and that Ω1 ∪ Ω2 ⊂ Ω. If F
is the path family connecting E and F in Ω, then M(F) ≥ M(F) +M(F).

Ω1
Ω2

E

F

A rectangle Ω is split into two “parallel” subregions. The path families F , F1

and F2 connect the left (E) and right (F ) sides of the rectangle and satisfy

M(F) ≥ M(F) +M(F).





Lemma 1.5 (Series Rule). If F1 and F2 are families of curves in disjoint

domains and every curve of F contains both a curve from both F1 and F2,

then λ(F) ≥ λ(F1) + λ(F2).



Lemma 1.5. (Series Rule) If F1 and F2 are families of curves in disjoint

domains and every curve of F contains both a curve from both F1 and F2,

then λ(F) ≥ λ(F1) + λ(F2).

Proof. If ρ1 ∈ A(Fi) for i = 1, 2, then ρ = tρ1 + (1− t)ρ2 is admissible for F .

Since the domains are disjoint we may assume ρ1ρ2 = 0 everywhere so taking

For 0 ≤ t ≤ 1, take

= t2ρ1 + (1− t2)ρ2.

it is easy so see that this is admissible and since the domains are disjoint we

may assume ρ1ρ2 = 0.

Integrating ρ2 then shows M(F) ≤ t2M(F1) + (1− t2)M(F2) for each t.



To find the optimal t set a = M(F1), b = M(F2), differentiate the right hand

side above, and set it equal to zero

2at− 2b(1− t) = 0.

Solving gives t = b/(a + b) and plugging this in above gives

M(F) ≤ t2a + (1− t2)b =
b2aa2b

(a + b)2

=
ab(a + b)

(a + b)2
=

ab

a + b
=

1
1
a +

1
b

or
1

M(F)
≥ 1

M(F1)
+

1

M(F2)
,

which, by definition, is the same as

λ(F) ≥ λ(F1) + λ(F2). �



Ω1 Ω 2X Y Z

The series rule says that the extremal distance from X to Z in the rectangle is

greater than the sum the extremal distance fromX to Y in Ω1 plus the extremal

distance from Y to Z in Ω2.

The bottom figure show a more extreme case where the extremal distance be-

tween opposite sides of the rectangle is much larger than either of the other two

terms.



Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the ex-

tremal distance between E and F (in Ω) is the extremal length of the path

family in Ω connecting E to F (paths in Ω that have one endpoint in E and

one endpoint in F ).

The series rule is a sort of “reverse triangle inequality” for extremal distance.



Extremal distance can be particularly useful when both E and F are connected.

In this case, their complement in ∂Ω also consists of two arcs, and the extremal

distance between these is the modulus of the arcs separating E and F .



Obtaining an upper bound for the modulus of a path family usually involves

choosing a metric; every metric gives an upper bound. Giving a lower bound

usually involves a Cauchy-Schwarz type argument, which can be harder to do

in general cases.

However, in the special case of extremal distance between arcs E,F ⊂ ∂Ω, a

lower bound for the modulus can also be computed by giving a upper bound

for the reciprocal separating family. Thus estimates of both upper and lower

bounds can be given by producing metrics. This is often the easiest thing to do.



a

b

The fundamental example is to compute the modulus of the path family con-

necting opposite sides of a a × b rectangle; this serves as the model of almost

all modulus estimates.



a

b

So suppose R = [0, b] × [0, a] is a b wide and a high rectangle and Γ consists

of all rectifiable curves in R with one endpoint on each of the sides of length a.

Then each such curve has length at least b, so if we let ρ be the constant 1/b

function on R we have ∫

γ

ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ) ≤
∫∫

T

ρ2dxdy =
1

b2
ab =

a

b
.



a

b

To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(

∫
fgdx)2 ≤ (

∫
f 2dx)(

∫
g2dx).

To apply this, suppose ρ is an admissible metric on R for γ. Every horizontal

segment inR connecting the two sides of length a is in Γ, so since γ is admissible,∫ b

0

ρ(x, y)dx ≥ 1,



a

b

So by Cauchy-Schwarz

1 ≤
∫ b

0

(1 · ρ(x, y))dx ≤
∫ b

0

12dx ·
∫ b

0

ρ2(x, y)dx.

Now integrate with respect to y to get∫ a

0

1dy ≤ b

∫ a

0

∫ b

0

ρ2(x, y)dxdy,

or
a

b
≤

∫∫

R

ρ2dxdy,

which implies Mod(Γ) ≥ b
a. Thus we must have equality.



Lemma 1.6. If A = {z : r < |z| < R} then the modulus of the path family

connecting the two boundary components is 1
2π log

R
r . More generally, if F is

the family of paths connecting rT to a set E ⊂ RT, then M(F) ≥ |E| log R
r .



Lemma 1.6. If A = {z : r < |z| < R} then the modulus of the path family

connecting the two boundary components is 1
2π log

R
r . More generally, if F is

the family of paths connecting rT to a set E ⊂ RT, then M(F) ≥ |E| log R
r .

Proof. By conformal invariance, we can rescale and assume r = 1. Suppose ρ is

admissible for F . Then for each z ∈ E ⊂ T,

1 ≤ (

∫ R

1

ρdr)2 ≤ (

∫ R

1

dr

r
)(

∫ R

1

ρ2rdr) = logR

∫ R

1

ρ2rdr

and hence we get ∫ 2π

0

∫ R

1

ρ2rdrdθ ≥
∫

E

∫ R

r

ρ2rdrdθ

≥ |E|
∫ R

1

ρ2rdr ≥ |E| logR �







2. Symmetry of extremal length and Koebe’s
1
4-theorem



The standard proof of Koebe’s theorem uses Green’s theorem to estimate the

power series coefficients of conformal map (proving the Bieberbach conjecture

for the second coefficient). However here we will take the less traveled path and

present a proof, due to Mateljevic, that uses a symmetry property of extremal

length.

For the “usual” proof, see Chapter I of “Harmonic Measure” by Garnett and

Marshall.



If γ is a path in the plane let γ̄ be its reflection across the real line and let

γ+ = (γ ∩H) ∪ γ ∩Hl, where H,Hl denote the upper and lower half-planes.

For a path family Γ, define Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+



Lemma 2.1 (Symmetry Rule). If Γ = Γ then M(Γ) = 2M(Γ+).

Proof.We start by proving M(Γ) ≤ 2M(Γ+).

Given a metric ρ, define σ(z) = max(ρ(z), ρ(z̄)). Then for any γ ∈ Γ,∫

γ+
σds ≥

∫

γ+
ρds ≥ inf

γ∈Γ

∫

γ

ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ. Hence M(Γ) ≤
∫
σ2.

Therefore, since max(a, b)2 ≤ a2 + b2,

M(Γ) ≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy +

∫
ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal

to 2M(Γ+), proving the claim.



Conversely, given ρ define

σ(z) = ρ(z) + ρ(z̄) for z ∈ H

and

σ = 0 for z ∈ Hl.

Then∫

γ+
σds =

∫

γ+
ρ(z) + ρ(z̄)ds

=

∫

γ∩H
ρ(z)ds +

∫

γ∩H
ρ(z̄)ds +

∫

γ∩Hl

ρ(z) +

∫

γ∩Hl

ρ(z̄)ds

=

∫

γ

ρ(z)ds +

∫

γ̄

ρ(z)ds

≥ 2 inf
ρ

∫

γ

ρds.

Thus if ρ is admissible for Γ, 1
2σ is admissible for Γ+.



Since (a + b)2 ≤ 2(a2 + b2),

M(Γ+) ≤
∫

(
1

2
σ)2dxdy

=
1

4

∫

H

(ρ(z) + ρ(z̄))2dxdy

≤ 1

2

∫

H

ρ2(z)dxdy +

∫

H

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2M(Γ) on the right hand

side, proving the lemma. �



Lemma 2.2. Let D∗ = {z : |z| > 1} and Ω0 = D
∗ \ [R,∞) for some R > 1.

Let Ω = D
∗\K, where K is a closed, unbounded, connected set in D

∗ which

contains the point {R}. Let Γ0,Γ denote the path families in these domains

with separate the two boundary components. Then M(Γ0) ≤ M(Γ).



Proof.We use the symmetry principle we just proved.

The family Γ0 is clearly symmetric (i.e., Γ = Γ, so M(Γ+) = 1
2M(Γ0). The

family Γ may not be symmetric, but we can replace it by a larger family that is.



Let ΓR be the collection of rectifiable curves in D∗\{R} which have zero winding
number around {R}, but non-zero winding number around 0. Clearly Γ ⊂ ΓR

and ΓR is symmetric so M(Γ) ≥ M(ΓR) = 2M(Γ+
R).

Thus all we have to do is show M(Γ+
R) = M(Γ+

0 ). We will actually show

Γ+
R = Γ+

0 . Since Γ0 ⊂ ΓR is obvious, we need only show Γ+
R ⊂ Γ+

0 .



Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross both

the negative and positive real axes. If it never crossed (0, R) then the winding

around 0 and R would be the same, which false, so γ must cross(0, R) as well.

Choose points z− ∈ γ ∩ (−∞, 0) and z+ ∈ γ ∩ (0, R). These points divide γ

into two subarcs γ1 and γ2.Then γ+ = γ+
1 ∪ γ+

2 . But if we reflect γ+
2 into the

lower half-plane and join it to γ+
1 it forms a closed curve γ0 that is in Γ0 and

γ+
0 = γ+. Thus γ+ ∈ Γ+

0 , as desired. �



Let Ωǫ,R = {z : |z| > ǫ} \ [R,∞), (as illustrated on earlier slide). Thus Ω1,R is

the domain considered in the previous lemma.



Let Ωǫ,R = {z : |z| > ǫ} \ [R,∞), (as illustrated on earlier slide). Thus Ω1,R is

the domain considered in the previous lemma.

We can estimate the moduli of these domains using the Koebe map

k(z) =
z

(1 + z)2
= z − 2z2 + 3z3 − 4z4 + 5z5 − . . . ,

which conformal maps the unit disk to R
2 \ [14,∞) and satisfies k(0) = 0,

k′(0) = 1.



Then k−1( 1
4Rz) maps Ωǫ,R conformally to an annular domain in the disk whose

outer boundary is the unit circle and whose inner boundary is trapped between

the circle of radius ǫ
4R(1±O( ǫR)). Thus the modulus of Ωǫ,R is

2π log
4R

ǫ
+O(

ǫ

R
).(2.1)



Theorem 2.3 (The Koebe 1
4 Theorem). Suppose f is holomorphic, 1-1 on

D and f (0) = 0, f ′(0) = 1. Then D(0, 14) ⊂ f (D).

Proof follows “Quasiconformal and quasiregular harmonic analogues of Koebe’s

theorem and applications”, by Miodrag Mateljević, Ann. Acad. Sci. Fenn.

Math., 32, 2007-301–315.



Proof. Recall that the modulus of a doubly connected domain is the modulus

of the path family that separates the two boundary components (and is equal

to the extremal distance between the boundary components).

Let R = dist(0, ∂f (D)). Let Aǫ,r = {z : ǫ < |z| < r} and note that by

conformal invariance

2π log
1

ǫ
= M(Aǫ,1) = M(f (Aǫ,1)).

Let δ = min|z|=ǫ |f (z)|. Since f ′(0) = 1, we have δ = ǫ +O(ǫ2).



Note that f (Aǫ,1) ⊂ f (D) \D(0, δ), so

M(f (Aǫ,1)) ≤ M(f (D) \D(0, δ)).

By Lemma 2.2 and (2.1),

M(f (D) \D(0, δ)) ≤ M(Ωδ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
) ≥ 2π log

1

ǫ
.

Taking ǫ → 0 shows log 4R ≥ 0, or R ≥ 1
4. �



3. The hyperbolic metric



The hyperbolic metric on D is given by dρ(z) = |dz|/(1−|z|2). This means

that the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =

∫

γ

|dz|
1− |z|2 ,(3.1)

and the hyperbolic distance between two points z, w ∈ D is the infimum of the

lengths of paths connecting them (we shall see shortly that there is an explicit

formula for this distance in terms of z and w).



ℓρ(γ) =

∫

γ

|dz|
1− |z|2 ,

In many sources, there is a “2” in the numerator of (3.1), but we follow Garnett-

Marshall’s book, where the definition is as given in (3.1). For most things, this

makes no difference, but the reader is warned that some of our formulas may

differ by a factor of 2 from the analogous formulas in some papers and books.

One version gives hyperbolic disk curvature -1 and the other -4.



We define the hyperbolic gradient of a holomorphic function f : D → D as

DH
Hf (z) = |f ′(z)| 1− |z|2

1− |f (z)|2 .

More generally, given a map f between metric spaces (X, d) and (Y, ρ) we define

the gradient at a point z as

Dρ
df (z) = lim sup

x→z

ρ(f (z), f (x))

d(x, z)
.



The use of the word “gradient” is not quite correct; a gradient is usually a vector

indicating both the direction and magnitude of the greatest change in a function.

We use the term in a sense more like the term “upper gradient” that occurs in

metric measure theory to denote a function ρ ≥ 0 that satisfies

|f (b)− f (a)| ≤
∫

γ

ρds,

for any curve γ connecting a and b.



In these notes, the most common metrics we will use are the

usual Euclidean metric on C,

the spherical metric on the Riemann Sphere, S2

ds

1 + |z|2 ,

the hyperbolic metric on the disk or on some other hyperbolic planar domain.



To simplify notation, we use E, S and H to denote whether we are taking a gra-

dient with respect to Euclidean, Spherical or Hyperbolic metrics. For example

if f : U → V , the symbol DH
Hf means that we are taking a gradient from the

hyperbolic metric on U to the hyperbolic metric on V (assuming the domains

are clear from context; otherwise we write DV
U or Dρv

ρU
it we need to be very

precise.



In this notation, the spherical derivative of a function, usually denoted

f#(z) =
|f ′(z)|

1 + |f (z)|2 ,

is writtenDS
Ef (z) since it is a limit of quotients where the numerator is measured

in the spherical metric and the denominator is measured in the Euclidean metric.

Similarly DS
H denotes a gradient measuring expansion from a hyperbolic to the

spherical metric. This particular gradient is important in the theory of normal

families.



Another variation we will use is DE
D
f . If this is bounded on the disk, then f

is a Lipschitz function from the hyperbolic metric on the disk to the Euclidean

metric on the plane. Holomorphic function with this property are called Bloch

functions, and are fundamental to Makarov’s theorem on the dimension of har-

monic measure.



A linear fractional transformation is a map of the form

z → a + bxc + dz,

where a, b, c, d ∈ C. These exactly the 1-to-1, holomorphic maps of the Riemann

sphere to itself. Such maps are also called Möbius transformation

Lemma 3.1. Möbius transformations of D to itself are isometries of the

hyperbolic metric.



Proof.When f is a Möbius transformation of the disk we have

f (z) =
z − a

1− āz
, f ′(z) =

1− |a|2
(1− āz)2

.

Thus

DH
Hf (z) =

1− |a|2
(1− āz)2

1− |z|2
1− |f (z)|2 =

1− |a|2
(1− āz)2

1− |z|2
1− | z−a

1−āz |2

=
(1− |a|2)(1− |z|2)
|1− āz|2 − |z − a|2 =

(1− |a|2)(1− |z|2)
(1− āz)(1− az̄)− (z − a)(z̄ − ā)

=
(1− |a|2)(1− |z|2)

(1− āz − az̄ + |az|2)− (|z|2 − az̄ − zā + |a|2)

=
(1− |a|2)(1− |z|2)

(1 + |az|2 − |z|2 − |a|2) = 1.

Note that

ℓρ(f (γ)) ≤
∫

γ

DH
Hf (z)

|dz|
1− |z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one. Since

the inverse also has this property, we see that Möbius transformation preserve

hyperbolic length. �



The segment (−1, 1) is clearly a geodesic for the hyperbolic metric and since

isometries take geodesics to geodesics, we see that geodesics for the hyperbolic

metric are circles orthogonal to the boundary.



On the disk it is convenient to define the quasi-hyperbolic metric

T (z, w) = | z − w

1− w̄z
|.

The hyperbolic metric between two points can then be expressed as

ρ(w, z) =
1

2
log

1 + T (w, z)

1− T (w, z)
.(3.2)

On the upper half-plane the corresponding function is

T (z, w) = |z − w

w − z̄
|,

and ρ is related as before.



Lemma 3.2 (Schwarz’s Lemma). If f : D → D is holomorphic and f (0) = 0

then |f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, |f (z)| ≤ |z| for
all |z| < 1, with equality for some z 6= 0 iff f is a rotation.

Proof. Define g(z) = f (z)/z for z 6= 0 and g(0) = f ′(0). This is a holomorphic

function since if f (z) =
∑

anz
n then a0 = 0 and so g(z) =

∑
anz

n−1 has a

convergent power series expansion. Note that

max
|z|=r

|g(z)| ≤ 1

r
max
|z|=r

|f | ≤ 1

r
.

So by the maximum principle |g| ≤ 1
r on {|z| < r}. Taking r ր 1 shows

|g| ≤ 1 on D. Thus |f (z)| ≤ |z|.

Equality |f (z)| = |z| anywhere implies |g(z)| = 1, which implies g ≡ 1 is

constant. Thus |f (z)| ≤ |z| and |f ′(0)| = |g(0)| ≤ 1 and equality implies f is

a rotation. �



In terms of the hyperbolic metric this says that

ρ(f (0), f (z)) = ρ(0, f (z)) ≤ Hr(0, z),

which shows the hyperbolic distance from 0 to any point is non-increasing. For

an arbitrary holomorphic self-map of the disk f and any point w ∈ D we can

always choose Möbius transformations τ, σ so that τ (0) = w and σ(f (w)) = 0,

so that σ◦f ◦τ (0) = 0. Since Möbius transformations are hyperbolic isometries,

this shows

Corollary 3.3. If f : D → D is a holomorphic then ρ(f (w), f (z)) ≤ ρ(w, z).



A family F of meromorphic functions on a planar domain Ω is a normal

family if every sequence in F contains a subsequence that converges uniformly

on every compact set or converges uniformly to ∞ on every compact set. The

following can be found in several texts, e.g., Folland’s text Real Analysis.

Theorem 3.4 (Arzela-Ascoli). A family F of continuous functions from a

planar domain Ω to a metric space (X, d) is normal if and only if

(1) F is equicontinuous on every compact E ⊂ Ω.

(2) For any z ∈ Ω, {f (z) : f ∈ F} is pre-compact (lies in a compact

subset).



By the Cauchy estimates, a holomorphic map f from a planar domain Ω to the

unit disk satisfies

|f ′(z)| ≤ C/dist(z, ∂Ω).

By the Arzela-Ascoli Theorem, the family of such functions is normal; we call

this the “first version” of Montel’s theorem.



Hurwitz’s Theorem: Let Ω be a connected, open set and {fn} be a sequence
of holomorphic functions which converge uniformly on compact subsets of Ω to

a holomorphic function f . If each fn is nonzero everywhere in Ω, then f is either

identically zero or also is nowhere zero.

Proof. If not, then f has a zero, which must be isolated. Take a small curve

around the zero on which f has non-zero winding number around zero. Then

for n large enough fn also has non-zero winding number. Hence fn has a zero

inside the curve, by the argument principle This contradicts assumption that fn

is everywhere non-zero. �



Lemma 3.5. If {fn} are holomorphic functions on a domain Ω that con-

verge uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn) →
f (z).

Proof.We may assume {zn} are contained in some disk D ⊂ Ω around z. Let

E = {zn}∞1 ∪ {z}. This is a compact set so it has a positive distance d from

∂Ω. The points within distance d/2 of E form a compact set F on which the

functions {fn} are uniformly bounded on E, say by M .

By the Cauchy estimate the derivatives are bounded by a constant M ′ on E.

Thus

|f (z)−fn(zn) ≤ |f (z)−fn(z)|+ |fn(z)−fn(zn)| ≤ |f (z)−fn(z)|+M ′|z−zn|,
and both terms on the right tend to zero by hypothesis. �



A planar domain Ω is called hyperbolic if C \ Ω has at least two points.

Uniformization theorem for hyperbolic planar domains:

Theorem 3.6. Every hyperbolic plane domain Ω is holomorphically covered

by D (i.e., there is a locally 1-to-1, holomorphic covering map from D to

Ω).

We will prove this in three steps: bounded domains, simply connected domains

and finally the general case.



Uniformization for bounded domains. If Ω is bounded, then by a translation

and rescaling, we may assume Ω ⊂ D and 0 ∈ Ω. We will define a sequence

of domains {Ωn} with Ω0 = Ω and covering maps pn : Ωn → Ωn−1 such that

p(0) = 0.

We will show that Ωn contains hyperbolic disks centered at 0 of arbitrarily large

radius and that the covering map qn = p1 ◦ · · · ◦ pn : Ωn → Ω0 = Ω converges

uniformly on compacta to a covering map q : D → Ω.



If Ω0 = D we are done, since the identity map will work.

In general assume that we have qn : Ωn → Ω0 and that there is a point w ∈
D \ Ωn. Let τ and σ be Möbius transformations of the disk to itself so that

τ (w) = 0, choose a square root α of τ (0) and choose σ so σ(α) = 0.

Then pn+1(z) = σ(
√

τ (z)) and let Ωn+1 be the component of U = p−1
n+1(Ωn)

that contains the origin (the set U will have one or two components; two if w is

in a connected component of D \ Ωn that is compact in D, and one otherwise).

Since σ and τ are hyperbolic isometries and
√
z expands the hyperbolic metric,

we see that Ωn+1 contains a larger hyperbolic ball around 0 than Ωn did.



More precisely, suppose dn = dist(∂Ωn, 0) < r < 1 for all n. Since f (z) = z2

maps the disk to itself, it strictly contracts the hyperbolic metric; a more explicit

computation shows

DH
Hf (z) = |2z|1− |z|2

1− |z|4 =
2|z|

1 + |z|2 < 1.

Thus g(z) =
√
z is locally an expansion of the hyperbolic metric, at least on a

subdomain W ⊂ D where it has a well defined branch. For z 6= 0,

DH
Hg(z) = | 1

2
√
z
|1− |z|2
1− |z| ≥ 1 + |z|

2
√
z

.(3.3)



Then (3.3) says that

DH
Hpn(0) = DH

H

√
z(τ (0)) >

1 + r

2
√
r
> 1,

since |τ (0)| = |w| < r. Hence DH
Hqn(0) increases by this much at every step.

But DH
Hqn(0) ≤ 1, which is a contradiction. Thus dn → 1.



Thus {qn} is a sequence of uniformly bounded holomorphic functions on the

disk. By Montel’s theorem, there a subsequence that converges uniformly on

compact subsets of D to a holomorphic map q : D → Ω.

It is non-constant since it has non-zero gradient at the origin; moreover, by

Hurwitz’s theorem q′ never vanishes on D since it is the locally uniform limit of

the sequence {q′n}, and these functions never vanish since they are all derivatives
of locally univalent covering maps. Next we show that q is a covering map

D → Ω.



Fix a ∈ Ω and let d = dist(a, ∂Ω). Since Ω is bounded, this is finite. Let

D = D(a, d) ⊂ Ω. Since qn is a covering map, every branch of q−1
n is 1-to-

1 holomorphic map of D into D and hence each qn is a contraction from the

hyperbolic metric on D to the hyperbolic metric on D. Thus every preimage of
1
2D has uniformly bounded hyperbolic diameter.

Now fix a point b ∈ q−1(a). Since qn(b) → q(b) = a, qn(b) ∈ 1
2D for n large

enough, so there is branch of q−1
n that contains b. Since these branches are

uniformly bounded holomorphic functions, by Montel’s theorem we can pass to

a subsequence so that they converge to a holomorphic function g from 1
2D into

D. Moreover,

q(g(z)) = lim
n

qn(q
−1
n (z)) = z,

by Lemma 3.5. �



Proof of Riemann mapping theorem. It suffices to show any simply connected

planar domain, except for the plane itself, can be conformally mapped to a

bounded domain. If the domain Ω is bounded, there is nothing to do.

If Ω omits a disk D(x, r) then the map z → 1/(z − x) conformal maps Ω to a

bounded domain. Otherwise, translate the domain so that 0 is on the boundary

and consider a continuous branch of
√
z. The image is a 1-1, holomorphic

image of Ω, but does not contain both a point and its negative. Since the image

contains some open ball, it also omits an open ball and hence can be mapped

to a bounded domain by the previous case. �



On the top left is a subdomain of the disk whose boundary is parameterized by

γ(t) = eit13(3+sin(t))). This is a polygon with 100 vertices defined by the points

t = k/100, k = 1, . . . , 100. The next 11 figures show the first 11 iterations of

Koebe’s method. The next figure show more iterations.



This shows the first 80 iterations of Koebe’s method for the same domain.



20 40 60 80 100

0.6

0.7

0.8

0.9

Koebe’s method applied to a polygon. We have added 19 new, equally spaced

vertices to the interior of each edge. On the bottom we have graphed the absolute

value of the vertex closest to the origin at each iteration, up to 100 iterations.



The final step is to deduce the uniformization theorem for all hyperbolic plane

domains (we have only proved it for bounded domains so far).

It suffices to show that any hyperbolic plane domain has a covering map from

some bounded domain W , for then we can compose the covering maps D → W

and W → Ω.

We can reduce to the following special case of C∗∗ = C \ {0, 1}



Theorem 3.7. There is a holomorphic covering map from D to C
∗∗.

Proof. Let

Ω = {z = x + iy : y > 0, 0 < x < 1, |z − 1

2
| > 1

2
} ⊂ H.

This is simply connected and hence can be conformally mapped to H with

0, 1,∞ each fixed. We can then use Schwarz reflection to extend the map across

the sides of Ω. Every such reflection of Ω stays in H and maps H to either the

lower or upper half-planes.



Continuing this forever gives a covering map from a simply connected subdomain

U of H to W . Since U is simply connected and not the whole plane (it is a

subset of H) it is conformally equivalent to D and hence a covering q : D → W

exists. (Actually U = H, but we do not need this stronger result.) �



Proof of Uniformization of general planar domains. Let q : D → C
∗∗ = C \

{0, 1}. be a covering map of the twice punctured plane. If {a, b} ∈ C \ Ω then

h(z) = bq(z)+a is a covering map from U = h−1(Ω) ⊂ D to Ω. Any connected

component of U shows that Ω has a covering from a bounded plane domain,

finishing the proof. �



We the covering maps to define a hyperbolic metric ρΩ(z)ds on any hyperbolic

domain Ω.

The function ρ should be defined so that the covering map p is locally an isom-

etry, i.e.,

1 = DΩ
Dp(w)

= DE
DId(w) ·DE

Ep(w) ·DρΩ
E Id(p(w))

=
1

ρD(w)
· |p′(w)| · ρΩ(z)

and so we take

ρΩ(z) =
|p′(w)|
1− |w|2 = |p′(w)|ρD(w) where p(w) = z.

Different choices of p and w give the same value for ρΩ(z) since they differ by an

isometry of D. Thus every hyperbolic planar domain has a hyperbolic metric.



The quasi-hyperbolic metric of a planar domain is defined as

ρ̃Ω(z)ds =
ds

dist(z, ∂Ω)
.

For simply connected domains, we will prove below that ρ and ρ̃ are boundedly

equivalent; for more general domains this can fail (e.g., punctured disk), but

some useful estimates are still available.



The first observation is that if f : U → V is conformal and ρU(z)ds and ρV (z)ds

are the densities of the hyperbolic metrics on U and V then

ρV (f (z)) = ρU(z)/|f ′(z)|.

Applying this to the map τ (z) = (z+1)/(z− 1) that maps the right half-plane

Hr = {x + iy : x > 0} to the unit disk D, we see that the hyperbolic density

for the half-plane is

ρHr(z) = |τ ′(z)|ρD(τ (z)) =
2

|z − 1|2
1

1− |τ (z)|2 =
1

2x
=

1

2dist(z, ∂Hr)
.

Thus the hyperbolic density on a half-plane is approximately the same as the

quasi-hyperbolic metric. Using Koebe’s theorem we can deduce that that this

is true for any simply connected domain.



Lemma 3.8. For simply connected domains, the hyperbolic and quasi-

hyperbolic metrics are bi-Lipschitz equivalent, i.e.,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(3.4)

Proof. Using Koebe’s theorem,

ρΩ(f (z)) =
ρD(z)

|f ′(z)| ≤ ρD(z)
1− |z|2

dist(f (z), ∂Ω
=

1

dist(f (z), ∂Ω
= ρ̃(f (z)),

which is one half of the result.

The other half is similar:

ρΩ(f (z)) =
ρD(z)

|f ′(z)| ≥
1

4
ρD(z)

1− |z|2
dist(f (z), ∂Ω)

=
1

4
ρ̃(f (z)).

�



Corollary 3.9. If f : Ω → Ω′ is conformal, then
dist(f (z), ∂Ω′)

4 dist(z, ∂Ω)
≤ |f ′(z)| ≤ 4 dist(f (z), ∂Ω′)

dist(z, ∂Ω)
.

Proof.Write f = g ◦ h−1 where g : D → Ω′ and h : D → Ω and use the chain

rule and Koebe’s theorem. �



Corollary 3.10. If U ⊂ V are both hyperbolic, then ρU ≥ ρV .

Proof. If ΠU : D → U and ΠV : D → V are the covering maps then the

inclusion map U → V can be lifted to conformal map D → Π−1
V (U) ⊂ D.

Applying Schwarz’s lemma to this map (and using the fact that the projections

are local isometries) gives the result. �



Corollary 3.11. If f : D → Ω is conformal then ϕ(z) = log |f ′(z)| is

Lipschitz from the hyperbolic metric to the Euclidean metric, with bound

that is independent of f .

Proof.We want to bound |ϕ′| uniformly on the disk, but by applying Möbius

transformations, it suffices to bound |ϕ′(0)|. By the Cauchy estimate for deriva-

tives, it suffices to show |ϕ(z)−ϕ(0)| is uniformly bounded on a uniform neigh-

borhood of the origin, or equivalently, that |f (z)/f (0)| is uniformly bounded.

We may assume that |z| = 1/2, f (0) = 0 and |f ′(0) = 1. Suppose d =

dist(f (z), ∂Ω) ≫ 1 and γ is a hyperbolic geodesic from 0 to f (z). Then

ρ(0, f (z)) ≥ 1

4

∫

γ

ds

dist(z, ∂Ω)
≥ 1

4

∫ d

0

ds

1 + s
=

1

4
log(d + 1).

Since ρ(0, f (z)) = ρ(0, z) = ρ(0, 12), we see d is uniformly bounded. �



This result says that f conformal implies log f ′ is in the Bloch space (with a

norm bounded independent of f ; sharp value is 6).

‖f‖B = sup
z∈D

|f ′(z)|)1− |z|2).

The sharp upper bound is 6.

It is also true that any Bloch function of small norm ( < 2) is log f ′ for some

conformal map.



4. Boundary continuity



Lemma 4.1. Suppose Q is a quadrilateral with opposite pairs of sides E,F

and C,D. Assume

(1) E and F can be connected in Q by a curve σ of diameter ≤ ǫ,

(2) any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger

than M(ǫ) where M(ǫ) → ∞ as ǫ → 0.

Proof. Define a metric on Q by ρ(z) = 1
2|z − a|−1/ log(1/2ǫ) for ǫ < |z − a| <

1/2. Any curve γ connecting C and D must cross σ and since γ has diameter

≥ 1 it must leave the annulus where ρ is non-zero. This shows that the modulus

of the path family in Q separating E and F is small, hence the modulus of the

family connecting them is large. �



E

F

C

D



Theorem 4.2 (Gehring-Hayman inequality). There is an absolute constant

C < ∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and

simply connected. Given two points in Ω, let γ be the hyperbolic geodesic

connecting these two points and let σ be any other curve in Ω connecting

them. Then ℓ(γ) ≤ Cℓ(σ).

Proof. Let f : D → Ω be conformal, normalized so that γ is the image of

I = [0, r] ⊂ D for some 0 < r < 1. Without loss of generality we may assume

r = rN = 1− 2−N for some N . Let

Qn = {z ∈ D : 2−n−1 < |z − 1| < 2−n},
and let

γn = {z ∈ D : |z − 1| = 2−n},
zn = γn ∩ [0, 1),

dn = dist(f (zn), ∂Ω).





Let Q′
n ⊂ Qn be the sub-quadrilateral of points with | arg(1− z)| < π/6. Each

of these has bounded hyperbolic diameter and hence by Koebe’s theorem its

image is bounded by four arcs of diameter ≃ dn and opposite sides are ≃ dn

apart. In particular, this means that any curve in f (Qn) separating f (γn) and

f (γn+1) must cross f (Q
′
n) and hence has diameter & dn.



Since Qn has bounded modulus, so does f (Qn) and so Lemma 4.1 says that the

shortest curve in f (Qn) connecting γn and γn+1 has length ℓn ≃ dn. Thus any

curve γ in Q connecting γn and γn+1 has length at least ℓn, and so

ℓ(γ) = O(
∑

dn) = O(
∑

ℓn) ≤ O(ℓ(σ))

where σ is any curve connecting f (0) and f (r). �



If f : D → Ω is conformal define

a(r) = area(Ω \ f (r · D)).
If Ω has finite area (e.g., if it is bounded), then clearly a(r) ց 0 as r ր 1.



Lemma 4.3. There is a C < ∞ so that the following holds. Suppose

f : D → Ω and 1
2 ≤ r < 1. Let

E(δ, r) = {x ∈ T : |f (sx)− f (rx)| ≥ δ for some r < s < 1}.
Then the extremal length of the path family P connecting D(0, r) to E is

bounded below by δ2/Ca(r).

Proof. Let z = f (sx) and suppose w ∈ f (D(0, r)). By the Gehring-Hayman

estimate, the length of any curve from w to z is at least 1/C times the length

of the hyperbolic geodesic γ between them. But this geodesic has a segment γ0

lying within a uniformly bounded distance of the geodesic γ1 from f (rx) to z.



By the Koebe distortion theorem γ0 and γ1 have comparable Euclidean lengths,

and clearly the length of γ1 is at least δ. Thus the length of any path from

f (D(0, r)) to f (sx) is at least δ/C. Now let ρ = C/δ in Ω \ f (D(0, r)) and

0 elsewhere. Then ρ is admissible for f (P) and
∫∫

ρ2dxdy is bounded by

C2a(r)/δ2. Thus λ(P) ≥ δ2

C2a(r)
. �



Lemma 4.4. Suppose f : D → Ω is conformal, For R ≥ 1, let

ER = {x ∈ T : lim sup
rր1

|f (rx)− f (0)| ≥ R dist(f (0), ∂Ω)}.

Then the extremal length of the path family connecting ER to D(0, 12) in D

is ≥ (logR)/2π.

Proof. Assume f (0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω ∩ {1 < |z| < R}. Then ρ is admissible for the path family Γ connecting

D(0, 1/2) to ∂Ω \D(0, R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By definition M(Γ) ≤
2π/ logR and λ(Γ) ≥ (logR)/2π. �





We say a set E ⊂ T has zero capacity if the extremal length of the path family

connecting E to D(0, 12) in D is infinite.

Zero capacity sets are very small: zero length, even zero Hausdorff dimension.

A few facts we shall prove later:

Fact: If E ⊂ T has positive length, then it has positive capacity.

Fact: a countable union of zero capacity sets has zero capacity.



Corollary 4.5. If f : D → Ω is conformal, then f has radial limits except

on a set of zero capacity (and hence has finite radial limits a.e. on T).

Proof. Let Er,δ ⊂ T be the set of x ∈ T so that diam(f (rx, x)) > δ, and let

Eδ = ∩0<r<1Er,δ. If f does not have a radial limit at x ∈ T, then x ∈ Eδ for

some δ > 0, and this has zero capacity by Lemma 4.3.

Taking the union over a sequence of δ’s tending to zero proves the result. The

set where f has a radial limit ∞ has zero capacity by Lemma 4.4, so we deduce

f has finite radial limits except on zero capacity. �



Combining the last two results proves

Corollary 4.6. Given ǫ > 0 there is a C < ∞ so that the following holds.

If f : D → Ω is conformal, z ∈ D and I ⊂ T is an arc that satisfies

|I| ≥ ǫ(1− |z|) and dist(z, I) ≤ 1
ǫ(1− |z|), then I contains a point w where

f has a radial limit and |f (w)− f (z)| ≤ Cdist(f (z), ∂Ω).



Theorem 4.7 (Carathéodory). Suppose that f : D → Ω is conformal, and

that ∂Ω is compact and locally path connected (for every ǫ > 0 there is a

δ > 0 so that any two points of ∂Ω that are within distance δ of each other

can be connected by a path in ∂Ω of diameter at most ǫ). Then f extends

continuously to the boundary of D.



This theorem is actually due to a student of Carathéodory, Marie Torhorst, in

her 1918 dissertation at Bonn University. See Lasse Rempe’s article:

On prime ends and local connectivity

It is enough to show f is uniformly continuous on the open disk. Since f is

continuous on D, it is automatically uniformly continuous on any compact sub-

disk {|z| ≤ 1 − r}, so we only need show that sets of small diameter near the

boundary map to sets of small diameter.

https://arxiv.org/pdf/math/0309022.pdf


Proof. Suppose η > 0 is small. Since ∂Ω is compact Ω \ f ({|z| < 1 − 1
n}) has

finite area that tends to zero as n ր ∞. Thus if n is sufficiently large, this

region contains no disk of radius η.

Choose {zj} to be n equally spaced points on the unit circle and using Lemma

4.6 choose interlaced points {wj} so that f has a radial limit f (wj) at wj and

this limit satisfies |f (wj)− f (rwj)| ≤ Cη where r = 1− 1/n.



Given δ > 0 we can choose η and n so that

|f (wj)− f (wj+1)| ≤ |f (wj)− f (rwj)|
+|f (rwj)− f (rwj+1)|

+|f (rwj+1)− f (wj+1)|
≤ Cδ,

where the center term is bounded by Koebe’s theorem and the other two by

definition.



Fix ǫ > 0 and choose δ > 0 as in the definition of locally connected. Thus if

η is so small that Cη < δ, then the shorter arc of ∂Ω with endpoints f (wj)

and f (wj+1) can be connected in ∂Ω by a curve of diameter at most ǫ. Thus

the image under f of the Carleson square with base Ij (the arc between wj and

wj+1) has diameter at most Cη + ǫ.

This implies f is uniformly continuous on D, and so it has a continuous extension

to the boundary. �



5. Logarithmic capacity



Logarithmic capacity associates a non-negative number to each Borel subset of

the unit circle. Applying a Möbius transformation can change this value, so it

is not a conformal invariant, but it will act as an intermediate between extremal

and harmonic measure (a conformal invariant that will be defined later).



Suppose µ is a positive, finite Borel measure on R
2 and define its potential

function as

Uµ(z) =

∫
log

2

|z − w|dµ(w).
and its energy integral by

I(µ) =

∫∫
log

2

|z − w|dµ(z)dµ(w) =
∫

Uµ(z)dµ(z).

We put the “2” in the numerator so that the integrand is non-negative when

z, w ∈ T, however, this is a non-standard usage.



Lemma 5.1. Uµ is lower semi-continuous, i.e.,

lim inf
z→w

Uµ(z) ≥ Uµ(w).

Proof. Fatou’s lemma,
∫
lim inf fndµ ≤ lim inf

∫
fndµ. �



Lemma 5.2. If µn → µ weak*, then lim inf Uµn(z) ≥ Uµ(z).

Proof. If we replace ϕ = log 1
|z−w| by ϕr = min(r, ϕ) in the definition of U to

get U r, then weak convergence implies

lim
n

U r
µn
(z) = U r

µ(z).

So for any ǫ > 0 we can choose N so that n > N implies

U r
µn
(z) ≥ U r

µ(z)− ǫ.

As r → ∞ U r → U (by the monotone convergence theorem), so for r large

enough and n > N we have

Uµn(z) ≥ U r
µn
(z) ≥ Uµ(z)− 2ǫ.

which proves the result. �



Lemma 5.3. If µn → µ weak*, then lim inf I(µn) ≥ I(µ).

Proof. The proof is almost the same as for the previous lemma, except that we

have to know that if {µn} converges weak*, then so does the product measure

µn × µn. However, weak convergence of {µn} implies convergence of integrals

of the form ∫∫
f (x)g(y)dµn(x)dµn(y).

and Stone-Weierstrass theorem implies that the finite sums of such product

functions are dense in all continuous function on the product space. �



Suppose E is Borel and µ has its closed support inside E. We say µ is admissible

for E if Uµ ≤ 1 on E and we define the logarithmic capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}
and we write µ ∈ A(E).

We define the outer capacity (or exterior capacity) as

cap∗(E) = inf{cap(V ) : E ⊂ V, V open}.
We say that a set E is capacitable if cap(E) = cap∗(E).



Lemma 5.4. Sets of positive length have positive capacity.

Proof. Let µ be Lebesgue measure restricted to E. Then

Uµ(z) = −
∫

E

2 log |z − w|dµ(w)

≤ −4

∫ |E|/2

0

log sds

≤ 4|E|(log 1/|E| − 1).

SinceE supports a measure with bounded potential, it has positive capacity. �



Lemma 5.5. If E supports a measure µ so that

µ(D(x, r)) ≤ Crα

for some C < ∞ and α > 0, then E has positive capacity.

Proof is left to reader (same as previous proof).

We shall see later that a set E has positive Hausdorff dimension iff it supports

such a measure. Thus sets of zero capacity have zero Hausdorff dimension.

In a rough sense, they are only “slightly bigger” than countable sets.



The logarithmic kernel can be replaced by other functions, e.g., |z − w|−α, and

there is a different capacity associated to each one. To be precise, we should

denote logarithmic capacity as caplog or logcap, but to simplify notation we

simply use “cap” and will often refer to logarithmic capacity as just “capacity”.

Since we do not use any other capacities in these notes, this abuse should not

cause confusion.

Great reference is Carleson’s Selected problems in exceptional sets.

Short book, very dense.



WARNING: The logarithmic capacity that we have defined is NOT the

same as is used in other texts such as Garnett and Marshall’s book, but is

related to what they call the Robin’s constant of E, denoted γ(E). The exact

relationship is γ(E) = 1
cap(E) − log 2. They define the logarithmic capacity of E

as exp(−γ(E)).

The reason for doing this is that the logarithmic kernel log 1
|z−w| takes both

positive and negative values in the plane, so the potential functions for general

measures and the Robin’s constant for general sets need not be non-negative.

Exponentiating takes care of this. Since we are only interested in computing the

capacity of subsets of the circle, taking the extra “2” in the logarithm gave us a

non-negative kernel on the unit circle, and we defined a corresponding capacity

in the usual way. Since the kernel is the logarithm, we feel justified in calling

the corresponding capacity the logarithmic capacity, despite the divergence with

usual usage.



Lemma 5.6. Compact sets are capacitable.

Proof. Since cap(E) ≤ cap∗(E) is obvious, we only have to prove the opposite

direction. Set Un = {z : dist(z, E) < 1/n} and choose a measure µn supported

in Un with ‖µn‖ ≥ cap(Un)−1/n. Let µ be a weak accumulation point of {µn}
and note

Uµ(z) =

∫
log

2

|z − w|dµ(w) ≤
∫

log
2

|z − w|dµn(w) ≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E) ≥ lim sup ‖µn‖ = lim cap(Un) = lim cap(Un) = cap∗(E).

�



It is true that all Borel (indeed all analytic) sets are capacitable.

See Appendix B of: Fractals in Probability and Analysis

Analytic sets are continuous image of Borel sets. There are analytic sets that

are not Borel.

Some basic facts are given in my preprint Conformal Removability is Hard.

A more comprehensive but accessible treatment of analytic sets of analytic

sets is given in Chap 11 of the text by Bruckner, Bruckner and Thomson:

Real Analysis.

https://www.math.stonybrook.edu/~bishop/fractalbook.pdf
https://www.math.stonybrook.edu/~bishop/papers/notborel.pdf
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It is clear from the definitions that logarithmic capacity is monotone

E ⊂ F ⇒ cap(E) ≤ cap(F ).(5.1)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,Kcompact}.(5.2)



Lemma 5.7 (Sub-additive). For any sets {En},
cap(∪En) ≤

∑
cap(En).(5.3)

Proof.We can write µ =
∑

µn as a sum of singular measures so that µn gives

full mass to En. We can then restrict each µn to a compact subset kn of En so

that µn(Kn) ≥ (1− ǫ)µ(En). These restrictions are admissible for each En and

hence ∑
cap(En) ≥

∑
µn(Kn) ≥ (1− ǫ)

∑
µn(En) = (1− ǫ)‖µ‖.

Taking ǫ → 0 proves the result. �



Corollary 5.8. A countable union of zero capacity sets has zero capacity.

Corollary 5.9. Outer capacity is also sub-additive.

Proof. Given sets {En} chose open sets Vn ⊃ En so that cap(Vn) ≤ cap∗(En)+

ǫ2−n. By the sub-additivity of capacity

cap∗(∪En) ≤ cap(∪Vn) ≤
∑

cap(Vn) ≤ ǫ +
∑

cap∗(En).

Taking ǫ → proves the result. �

Although capacity informally “measures” the size of a set, it is not additive, and

hence not a measure.



Lemma 5.10. If E is compact and has positive capacity, there exists an

admissible µ that attains the maximum mass in the definition of capacity

and Uµ(z) = 1 everywhere on E, except possible a set of capacity zero.

Proof. Let µn be a sequence of measures on E so that ‖µn‖ → cap(E) and

Un = Uµn is bounded above by 1 on E (such a sequence exists by the definition

of logarithmic capacity). By Lemma 5.2 Uµ is also bounded above by 1.

Also, by a standard property of weak* convergence of positive measures ‖µ‖ =

lim inf ‖µn‖ = cap(E), and by Lemma 5.3,

I(µ) ≤ lim inf I(µn) ≤ lim inf ‖µn‖ = cap(E),

so we must have I(µ) ≤ cap(E).



Note that since µ > 0 we must have

I(µ) =

∫ ∫
2

|z − w|dµ(w)dµ(z) > 0

Otherwise, µ would have to be concentrated on two antipodal points of the

circle, a set that clearly has capacity zero.



First we claim that Uµ ≥ 1 except possibly on a set of zero capacity. Otherwise

let T ⊂ E be a set of positive capacity on which Uµ < 1 − ǫ and let σ be a

non-zero, positive measure on T which potential bounded by 1. Define

µt = (1− t)µ + tσ.

By replacing σ by a small positive multiple of itself, we may assume ‖σ‖ <

I(µ)/2.



This is a measure on E so that

I(µt) ≤
∫

log
1

|z − w|((1− t)dµ + tdσ)((1− t)dµ + tdσ)

≤ (1− t)2I(µ) + 2t(1− t)

∫
Uµdσ + t2I(σ)

≤ I(µ)− 2tI(µ) + 2t(1− t)

∫
Uµdσ +O(t2)

≤ I(µ)− 2tI(µ) + 2t(1− t)(1− ǫ)‖σ‖ +O(t2)

≤ I(µ)− 2t(I(µ)− (1− t)(1− ǫ)‖σ‖) +O(t2)

≤ I(µ)− tI(µ) +O(t2)

< I(µ),

if t > 0 is small enough. This contradicts minimality of µ.

Thus Uµ ≥ 1 everywhere and we have equality except on capacity zero, hence

except on a set of µ-measure zero. �



Let µ be the equilibrium probability measure for E.

This means µ attains supremum in definition of cap(E) and is rescaled to be a

probability measure.

Let γ = 1/cap(E) be Robin’s constant of E.

Lemma 5.11. Uµ = γ µ-almost everywhere on E.

Proof.We proved this is true except on a set of zero log capacity. But a set

E of zero log capacity also has zero µ-measure: otherwise restricting µ to E

and multiplying by a small positive constant, if necessary, gives an admissible

measure on E, proving it has positive capacity. �



A great deal is known about the subsets of E where Uµ(z) = γ and Uµ(z) < γ.

The first is called the set of “regular points”.

These were characterized by Wiener in the 1920’s by a infinite series that mea-

sures much capacity E has in annuli of the form

{2−n ≤ |z − w| ≤ 2−n+1}.
If the series diverges (there is a lot of E near z) then z is a regular point and

otherwise it is not.

This is the same as being regular for the Dirichlet problem: every continuous

function f on ∂Ω has a harmonic extension u to Ω and u has continuous exten-

sion to the boundary except at the set of irregular points of ∂Ω, always a set of

zero capacity.

In the plane, every point of a continuum K is regular.



6. Pfluger’s theorem



Theorem 6.1 (Pfluger’s theorem). If K ⊂ D is a compact connected set with

smooth boundary with 0 in the interior of K. Then there are constants

C1, C2 so that following holds. For any E ⊂ T that is a finite union of

closed intervals,
1

cap(E)
+ C1 ≤ πλ(FE)) ≤

1

cap(E)
+ C2,

where FE is the path family connecting K to E. The constants C1, C2 can

be chosen to depend only on 0 < r < R < 1 if ∂K ⊂ {r ≤ |z| ≤ R}.



Proof.We may assume E 6= T, since otherwise the result is easy.

Let K∗ be the reflection of K across T and let Ω be the connected component

of C \ (E ∪ K ∪ K∗) that has E on its boundary. Let h(z) be the harmonic

function in Ω with boundary values 0 on K and K∗ and boundary value 1 on

E.



By the usual theory of the Dirichlet problem, all boundary points are regular

(since all boundary components are non-degenerate continua) and hence h ex-

tends continuously to the boundary with the correct boundary values. Moreover,

h is symmetric with respect to T, and this implies its normal derivative on T\E
is 0. Clearly |∇h| is an admissible metric for F , so

M(F) ≤ D(h) ≡
∫

D\K
|∇h|2dxdy.

We wish to show equality holds.



By Green’s theorem and the fact that h = 1 on E,∫

∂K

∂h

∂n
ds = −

∫

T

∂h

∂n
ds = −

∫

E

∂h

∂n
ds = −

∫

E

h
∂h

∂n
ds.

and thus

∫

∂K

∂h

∂n
ds = −1

2

∫

E

∂(h2)

∂n
ds

=
1

2

∫

T\E

∂(H2)

∂n
ds +

1

2

∫

∂K

∂(h2)

∂n
ds +

1

2

∫

D\K
∆(h2)dxdy.

The first term is zero because h has normal derivative zero onT \E, and hence

the same is true for h2.

The second term is zero because h is zero on K and so ∂(h2)
∂n = 2h∂h

∂n = 0.



To evaluate the third term, we use the identity

∆(h2) = 2hx · hx + 2h · hxx + 2hy · hy + 2h · hyy

= 2h∆h + 2∇h · ∇h

= 2h · 0 + 2|∇h|2

= 2|∇h|2,
to deduce

1

2

∫

D\K
∆(h2)dxdy =

∫

D\K
|∇h|2dxdy.

Therefore, ∫

∂K

∂h

∂n
ds =

∫

D\K
|∇h|2dxdy = D(h).



Thus the tangential derivative of h’s harmonic conjugate has integral D(h)

around ∂K and therefore 2πh/D(h) is the real part of a holomorphic function

g on D \K.

Then f = exp(g) maps D \K into the annulus

A = {z : 1 < |z| < exp(2π/D(h))

with the components ofE mapping to arcs of the outer circle and the components

of T \ E mapping to radial slits.

The path family F maps to the path family connecting the inner and outer

circles without hitting the radial slits, and our earlier computations show the

modulus of this family is 1/D(h).



Now we have to relate D(h) to the logarithmic capacity of E.

Let µ be the equilibrium probability measure for E.

This means µ attains supremum in definition of cap(E) and is rescaled to be a

probability measure. Thus Uµ = γ where γ = 1/cap(E) µ-almost everywhere

on E (since sets of zero capacity have zero measure) and is continuous off E,

but since Uµ is harmonic in D and equals the Poisson integral of its boundary

values, we can deduce Uµ = γ everywhere on E.

Note that Uµ has a (negative) logarithmic pole at ∞.



Let v(z) = 1
2(Uµ(z) + Uµ(1/z). This has logarithmic poles at 0 and ∞.

Claim: there are constants C1, C2 so that for z ∈ ∂K,

v(z) + C1 ≤ 0, v(z) + C2 ≥ 0.

Here we use the assumption that ∂K ⊂ {r < |z| < R}. Then for z ∈ ∂K and

w ∈ E, we have

1−R ≤ |z − w| ≤ 1 + r

log(1−R) ≤ log |z − w| ≤ log(1 + r)

2

1 + r
≤ Uµ(z) =

∫

E

log
2dµ(w)

|z − w| ≤ log
2

1− r

2

1 + r
+

2

(1/r) + 1
≤ v(z) ≤ log

2

1− r
+ log

2

(1/R)− 1

−C2(r, R) ≤ v(z) ≤ −C1(r, R).

This proves the claim.



Thus by the maximum principle,

v(z) + C1

γ + C1
≤ h(z) ≤ v(z) + C2

γ + C2
.

To prove this note that

(1) For z ∈ E, h(z) = 1 and v(z) = ∩(E), so LHS = RHS = 1 = h(z).

(2) For z ∈ ∂K, we have LHS ≤ 0 = h(z)

(3) For z ∈ ∂K, we have RHS ≥ 0 = h(z)

Thus LHS ≤ h ≤ RHS everywhere by the maximum principle.



Since we have equality on E, we get on E

∂

∂n
(
v(z) + C1

γ + C1
) ≤ ∂h

∂n
≤ ∂

∂n
(
v(z) + C2

γ + C2
).

When we integrate over E, the middle term is −D(h) (we computed this above)

and by Green’s theorem

−
∫

E

∂

∂n

v(z) + C1

γ + C1
ds =

1

γ + C1

∫

D

∆(v)dxdy

=
π

γ + C1

because v is harmonic except for a 1
2 log

1
|z| pole at the origin.



A similar computation holds for the other term and hence
π

γ + C1
≤ D(h) = M(F) ≤ π

γ + C2
,

since D(h) =
∫
E

∂h
∂nds. Hence

γ + C1 ≤ πλ(F) ≤ γ + C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals. �



Lemma 6.2. Suppose E ∩ T is compact, K ⊂ D is compact, connected

and contains the origin. Let F be the path family connecting K and E

in D \ K. Fix an admissible metric ρ for F and for each z ∈ T, define

f (z) = inf
∫
γ ρds where the infimum is over all paths in D that connect K

to z. Then f is lower semi-continuous.

Proof. Suppose z0 ∈ T and use Cauchy-Schwarz to get
∫ 2−n

2−n−1
[

∫

|z|=r

ρds]2dr ≤
∫ 2−n

2−n−1

∫ 2π

0

r2ρ2drdθ

≤ π2−n

∫

2−n−1<|z−z0|<2−n
ρ2dxdy

= o(2−n).



Therefore we can choose circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z−z0| < 2−n}
of D centered at z0 and with ρ-length ǫn tending to 0. By taking a subsequence

we may assume
∑

ǫn < ∞. Now choose zn → z0 with

f (zn) → α ≡ lim inf
z→z0

f (z).



We want to show that there is a path connecting K to z0 whose ρ-length is as

close to α as we wish. Passing to a subsequence we may assume zn is separated

from K by γn. Let cn be the infimum of ρ-lengths of paths connecting γn and

γn+1. By considering a path connecting K to zn, we see that
∑n

1 ck ≤ f (zn),

for all n and hence
∑∞

1 cn ≤ α.



Next choose ǫ > 0 and choose n so that we can connect K to zn (and hence to

γn) by a path of ρ-length less than α + ǫ. We can then connect γn to z0 by a

infinite concatenation of arcs of γk, k > n and paths connecting γk to γk+1 that

have total length
∑∞

n (ǫn + cn) = o(1). Thus K can be connected to z0 by a

path of ρ-length as close to α as we wish. �



Corollary 6.3. Suppose E ⊂ T is compact and ǫ > 0. Then there is a

finite collection of closed intervals F so that E ⊂ F and

λ(FE) ≤ λ(FF ) + ǫ.

Proof. By Lemma 6.2,

V = {z ∈ T : f (z) > r = (
M(FE) + ǫ

M(FE) + 2ǫ
)1/2},

is open, and therefore we can choose a set F of the desired form inside V . Then

ρ/r is admissible for FF , so

M(FF ) ≤
∫

(
ρ

r
)2dxdy =

M(FE) + ǫ

M(FE) + 2ǫ

∫
ρ2dxdy ≤ M(FE) + ǫ.

Thus an inequality in the opposite direction holds for extremal length. �



Corollary 6.4. Pfluger’s theorem holds for all compact subsets of T.

Proof. Suppose E is compact and choose sets En ց E that are finite unions of

closed intervals. We have proven both

λ(FEn) → λ(FE),

(Corollary 6.3) and

cap(En) → cap(E),

(Lemma 5.6), so the inequalities in in Pfluger’s theorem extend to E. �



7. Harmonic Measure



Suppose Ω is a planar domain bounded by a Jordan curve, z ∈ Ω and E ⊂ ∂Ω

is Borel. Suppose f : DΩ is conformal and f (0) = z (by the Riemann mapping

theorem there is always such a map). By Carathéodory’s theorem, f extends

continuously (even homeomorphically) to the boundary, so f−1(E) ⊂ T is also

Borel.

We define “the harmonic measure of the set E for the domain Ω, with respect

to the point z” as

ω(z, E,Ω) = |E|/2π,
where |E| denotes the Lebesgue 1-dimensional measure of E.



This depends on the choice of the Riemann map f , but any two maps, both

sending 0 to z, will differ only by a pre-composition with a rotation. Thus

the two possible pre-images of E differ by a rotation and hence have the same

Lebesgue measure.

If we fix E and Ω, then ω(z, E,Ω) is a harmonic function of z, giving rise the

name “harmonic measure”.



Since we always have 0 ≤ ω(z, E,Ω) ≤ 1, Harnack’s theorem implies that if E

has harmonic measure with respect to one point z in Ω then it has zero harmonic

measure with respect to all points.

If ∂Ω is merely locally connected, then Carathéodory’s theorem still implies that

the Riemann map f has a continuous extension to the boundary, so the same

definition of harmonic measure works.

For general simply connected domains the conformal maps extends radially al-

most everywhere and this can be used to define harmonic measure.



Lemma 7.1. For any compact E ⊂ T,

cap(E) ≥ 1

1 + log 2 + π + log 1
|E|

≥ 1

5 + log 1
|E|

.

If E ⊂ T has positive Lebesgue measure, then it has positive capacity. In

particular, if E ⊂ T is an arc, then

cap(E) ≤ 1

log 4 + log 1
|E|

≤ 1

1 + log 1
|E|

.

For arcs of small measure, the two bounds are comparable.



Proof. If µ is Lebesgue measure restricted to E, then clearly the corresponding

potential function is less than potential function of an arc I of the same measure

evaluated at the center x of that arc. Since 2
πt ≤ |x − y| ≤ t if the arclength

between x, y ∈ T is t, this value is at most∫

I

log
2

|x− y|dy ≤ 2

∫ |E|/2

0

log
π

t
dt = |E| log 2

|E| + (1 + π)|E|



If we normalize the measure to have mass one, then we get

Uµ ≤ log
2

|E| + 1 + π = log
1

|E| + 1 + log 2 + π.

If E is an arc, then the center x of the arc is at most distance |E|/2 from any

other point of the arc, and so

Uµ(x) ≥ log
2

|E|/2 = log
4

|E| = log
1

|E| + log 4,

for any probability measure supported onE. This gives the desired estimate. �



Theorem 7.2. Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1

and E ⊂ ∂Ω. Let Γ be the family of curves in Ω which connects D(z0, 1/2)

to E. Then

ω(z0, E,Ω) ≤ C exp(−πλ(Γ)).

If E ⊂ ∂Ω is an arc then the two sides are comparable.



Proof. Let f : D → Ω be conformal. By Koebe’s 1
4-theorem (Theorem 2.3), the

disk D(z, 12) in Ω maps to a smooth region K in the unit disk that contains the

origin, and ∂K is uniformly bounded away from both the origin and T.

Thus by Pfluger’s theorem applied to the curve family ΓX connecting K and

the compact set X = f−1(E),
1

cap(X)
+ C1(K) ≤ πλ(ΓX) ≤

1

cap(X)
+ C2(K),

for constants C1, C2 that are bounded independent of all our choices.



By Lemma 7.1 the right-hand side of

1 + log 4 + log
1

|X| + C1(K) ≤ πλ(ΓX) ≤ 1 + log 2 + log
1

|X| + C2(K).

holds in general, and the left-hand side also holds if X is an interval.

Multiply by −1 and exponentiate to get
|X|

2e1+π+C2
≤ exp(−πλ(ΓX)) ≤

|X|
4eC1

under the same assumptions. Now use ω(z, E,Ω) = ω(0, X,D) = |X|/2π to

deduce the result. �



One of the most famous and most useful applications of this result is

Corollary 7.3 (Ahlfors distortion theorem). Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let ℓ(t) be the

length of Ω ∩ {|w − x| = t}. Then there is an absolute C < ∞, so that

ω(z0, D(x, r),Ω) ≤ C exp(−π

∫ 1

r

dt

ℓ(t)
).



Proof. LetK be the disk of radius 1/2 around z0 and let Γ be the family of curves

in Ω which connects D(x, r) ∩ ∂Ω to K. Define a metric ρ by ρ(z) = 1/ℓ(t) if

z ∈ Ct = {z ∈ Ω : |x− z| = t} and ℓ(t) is the length of Ct. Any curve γ ∈ Γ

has ρ-length at least

L =

∫ 1/2

r

dt

ℓ(t)
,

and

A =

∫∫

Ω

ρ2dxdy ≥
∫ 1/2

r

∫

Cr∩Ω
ℓ(z)−2rdrdθ =

∫
ℓ(z)−1dr = L.

Therefore λ(Γ) ≥ A/L2 = 1/L, and this proves the result. �



Corollary 7.4 (Beurling’s estimate). There is a C < ∞ so that if Ω is

simply connected, z ∈ Ω and d = dist(z, ∂Ω) then for any 0 < r < 1 and

any x ∈ ∂Ω,

ω(z,D(x, rd),Ω) ≤ Cr1/2

Proof. Apply Corollary 7.3 at x and use θ(t) ≤ 2πt to get

exp(−π

∫ d

rd

dt

θ(t)t
) ≤ C exp(−1

2
log r) ≤ C

√
r.

�



Corollary 7.5. There is an R < ∞ so that for any Ω is a Jordan domain

and any z ∈ Ω

ω(z, ∂Ω \D(z, Rdist(z, ∂Ω),Ω)) ≤ 1/2.

Proof. Rescale so z = 1 and dist(z, ∂Ω) = 1. Then apply w → 1/w which fixes

z and maps ∂Ω \ D(z, R) into D(0, 1/R − 1). Then Lemma 7.4 implies the

result if R ≥ 4C2 + 1 (C is as in Lemma 7.4). �



Corollary 7.6. For any Jordan domain and any ǫ > 0,

ω(z, ∂Ω ∩D(z, (1 + ǫ)dist(z, ∂Ω)),Ω) > Cǫ,

for some fixed C > 0.

Proof. Renormalize so z = 0 and 1 is a closest point of ∂Ω to z. By Corollary

7.5, the set E = ∂Ω ∩D(0, 1 + ǫ) has harmonic measure at least 1/2 from the

point 1−ǫ/R. Since ω(z, E,Ω) is a positive, harmonic function on D, Harnack’s

inequality says it is larger than Cǫ/R at the origin. �



This is a weak version of the Beurling projection theorem which says that the

sharp lower bound is given by the slit disk D(0, 1+ ǫ)\ [1, 1+ ǫ). The harmonic

measure of the slit in this case can be computed as an explicit function of ǫ

because this domain can be mapped to the disk by sequence of elementary

functions.



Lemma 7.7. Suppose Γ is a closed Jordan curve dividing the sphere into

two simply connected domains Ω1,Ω2. Let zi ∈ Ωi satisfy dist(zi, ∂Ω1) for

i = 1, 2. Then there is a C < ∞ so that for any disk D,

ω1(D)ω2(D) ≤ C|D|2.

Proof. Let x ∈ Γ and let θi(t) be the function corresponding to Ωi for i = 1, 2.

The multiplying the estimates for each domain gives

ω1(D)ω2(D) ≤ C exp(−π

∫ 1

|D|
(

1

θ1(t)
+

1

θ2(t)
)dt).

Since Ω1 and Ω2 are disjoint, θ1+ θ+ 2 ≤ 2πt and so a simple calculus exercise

shows that θ−1
1 + θ−1

2 ≥ 2/πt. Thus

ω1(D)ω2(D) ≤ C exp(−π

∫ 1

|D|

2πt

d
t) = C|D|2,

as desired. �



Theorem 7.8. Suppose z1 ∈ Ω1, z2 ∈ Ω2 and let ω1, ω2 denote the cor-

responding harmonic measures. Then ω1 and ω2 are mutually absolutely

continuous on the set of tangent points of Γ and are mutually singular on

the rest of Γ. In particular, ω1 ⊥ ω2 iff the tangent points have zero linear

measure.



For a fractal curve, inside and outside harmonic measures are singular.

ω1 ⊥ ω2 iff tangents points have zero length.



8. Kesten’s theorem on growth of DLA



Start with a unit disk centered at the origin. Imagine another unit disk, whose

center moves as a Brownian motion starting near infinity unit the it hits the

first disk and the stops. Now send in another random disk until it hits one of

the first two. Continue in this way until n disks have accumulated to form a

connected set.
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As discussed at beginning of the course, it is easy to show that The diameter

of DLA grows less than n and greater than
√
n.

Harry Kesten proved:

Theorem 8.1. Almost surely, the diameter of DLA(n) is O(n2/3).

No non-trivial lower bound is yet known.



Proof. The first step is to make the definition of DLA a little more precise. A

moving disk will hit a set E when the center is precisely distance 1 from that

set. In our case, the set is a union of n unit disks centered at a finite set of

points Pn = {p1, . . . , pn}.

Thus the process of adding the next disk by letting it wander by Brownian

motion, is precisely the same as choosing a point pn+1 on the set

En = {z : dist(z, Pn) = 2},
with respect to harmonic measure at∞ for the domain Ωn that is the unbounded

complementary component of En. Since En is, by definition, a connected set,

Ωn is simply connected and will be bounded by a finite number of circular arcs.



Almost surely (with probability one) Ωn will be the entire complement of En.

Otherwise, we must have chosen a disk that made contact with two or more

earlier disks. But there are only a finite number of points on Ek where this

happens, and finite sets have harmonic measure zero (e.g., Beurling’s theorem),

so the probability of making such a choice is zero.

Thus, almost surely, each disk in the cluster (except the one at the origin) hits

exactly one previously chosen disk, although it may be hit by several (at most

four, almost surely) later ones.



Consider

rad(n) = max{|p| : p ∈ Pn},
which measures the size of the DLA cluster in terms of a disk around the origin,

and its inverse

exit(m) = max{n : rad(n) ≤ m},
which measures how soon the cluster grows beyond a given radius.



The theorem is stated in terms of an upper bound for rad(n), but is equivalent

to a lower bound for exit(m):

lim inf
m→∞

exit(m)

m3/2
≥ β,(8.1)

holds almost surely for some constant β > 0.

More precisely, we define

Vm = {exit(m) ≤ βm3/2},
and we will prove that

∑
m P(Vm) < ∞ if β > 0 is small enough.

The Borel-Cantelli lemma then implies that the probability that Vm occurs

infinitely often is zero. Thus almost surely Vm only occurs finitely often, which

gives (8.1).



We estimate the probability of Vm by placing these events inside larger events

and estimating those. If Vm occurs, it means that the DLA cluster contains a

path of at most βm3/2 disks {D1, . . . DN} that starts at the origin and ends

with a disk that hits the circle {|z| = m}.

Moreover, every Dj+1, j = 1, . . . N − 1 was selected after Dj in the growth

process. Otherwise suppose Dj+1 is the first counterexample in the path. Then

Dj+1 is the unique earlier disk hit by Dj, so Dj−1, which also touches Dj, must

have been chosen later than Dj, making Dj a counterexample too.



Every unit disk contains a point in the lattice Z × Z, so for each path of unit

disks as above, we can choose a sequence of lattice points z = {z1, . . . zN} such

zj ∈ Dj, j = 1, . . . zN and |zj − zj+1| ≤ 4 since the union of two touching unit

disks has diameter 4.



We say that sequence of distinct lattice points {z1, . . . , zk} is m-admissible if

|z1| ≤ m/2, |zk| ≥ m, |zj − zj+1| ≤ 4.

Note that there are at most m280k−1 m-admissible sequences of length k :

• there are m2 possible choices for z1,

• each following choice is made from a 9× 9 square, omitting the center.

Moreover, the length of an m-admissible sequence is at least m/8 since the first

and last points are at least distance m/2 apart.



Given an m-admissible sequence z of length k, we define Wm(z) to be the set

of DLA clusters so that:

(1) the cluster contains at most βm3/2 disks,

(2) the cluster contains the sequence z, and

(3) the disk containing zj+1 was chosen after the disk containing zj.

By our comments above each cluster in Vm contained in the event Wm(z) for

some m-admissible sequence of length k ≤ βm3/2.

Thus all of Vm is contained Wm, the union of Wm(z) over all m-admissible

sequences of length at most βm3/2.



We claim that if z has length k, then

P(Wm(z)) ≤ (Cβ)k.(8.2)

We will finish the proof of the theorem assuming this is true, and then prove

the estimate.



Given (8.2)

P(Wm) ≤
∑

z

P(W (z))

≤ #(m− admissible z) · (Cβ)k

≤ m280k−1(Cβ)k

≤ m2(80Cβ)k

≤ m2(80Cβ)m/4,

since k ≥ m/4. Thus if β < 1/80C,∑

m

P(Vm) ≤
∑

m

P(Wm) ≤
∑

m

m2(80Cβ)m/4 < ∞.

This completes the proof of Theorem 8.1, except for the proof of (8.2).



First we explain the general idea for proving (8.2). We will make it precise later.

Suppose we have already grown a cluster that contains the points z1, . . . , zj.

How long do we have to wait before the cluster contains zj+1? We must add a

disk within distance 4 of the disk containing zj.

Since the cluster has diameter at leastm/2, by Beurling’s estimate (Lemma 7.4)

the probability of choosing such a disk is less that C/
√
m.



Therefore the expected number of disks we add before covering zj+1 is at least√
m/C. This has to happen k times, so we expect that k

√
m/C disks need to

be added to the cluster before the whole sequence z is covered.

Since k ≥ m/8, we therefore expect to need about m3/2/C disks to be added.

However, clusters in the event Wm(z) only use βm3/2 disks to cover z.

If β is small compared to 1/C, this event should have small probability.



To make this idea precise, let D1, . . . be an enumeration of the disks in the

cluster, in the order they are added. Suppose zj is contained in disk Dk(j) and

let w(j) = k(j + 1)− k(j); the “waiting time” between covering zj and zj+1.

Then

P(w(j) > t) ≥ (1− p)t,

where p ≤ C/
√
m is probability of hitting disk containing zj (this is where we

use Beurling’s estimate).



Therefore w(j) is bounded below by a geometric random variable (the same one

for each j), and
∑

j w(j) will be bounded below by the corresponding sum of

geometric variables. We estimate this distribution using:

Lemma 8.2. Suppose X1, . . . Xn are independent geometric random vari-

ables, i.e., P(Xj = s) = p(1−p)s−1 for some 0 < p < 1/2, and Y =
∑n

j=1Xj.

If a ≥ 2p, then

P(Y ≤ an/p) ≤ (2e2a)n.



Proof. Define the moment generating function of the random variable Y as the

expected value of exp(tY ). If X is a geometric random variable, then

E(etX) =

∞∑

j=1

etjp(1− p)j−1 = pet
∞∑

j=0

(et(1− p))j =
pet

1− et(1− p)
.

Since Y is a sum of independent copies of X ,

E(etY ) =

∞∏

j=1

E(etX) =

[
pet

1− et(1− p)

]n
.

By Chebyshev’s inequality

P

(
Y <

lnλ

−t

)
= P(e−tY > λ) ≤ 1

λ
E(e−tY ).



Set λ = exp(−ant/p) to get

P(Y < an/p) ≤ exp(ant/p)E(e−tY )

=
exp(ant/p)e−ntpn

(1− e−t(1− p))n

=
exp(ant/p)pn

(et − (1− p))n



Now set t = ln(a(1− p)/(a− p) and this becomes

P(Y < an/p) ≤
pn

(
a(1−p)
a−p

)an/p

(a(1−p)
a−p − (1− p))n

≤
pn

(
a(1−p)
a−p

)an/p

(1− p)n( a
a−p − 1)n

≤
pn

(
a(1−p)
a−p

)an/p

(1− p)n( p
a−p)

n

≤
(
a(1− p)

a− p

)an/p(
a− p

1− p

)n

.



Using p < 1/2 and a ≥ 2p, we get a ≤ 2(a− p) and 1− p > 1/2, so

P(Y < an/p) ≤
(
a(1− p)

a− p

)an/p

(2a)n

≤
(

a

a− p

)an/p

(2a)n

≤
(
1 +

p

a− p

)an/p

(2a)n

≤
(
1 +

p

a− p

)2(a−p)n/p

(2a)n

≤ (e22a)n,

since (1 + 1
x)

x ≤ e. �



To finish the proof of (8.2), apply Lemma 8.2 with a = βk/p ≥ C1βm
3/2

P(Wm) ≤ P(

k∑

j=1

w(j) < βm3/2)

≤ P(

k∑

j=1

Xj < C1βk/p)

≤ (2e2C1β)
k = (C2β)

k,

as desired. This completes the proof of (8.2) and hence of Theorem 8.1. �

This completes the proof of Kesten’s theorem.







9. Makarov’s upper bound



Theorem 9.1. Suppose z1 ∈ Ω1, z2 ∈ Ω2 and let ω1, ω2 denote the cor-

responding harmonic measures. Then ω1 and ω2 are mutually absolutely

continuous on the set of tangent points of Γ and are mutually singular on

the rest of Γ. In particular, ω1 ⊥ ω2 iff the tangent points have zero linear

measure.



For a fractal curve, inside and outside harmonic measures are singular.

ω1 ⊥ ω2 iff tangents points have zero length.



Proof.We will only sketch the proof, using three “well known” facts:

• the F. and M. Riesz theorem,

• McMillan’s twist point theorem,

• and Makarov’s dim(ω) ≤ 1 theorem.



Theorem 9.2 (F. and M. Riesz Theorem, Version 2). Suppose that Φ is

a univalent map of D onto a simply connected domain Ω with rectifiable

boundary. Suppose E ⊂ T. Then H1(E) = 0 iff H1(Φ(E)) = 0. In other

words, harmonic measure on ∂Ω is mutually absolutely continuous to 1-

dimensional Hausdorff measure.



Theorem 9.3 (McMillan’s Twist Point Theorem). If Ω is a simply connected

domain then almost every point on ∂Ω (with respect to harmonic measure)

is either an inner tangent point or a twist point.



We also use the following result of Makarov:

Lemma 9.4. Suppose Ω is simply connected and let ω be harmonic measure

with respect to some point in Ω. If T ⊂ ∂Ω denotes the set of inner tangents

then there is an F ⊂ ∂Ω \ T ω(F ) = ω(∂Ω \ T ) such that for any M > 0

there is a disjoint covering of F by disks {Dj} with ω(Dj) ≥ M |Dj|.

Corollary 9.5. Harmonic measure on a simply connected domain gives

full measure to a set of σ-finite length.

Corollary 9.6. Harmonic measure on a simply connected domain has di-

mension ≤ 1.



Divide Γ into:

(1) Tangent points,

(2) Twist points,

(3) Everything else.

The F and M Riesz theorem implies harmonic measures are mutually absolutely

continuous on (1).

McMillan’s twist point theorem says that (3) has zero harmonic measure from

both sides.

We need to show is that the measures are singular on the twist points.



Choose a large n and by the first lemma choose disjoint disks {Dn
j } so that

ω1(D
n
j ) ≥ n|Dn

j |,
ω(∪jD

n
j ) = ω1(twist points).

Then if F = ∩n ∪k>n ∪jD
k
j , we have

ω1(F ) = ω1(twist points),

but by the product estimate,

ω2(F ) ≤
∑

j

C|Dn
j |2

ω1(Dn
j )

≤ C

n

∑

j

|Dj|

≤ C

n2

∑

j

ω(Dj) ≤
C

n2
→ 0.

Thus the measures are singular on the twist points. �



Some historical background to Makarov’s theorem.

Theorem 9.7. Suppose Ω is a Jordan domain and E ⊂ ∂Ω has zero 1
2-

Hausdorff measure. Then E has zero harmonic measure in Ω.

Proof. Since dilations do not change dimension or harmonic measure, we can

rescale so that Ω contains a unit disk centered at some point z. Harnack’s

inequality says that if ω is zero at one point, it is zero everywhere. Hence it

suffices to show E has harmonic measure zero with respect to z.

By definition, the hypothesis means that for any ǫ > 0, the set E can be covered

by open disks {D(xj, rj)} that satisfy
∑

j r
1/2
j ≤ ǫ. By Beurling’s estimate, this

implies

ω(z, E,Ω) ≤
∑

j

ω(z,Dj,Ω) ≤ O(
∑

j

r
1/2
j ) = O(ǫ).

�



This result was not improved until Lennart Carleson showed in a tour de force

that the 1
2 could be replaced by some α > 1

2.That result was not improved until

Makarov showed it holds for all α < 1.

I plan to prove Makarov’s theorem later in the course. Even though we have not

defined harmonic measure for multiply connected domains, it is clear that no

analog is possible in that case: if the boundary of Ω is a Cantor set of dimension

α, then it must have full harmonic measure, even if α is small.

However, Peter Jones and Tom Wolff showed that harmonic measure has di-

mension ≤ 1 for any planar domain. The optimal upper bound in R
n remains

unknown (but it is > n− 1).



Corollary 9.8. If Ω is Jordan domain, then harmonic measure is singular

to area measure.

Proof. By the Lebesgue density theorem, at Lebesgue almost every point z of a

set E of positive area, all small enough disks satisfy

area(E ∩D(z, r)) ≥ (1− ǫ)area(D(z, r)),

for all r < r0. In particular we must have ℓ(t) ≤ ǫ
t on a set of measure at least

r/4 in [r/2, r]. Thus by the Ahlfors distortion theorem

ω(D(z, r02
−n) ≤ C exp(−π

∫ r0

2−nr0

dt

ǫt
) ≤ C2−πn/ǫ.

This is much less than (2−nr0) if n is large. Thus almost every point of ∂Ω can

be covered by arbitrarily small disks so that ω(D(zj, rj)) = o(r2j ). Use Vitali’s

covering theorem to take a disjoint cover of a set of full harmonic measure, and

we deduce that harmonic measure gives full mass to set of zero area. �



Corollary 9.9. There is an ǫ > 0 so that harmonic measure on a planar

Jordan domain always gives full measure to a set of Hausdorff dimension

at most 2− ǫ.

Proof. Fix a large integer b and consider the b-adic squares in the plane. Take

one such square Q that intersects ∂Ω and consider its b2 children squares. We

claim that if b is large enough, then at least one of them has harmonic measure

that is less than (2b2)−1 times the harmonic measure ofQ. If there is a subsquare

that misses ∂Ω, then its harmonic measure is zero, and the claim is true.



Therefore we may assume every subsquare hits ∂Ω. Suppose Q has side length

1 and define a finite sequence of squares Sk, concentric with Q and with side

lengths 1
b ,

3
b ,

6
b , . . . , 1. If z ∈ ∂Sk, then dist(z, ∂Ω) ≤

√
2/b and dist(z, Sk−1) >

3/b, so by Corollary 7.6,

max
z∈∂Sk

ω(z, ∂Ω ∩ Sk−1,Ω \ Sk−1) < 1− δ,

for some uniform δ > 0 (independent of k and b).

By the maximum principle and induction,

ω(S1) ≤ (1− δ)b/3,

and this is less than 1/(2b2) if b is large enough. This prove the claim, that ω

deviates from the uniform distribution on the sub-squares by a fixed amount.



The rest is standard. The deviation from uniformity implies that the entropy

h(µ) = −
b2∑

k=1

ω(Qj) logb ω(Qj),

is strictly less than 2, the maximum that occurs when every square has equal

measure. The strong law of large numbers and Billingsley’s lemma now imply

that ω has dimension strictly less than 2, with a bound that depends on b, but

not on Ω. �



Jean Bourgain proved this holds for general domains in higher dimensions, with

a δ that depends only on the dimension. We shall see later that the bound

dim(ω) ≤ 1 holds in the plane.

A gap in Bourgain’s proof was recently found (and fixed) by Mathew Badger

and Alyssa Genschaw, “Hausdorff dimension of caloric measure”, preprint 2021.
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