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These slides are based on the text

Fractals in probability and analysis

A more detailed discussion is found there, and can be found in many other texts

on this topic, such as

Brownian motion by Mörters and Peres.

Some other standard (offline) textbooks are:

Brownian Motion and Stochastic Calculus by Karatzas and Shreve

Continuous Martingales and Brownian Motion by Revuz and Yor

Probability and Stochastics by Cinlar

An Introduction to Stochastic Processes by Schilling and Partzsch

https://www.math.stonybrook.edu/~bishop/fractalbook.pdf
https://people.bath.ac.uk/maspm/book.pdf


1. Construction of Brownian motion



A real-valued random variable X on a probability space (Ω,F ,P) has a stan-
dard Gaussian (or standard normal) distribution if

P(X > x) =
1√
2π

∫ +∞

x

e−u
2/2 du

A vector-valued random variableX has an n-dimensional standard Gauss-

ian distribution if its n coordinates are standard Gaussian and independent.

A vector-valued random variable Y : Ω → Rp is Gaussian if there exists a

vector-valued random variable X having an n-dimensional standard Gaussian

distribution, a p× n matrix A and a p-dimensional vector b such that

(1.1) Y = AX + b.



Lemma 1.1. If Θ is an orthogonal n×n matrix and X is an n-dimensional

standard Gaussian vector, then ΘX is also an n-dimensional standard

Gaussian vector.

Proof. As the coordinates of X are independent standard Gaussian, X has

density given by

f (x) = (2π)−
n
2e−‖x‖2/2,

where ‖·‖ denotes the Euclidean norm. Since Θ preserves this norm, the density

of X is invariant under Θ. �



Corollary 1.2. Let Z1, Z2 be independent N (0, σ2) random variables. Then

Z1+Z2 and Z1−Z2 are two independent random variables having the same

distribution N (0, 2σ2).

Proof. σ−1(Z1, Z2) is a standard Gaussian vector, and so, if

Θ =
1√
2

[

1 1
1 −1

]

,

then Θ is an orthogonal matrix such that

(
√
2σ)−1(Z1 + Z2, Z1 − Z2)

t = Θσ−1(Z1, Z2)
t,

and our claim follows from Part (i) of the Lemma. �



Lemma 1.3. Let Z be distributed as N (0, 1). Then for all x ≥ 0,
x

x2 + 1

1√
2π
e−x

2/2 ≤ P (Z > x) ≤ 1

x

1√
2π
e−x

2/2.

Proof. The right inequality is obtained by the estimate

P(Z > x) ≤
∫ +∞

x

u

x

1√
2π
e−u

2/2 du

since, in the integral, u ≥ x.



The left inequality is proved as follows: let us define

f (x) := xe−x
2/2 − (x2 + 1)

∫ +∞

x

e−u
2/2 du.

We remark that f (0) < 0 and limx→+∞ f (x) = 0.

f ′(x) = (1− x2 + x2 + 1)e−x
2/2 − 2x

∫ +∞

x

e−u
2/2 du

= −2x

(∫ +∞

x

e−u
2/2 du− 1

x
e−x

2/2

)

,

so the right inequality implies f ′(x) ≥ 0 for all x ≥ 0.

This implies f (x) ≤ 0, proving the lemma. �



A real-valued stochastic process {Bt}t∈I is a standard Brownian motion

if it is a Gaussian process such that:

i. B0 = 0;

ii. for all k natural and for all t1 < · · · < tk in I : Btk − Btk−1
, . . . , Bt2 − Bt1

are independent;

iii. for all t, s ∈ I with t < s, Bs − Bt has N (0, s− t) distribution;

iv. almost surely, t 7→ Bt is continuous on I .



Recall that the covariance matrix of a random vector is defined as

Cov(Y ) = E
[

(Y − EY )(Y − EY )t
]

.

Then, by the linearity of expectation, the Gaussian vector Y = AX + b in (1.1)

has

Cov(Y ) = AAt.



As a corollary of this definition, one can already remark that for all t, s ∈ I :

Cov(Bt, Bs) = s ∧ t,
(where s ∧ t = min(s, t)). Indeed, assume that t ≥ s. Then

Cov(Bt, Bs) = Cov(Bt − Bs, Bs) + Cov(Bs, Bs)

by bi-linearity of the covariance. The first term vanishes by the independence

of increments, and the second term equals s by properties (iii) and (i).



We may replace properties (ii) and (iii) in the definition by:

• for all t, s ∈ I , Cov(Bt, Bs) = t ∧ s;
• for all t ∈ I , Bt has N (0, t) distribution;

or by:

• for all t, s ∈ I with t < s, Bt − Bs and Bs are independent;

• for all t ∈ I , Bt has N (0, t) distribution.



Lemma 1.4 (Borel–Cantelli). Let {Ai}i=0,...,∞ be a sequence of events, and

let

Ai i.o. = lim sup
i→∞

Ai =

∞
⋂

i=0

∞
⋃

j=i

Aj,

where “i.o.” abbreviates “infinitely often”.

i. If
∑∞

i=0 P(Ai) <∞, then P(Ai i.o.) = 0.

ii. If {Ai} are pairwise independent, and
∑∞

i=0 P(Ai) = ∞, then

P(Ai i.o.) = 1.



The following construction, due to Paul Lévy, consists of choosing the “right”

values for the Brownian motion at each dyadic point of [0, 1] and then interpo-

lating linearly between these values.

This construction is inductive, and at each step a process is constructed that has

continuous paths. Brownian motion is then the uniform limit of these processes;

hence its continuity.



Theorem 1.5. Standard Brownian motion on [0,∞) exists.

Proof.We first construct standard Brownian motion on [0, 1].

For n ≥ 0, let Dn = {k/2n : 0 ≤ k ≤ 2n}, and let D =
⋃

Dn. Let {Zd}d∈D
be a collection of independent N (0, 1) random variables. We will first construct

the values of B on D. Set B0 = 0, and B1 = Z1.



In an inductive construction, for each n we will construct Bd for all d ∈ Dn so

that:

i. for all r < s < t in Dn, the increment Bt−Bs has N (0, t− s) distribution

and is independent of Bs − Br;

ii. Bd for d ∈ Dn are globally independent of the Zd for d ∈ D \Dn.

These assertions hold for n = 0. Suppose that they hold for n− 1.



Define, for all d ∈ Dn \Dn−1, a random variable Bd by

(1.2) Bd =
Bd− + Bd+

2
+

Zd
2(n+1)/2

where d+ = d + 2−n, and d− = d− 2−n, and both are in Dn−1.

Because 1
2(Bd+−Bd−) is N (0, 1/2n+1) by induction, and Zd/2

(n+1)/2 is an inde-

pendent N (0, 1/2n+1), their sum and their difference, Bd−Bd− and Bd+ −Bd

are both N (0, 1/2n) and independent by Corollary 1.2.

Assertion (i) follows from this and the inductive hypothesis, and (ii) is clear.



Having thus chosen the values of the process onD, we now “interpolate” between

them. Formally, let F0(x) = xZ1, and for n ≥ 1, let us introduce the function

(1.3) Fn(x) =







2−(n+1)/2Zx for x ∈ Dn \Dn−1,
0 for x ∈ Dn−1,
linear between consecutive points in Dn.

These functions are continuous on [0, 1], and for all n and d ∈ Dn

(1.4) Bd =

n
∑

i=0

Fi(d) =

∞
∑

i=0

Fi(d).
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We prove this by induction. Suppose that it holds for n−1. Let d ∈ Dn\Dn−1.

Since for 0 ≤ i ≤ n− 1 the function Fi is linear on [d−, d+], we get

(1.5)

n−1
∑

i=0

Fi(d) =
n−1
∑

i=0

Fi(d
−) + Fi(d

+)

2
=
Bd− + Bd+

2
.

Since Fn(d) = 2−(n+1)/2Zd, comparing (1.2) and (1.5) gives (1.4).



On the other hand, we have by definition of Zd and by Lemma 1.3

P
(

|Zd| ≥ c
√
n
)

≤ exp

(

−c
2n

2

)

for n large enough, so the series
∑∞

n=0

∑

d∈Dn P(|Zd| ≥ c
√
n) converges as soon

as c >
√
2 log 2.



Fix such a c >
√
2 log 2.

By the Borel–Cantelli Lemma 1.4 we conclude that there exists a random but

finite N so that for all n > N and d ∈ Dn we have |Zd| < c
√
n, and so

(1.6) |Fn|∞ < c
√
n2−n/2.

This upper bound implies that the series
∑∞

n=0 Fn(t) is uniformly convergent

on [0, 1], and so it has a continuous limit, which we call {Bt}. All we have

to check is that the increments of this process have the right finite-dimensional

joint distributions. This is a direct consequence of the density of the set D in

[0, 1] and the continuity of paths.



Indeed, let t1 > t2 > t3 be in [0, 1], then they are limits of sequences t1,n, t2,n

and t3,n in D, respectively. Now

Bt3 − Bt2 = lim
k→∞

(Bt3,k − Bt2,k)

is a limit of Gaussian random variables, so itself is Gaussian with mean 0 and

variance limn→∞ (t3,n − t2,n) = t3 − t2.

The same holds for Bt2 − Bt1; moreover, these two random variables are limits

of independent random variables, since for n large enough, t1,n > t2,n > t3,n.

Applying this argument for any number of increments, we get that {Bt} has

independent increments such that for all s < t in [0, 1], Bt−Bs has N (0, t− s)

distribution.

We have thus constructed Brownian motion on [0, 1].



Finally, if {Bn
t }n for n ≥ 0 are independent Brownian motions on [0, 1], then

Bt = B
⌊t⌋
t−⌊t⌋ +

∑

0≤i<⌊t⌋
Bi

1

meets our definition of Brownian motion on [0,∞). �



Let {Xi}i≥1 be i.i.d. random variables with mean 0 and finite variances. By

normalization, we can assume the variance Var(Xi) = 1, for all i. Let Sn =
∑n

i=1Xi, and interpolate it linearly to get the continuous paths {St}t≥0.

Theorem 1.6 (Donsker’s Invariance Principle). As n −→ ∞,
{Stn√

n

}

0≤t≤1

in law
=⇒ {Bt}0≤t≤1,

i.e., if ψ : C̃[0, 1] −→ R, where C̃[0, 1] = {f ∈ C[0, 1] : f (0) = 0}, is a

bounded continuous function with respect to the sup norm, then, as n −→
∞,

Eψ
({Stn√

n

}

0≤t≤1

)

−→ Eψ({Bt}0≤t≤1).



Examples:

Xn = ±1 with equal probability.

Xn chosen uniformly in [−1, 1]

Xn = {−1, 0, 1} with equal probability.

Xn = {−1, 12} with probabilities 1
3,

2
3.

Non-example:

Xn chosen with distribution 1
π(1+x2)

.

Variance is not finite.

Gives the Cauchy process, a discontinuous random map [0,∞) → R.



The Cauchy process.

C(x) = y if y = B2(t) and t is the first time B1(t) = x.



2. Nowhere differentiable



We say that two random variables Y, Z have the same distribution, and write

Y
d
= Z, if P(Y ∈ A) = P(Z ∈ A) for all Borel sets A. Let {B(t)}t≥0 be a

standard Brownian motion, and let a 6= 0.

The following scaling relation is a simple consequence of the definitions.

{1
aB(a2t)}t≥0

d
= {B(t)}t≥0.

Proof. Continuity of the paths, independence and stationarity of the increments

remain unchanged under the scaling.

It remains to observe that

X(t)−X(s) =
1

a
(B(a2t)− B(a2s)),

is normally distributed with expectation 0 and variance

(1/a2)(a2t− a2s) = t− s.

�



Scaling invariance has many useful consequences.

For example, if a > 0 let

T (a) = inf{t > 0 : B(t) = a or B(t) = b},
the first exit time of a one-dimensional standard Brownian motion from the

interval [−a, a]. Then, with X(t) = (1/a)B(a2t) we have

ET (a) = a22E inf{t > 0 : |X(t)| = 1}.
This implies that ET (a) is a constant multiple of a2.

Later we will compute the constant c = 1 using Wald’s lemma.

Later we will prove conformal invariance, a powerful extension of scaling invari-

ance.



Define the time inversion of {Bt} as

W (t) =

{

0 t = 0;
tB(1t) t > 0.

Lemma 2.1.W is standard Brownian motion.



Proof. Recall that the finite-dimensional distributions (B(t1), ..., B(tn)) of Brow-

nian motion are Gaussian random vectors and are therefore characterized by

E[B(ti)] = 0 and Cov(B(ti), B(tj)) = ti for 0 ≤ ti ≤ tj.

Obviously, {W (t) : t > 0} is also a Gaussian process and the Gaussian random

vectors (W (t1), ...,W (tn)) have expectation zero. The covariances, for t >

0, h > 0, are given by

Cov(W (t+h),W (t)) = (t+h)tCov(B(1/(t+h)), B(1/t)) = t(t+h)1t+h = t.

Hence the law of all the finite-dimensional distributions

(W (t1),W (t2), ...,W (tn)),

for 0 ≤ t1 ≤ · · · ≤ tn, are the same as for Brownian motion.



The paths of t→ W (t) are clearly continuous for all t > 0. To prove continuity

at t = 0 we use the following two facts.

First, for any rational t ≥ 0 the distribution of {W (t)} is the same as for a

Brownian motion, and hence

lim
t→0,t∈Q

W (t) = 0

almost surely.

Second, the rationals are dense in the reals andW (t) is almost surely continuous

on (0,∞ so that

lim
t→0

W (t) = 0

almost surely. Hence {W (t) : t > 0} has almost surely continuous paths, and

is a Brownian motion. �



A function f is α-Hölder if for some C <∞ we have

|f (x)− f (y)| ≤ C|x− y|α,

1-Hölder = Lipschitz

α-Hölder for α > 1 is constant.



Corollary 2.2. Brownian paths are α-Hölder a.s. for all α < 1
2.

Proof.We defined Brownian motion as an infinite sum
∑∞

n=0 Fn, where each Fn

is a piecewise linear function given in (1.3).

The derivative of Fn exists except on a finite set, and by definition and (1.6)

‖F ′
n‖∞ ≤ ‖Fn‖∞

2−n
≤ C1(ω) + c

√
n 2n/2.(2.1)

The random constant C1(ω) is introduced to deal with the finitely many excep-

tions to (1.6).

Now for t, t + h ∈ [0, 1], we have

|B(t + h)− B(t)| ≤
∑

n

|Fn(t + h)− Fn(t)|

≤
∑

n≤ℓ
h‖F ′

n‖∞ +
∑

n>ℓ

2‖Fn‖∞.



By (1.6) and (2.1) if ℓ > N for a random N , then the above is bounded by

h



C1(ω) +
∑

n≤ℓ
c
√
n 2n/2



 + 2
∑

n>ℓ

c
√
n 2−n/2

≤ C2(ω)h
√
ℓ 2ℓ/2 + C3(ω)

√
ℓ 2−ℓ/2.

The inequality holds because each series is bounded by a constant times its

dominant term.



Choosing ℓ = ⌊log2(1/h)⌋, and choosing C(ω) to take care of the cases when

ℓ ≤ N , we get

(2.2) |B(t + h)− B(t)| ≤ C(ω)

√

h log2
1

h
.

�

A Brownian motion is almost surely not 1
2-Hölder. This will be proven later.



Lemma 2.3. The paths of Brownian motion have no intervals of mono-

tonicity.

Proof. Indeed, if [a, b] is an interval of monotonicity, then dividing it up into

n equal sub-intervals [ai, ai+1] each increment B(ai)−B(ai+1) has to have the

same sign. This has probability 2 · 2−n, and taking n → ∞ shows that the

probability that [a, b] is an interval of monotonicity must be 0.

Taking a countable union gives that there is no interval of monotonicity with

rational endpoints, but each monotone interval would have a monotone rational

sub-interval. �



Consider a probability measure on the space of real sequences, and letX1, X2, . . .

be the sequence of random variables it defines. An event, i.e., a measurable

set of sequences, A is exchangeable if X1, X2, . . . satisfy A implies that

Xσ1, Xσ2, . . . satisfy A for all finite permutations σ. Finite permutation means

that σn = n for all sufficiently large n.

Proposition 2.4 (Hewitt–Savage 0-1 Law). If A is an exchangeable event

for an i.i.d. sequence then P(A) is 0 or 1.



Sketch of Proof: Given i.i.d. variables X1, X2, . . ., suppose that A is an ex-

changeable event for this sequence. Then for any ǫ > 0 there is an integer n

and a Borel set Bn ⊂ Rn such that the event An = {ω : (X1, . . . , Xn) ∈ Bn}
satisfies P(An∆A) < ǫ.

Now apply the permutation σ that transposes i with i + n for 1 ≤ i ≤ n, i.e.,

it exchanges the blocks

[1, ..., n] and [n + 1, ..., 2n].

The event A is pointwise fixed by this transformation of the measure space (since

A is exchangeable) and the probability of any event is invariant (the measure

space is a product space with identical distributions in each coordinate and we

are simply reordering the coordinates).



ThusAn is sent to a new eventAσ
n that has the same probability and P((Aσ

n∆A) =

P(An∆A) < ǫ, hence P(Aσ
n∆An) < 2ǫ (since P(X∆Y ) defines a metric on mea-

surable sets).

But An and A
σ
n are independent, so P(An∩Aσ

n) = P(An)P(A
σ
n) = P(An)

2. Thus

P(A) = P(An ∩ Aσ
n) +O(ǫ) = P(An)

2 +O(ǫ) = P(A)2 +O(ǫ).

Taking ǫ→ 0 shows P(A) ∈ {0, 1}. �



Proposition 2.5. Almost surely

(2.3) lim sup
n→∞

B(n)√
n

= +∞, lim inf
n→∞

B(n)√
n

= −∞.

Proof. In general, the probability that infinitely many events {An} occur satisfies

P(An i.o.) = P(

∞
⋂

n=1

∞
⋃

k=n

Ak) = lim
n→∞

P(

∞
⋃

k=n

Ak) ≥ lim sup
n→∞

P(An).

So, in particular,

P(B(n) > c
√
n i.o.) ≥ lim sup

n→∞
P(B(n) > c

√
n).

By the scaling property, the expression in the lim sup equals P(B(1) > c), which

is positive.



Let Xn = B(n)− B(n− 1). These are i.i.d. random variables,

{
n
∑

k=1

Xk > c
√
n i.o.} = {B(n) > c

√
n i.o.}

is exchangeable and has positive probability, so the Hewitt–Savage 0–1 law says

it has probability 1.

Taking the intersection over all natural numbers c gives the first part of Propo-

sition 2.5, and the second is proved similarly. �



The two claims of Proposition 2.5 together mean that B(t) crosses 0 for arbi-

trarily large values of t. If we use time inversion W (t) = tB(1t), we get that

Brownian motion crosses 0 for arbitrarily small values of t.

Letting ZB = {t : B(t) = 0}, this means that 0 is an accumulation point from

the right for ZB. But we get even more.

For a function f , define the upper and lower right derivatives

D∗f (t) = lim sup
h↓0

f (t + h)− f (t)

h
,

D∗f (t) = lim inf
h↓0

f (t + h)− f (t)

h
.



Corollary 2.6. Fix t0 ≥ 0. Brownian motion W almost surely satisfies

D∗W (t0) = +∞, D∗W (t0) = −∞, and t0 is an accumulation point from

the right for the level set {s : W (s) = W (t0)}.

Proof.We have

D∗W (0) ≥ lim sup
n→∞

W (1n)−W (0)
1
n

≥ lim sup
n→∞

√
n W (1n) = lim sup

n→∞

B(n)√
n

which is infinite by Proposition 2.5.

Similarly, D∗W (0) = −∞, showing that W is not differentiable at 0. �



This argument shows that for any fixed time t, almost every Brownian motion

is not differentiable at time t.

Using Fubini’s theorem, this implies that for almost every Brownian motion, the

set of times where is not differentiable has full measure in [0,∞).

This is not the same as saying Brownian motion is almost surely nowhere

differentiable. That statement requires more work to prove.



Similarly, for almost all t the set {s : B(s) = B(t)} has no isolated points. But

this is not true of all t, e.g., times when B(t) is a local maximum.

We leave it to the reader to show that for all t,

P(t is a local maximum) = 0,

but almost surely local maxima are a countable dense set in (0,∞).



Theorem 2.7. Almost surely Brownian motion is nowhere differentiable.

Furthermore, almost surely for all t either D∗B(t) = +∞ or D∗B(t) = −∞.

For local maxima we have D∗B(t) ≤ 0, and for local minima, D∗B(t) ≥ 0, so

it is important to have the either-or in the statement.

The result is due to Paley, Weiner and Zygmund in 1933.

We give a proof due to Dvoretzky, Erdős and Kakutani from 1961.



Proof. Suppose that there is a t0 ∈ [0, 1] such that −∞ < D∗B(t0) ≤
D∗B(t0) <∞. Then for some finite constant M we would have

(2.4) sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M.

If t0 is contained in the binary interval [(k− 1)/2n, k/2n] for n > 2, then for all

1 ≤ j ≤ n the triangle inequality gives

(2.5) |B ((k + j)/2n)− B ((k + j − 1)/2n)| ≤M(2j + 1)/2n.



Let Ωn,k be the event that (2.5) holds for j = 1, 2, and 3. Then by the scaling

property

P(Ωn,k) ≤ P

(

|B(1)| ≤ 7M/
√
2n
)3

,

which is at most (7M2−n/2)3, since the normal density is less than 1/2. Hence

P

(

2n
⋃

k=1

Ωn,k

)

≤ 2n(7M2−n/2)3 = (7M)32−n/2,

Therefore by the Borel–Cantelli Lemma,

P ((2.4) holds) ≤ P

(

2n
⋃

k=1

Ωn,k holds for infinitely many n

)

= 0. �



3. Hausdorff dimension



The Hausdorff dimension of K is defined to be

dim(K) = inf{α : Hα
∞(K) = 0}.

More generally we define

Hα
ǫ (K) = inf

{

∑

i

|Ui|α : K ⊂
⋃

i

Ui, |Ui| < ǫ
}

,

where eachUi is now required to have diameter less than ǫ. The α-dimensional

Hausdorff measure of K is defined as

Hα(K) = lim
ǫ→0

Hα
ǫ (K).



This is an outer measure; an outer measure on a nonempty setX is a function

µ∗ from the family of subsets of X to [0,∞] that satisfies

• µ∗(∅) = 0,

• µ∗(A) ≤ µ∗(B) if A ⊂ B,

• µ∗(⋃∞
j=1Aj) ≤

∑∞
j=1 µ

∗(Aj).

When α = d ∈ N, thenHα is a constant multiple of Ld, d-dimensional Lebesgue

measure.



The construction of Hausdorff measure can be made a little more general by

considering a positive, increasing function ϕ on [0,∞) with ϕ(0) = 0. This is

called a gauge function and we may associate to it the Hausdorff content

Hϕ
∞(K) = inf{

∑

i

ϕ(|Ui|) : K ⊂
⋃

i

Ui};

then Hϕ
ǫ (K), and Hϕ(K) = limǫ→0Hϕ

ǫ (K) are defined as before.



Lemma 3.1. If Hα(K) <∞ then Hβ(K) = 0 for any β > α.

Proof. It follows from the definition of Hα
ǫ that

Hβ
ǫ (K) ≤ ǫβ−αHα

ǫ (K),

which gives the desired result as ǫ→ 0. �

Thus if we think of Hα(K) as a function of α, the graph of Hα(K) versus α

shows that there is a critical value of α where Hα(K) jumps from ∞ to 0. This

critical value is equal to the Hausdorff dimension of the set.



Lemma 3.2 (Mass Distribution Principle). If E supports a strictly positive

Borel measure µ that satisfies

µ(B(x, r)) ≤ Crα,

for some constant 0 < C < ∞ and for every ball B(x, r), then Hα(E) ≥
Hα

∞(E) ≥ µ(E)/C. In particular, dim(E) ≥ α.

Proof. Let {Ui} be a cover of E. For {ri}, where ri = |Ui|, we look at the

following cover: choose xi in each Ui, and take open balls B(xi, ri). Then

µ(Ui) ≤ µ(B(xi, ri)) ≤ Cri
α = C|Ui|α.

whence
∑

i

|Ui|α ≥
∑

i

µ(Ui)

C
≥ µ(E)

C
.

Thus Hα(E) ≥ Hα
∞(E) ≥ µ(E)/C. �



Lemma 3.3. If f is α-Hölder on X → Y and A ⊂ X then

dim(f (A)) ≤ dim(A)/α ≤ min(dim(A)/α, dim(Y )).

Proof. If {Uj} is a cover of A, then {f (Uj} covers f (A) and

diam(f (Uj)) ≤ Cdiam(Uj)
α.

so
∑

diam(f (Uj))
s/α .

∑

diam((Uj))
s → 0

for s ≥ dim(A). �



Since Brownian motion is Hölder of every order β < 1/2 we have:

Corollary 3.4.

dim(GB) ≤ dimM(GB) ≤ dimM(GB) ≤ 3/2 a.s.

Corollary 3.5. For A ⊂ [0,∞), we have dim(B(A)) ≤ (2 dim(A)) ∧ 1 a.s.



Theorem 3.6 (McKean). For A ⊂ [0,∞), the image of A under d-dimensional

Brownian motion has Hausdorff dimension (2 dimA) ∧ d almost surely.

Theorem 3.7 (Uniform Dimension Doubling, Kaufman ). Let B be Brownian

motion in dimension at least 2. Almost surely, for every A ⊂ [0,∞), we

have dimB(A) = 2 dim(A).

Notice the difference between these results. In McKean’s Theorem, the null

probability set depends on A, while Kaufman’s Theorem has a much stronger

claim: it states dimension doubling uniformly for all sets.

Kaufman’s theorem fails for d = 1. The zero set of 1-dimensional Brownian

motion has dimension half, while its image is the single point 0.

We will prove McKean’s theorem for A = [0, 1].



The image of the middle thirds Cantor set under a 2-dimensional Brownian

path. By dimension doubling, this set has Hausdorff dimension log 4/ log 3.



Theorem 3.8 (Frostman’s Energy Method). Given a metric space (X, ρ), if

µ is a finite Borel measure supported on A ⊂ X and

Eα(µ) def
=

∫∫

dµ(x)dµ(y)

ρ(x, y)α
<∞,

then Hα
∞(A) = ∞, and hence dim(A) ≥ α.



Proof. For sufficiently large M , the set

K1 = {x ∈ K :

∫

K

dµ(y)

|x− y|α ≤M}
has positive µ measure. One can write this integral as a sum and use summation

by parts to get,
∫

K

dµ(y)

|x− y|α ≥
∞
∑

n=−r
µ({2−n−1 ≤ |y − x| ≤ 2−n})2nα

=

∞
∑

n=−r

(

µ(B(x, 2−n))− µ(B(x, 2−n−1))
)

2nα

= C1 +

∞
∑

n=−r

(

(2nα − 2(n−1)α)µ(B(x, 2−n))
)

= C1 + C2

∞
∑

n=−r
2nαµ(B(x, 2−n)).



If x ∈ K1, then the integral, and thus the sum, is finite, so

lim
n→∞

µ(B(x, 2−n))

2−nα
= 0.

The Mass Distribution Principle impliesHα(K1) = ∞, henceHα(K) = ∞. �



Theorem 3.9. Brownian trace Bd([0, 1]) in Rd has dimension 2.

Proof. From Corollary 2.2 we have that Bd is β Hölder for every β < 1/2 a.s.

Therefore dimBd[0, 1] ≤ 2 almost surely.

For the other inequality, we will use Frostman’s Energy Method. A natural

measure on Bd[0, 1] is the occupation measure µB
def
= LB−1, which means that

µB(A) = LB−1(A), for all measurable subsets A of Rd, or, equivalently,
∫

Rd
f (x) dµB(x) =

∫ 1

0

f (Bt) dt

for all measurable functions f .



Note that by definition,

(3.1) E

∫

Rd

∫

Rd

dµB(x)dµB(y)

|x− y|α = E

∫ 1

0

∫ 1

0

dsdt

|B(t)−B(s)|α

We want to show that for any 0 < α < 2, this is finite.

Let us evaluate the right hand side expectation:

E|B(t)− B(s)|−α = E((|t− s|1/2|Z|)−α) = |t− s|−α/2
∫

Rd

cd
|z|αe

−|z|2/2 dz.

Here Z denotes the d-dimensional standard Gaussian random variable.



The integral can be evaluated using polar coordinates, but all we need is that,

for d ≥ 2, it is a finite constant c depending on d and α only. Finiteness can

be checked by considering |z| < 1 and |z| ≥ 1 separately (details left to the

reader).

Substituting c into (3.1) and using Fubini’s Theorem we get

(3.2) EEα(µB) = c

∫ 1

0

∫ 1

0

dsdt

|t− s|α/2 ≤ 2c

∫ 1

0

du

uα/2
<∞.

Therefore Eα(µB) < ∞ almost surely and we are done by Frostman’s method.

�



Theorem 3.10. The graph of Brownian motion in R has dimension 3/2.

Proof.We have shown in Corollary 3.4 that

dimGB ≤ 3/2.

For the other inequality, let α < 3/2 and let A be a subset of the graph. Define

a measure on the graph using projection to the time axis:

µ(A)
def
= L({0 ≤ t ≤ 1 : (t, B(t)) ∈ A}).



Changing variables, the α energy of µ can be written as

∫∫

dµ(x)dµ(y)

|x− y|α =

∫ 1

0

∫ 1

0

dsdt

(|t− s|2 + |B(t)− B(s)|2)α/2 .

Bounding the integrand, taking expectations, and applying Fubini’s Theorem

we get that

(3.3) EEα(µ) ≤ 2

∫ 1

0

E

(

(t2 + B(t)2)−α/2
)

dt.

Let n(z) denote the standard normal density. By scaling, the expected value

above can be written as

(3.4) 2

∫ +∞

0

(t2 + tz2)−α/2n(z) dz.



Cut the integral into z ≤
√
t and z >

√
t. Then (3.4) is bounded above by

twice
∫

√
t

0

(t2)−α/2 dz +

∫ ∞

√
t

(tz2)−α/2n(z) dz = t
1
2−α + t−α/2

∫ ∞

√
t

z−αn(z) dz.

Furthermore, we separate the last integral at 1. We get
∫ ∞

√
t

z−αn(z) dz ≤ cα +

∫ 1

√
t

z−α dz.

The latter integral is of order t(1−α)/2. Substituting these results into (3.3), we

see that the expected energy is finite when α < 3/2. Therefore Eα(µB) < ∞
almost surely. The claim now follows from Frostman’s Energy Method. �



4. Stopping times and the Markov property



A filtration on a probability space (Ω,F , P ) is a family {F(t) : t > 0} of

σ-algebras such that F(s) ⊂ F(t) ⊂ F for all s < t.

A probability space together with a filtration is called a filtered probability space.

A stochastic process {X(t) : t > 0} defined on a filtered probability space with

filtration {F(t) : t > 0} is called adapted if X(t) is F(t)-measurable for any

t > 0.



Suppose we have a Brownian motion {B(t) : t > 0} defined on some probability

space, then we can define a filtration {F0(t) : t > 0} by letting F0(t) =

σ(B(s) : 0 < s < t) be the σ-algebra generated by the random variables B(s),

for 0 < s < t. With this definition, the Brownian motion is obviously adapted

to the filtration.

Intuitively, this σ-algebra contains all the information available from observing

the process up to time t.



For each t ≥ 0 let F0(t) = σ{B(s) : s ≤ t} be the smallest σ-field making

every B(s), s ≤ t, measurable

Set F+(t) =
⋂

u>tF0(u). This allows us to look “infinitesimally” into the future.

This is a right-continuous filtration; these are sometimes more convenient for

technical reasons.

If E is closed, then inf{t ∈ B(t) ∈ E} is in F0(t).

If U is open, then inf{t ∈ B(t) ∈ U} is in F+(t), but need not be in F0(t).



Proposition 4.1 (Markov property). For every t ≥ 0 the process

{B(t + s)− B(t)}s≥0

is standard Brownian motion independent of F0(t) and F+(t).

It is evident from independence of increments that {B(t+s)−B(t)}s≥0 is stan-

dard Brownian motion independent of F0(t). That this process is independent

of F+(t) follows from continuity.



Corollary 4.2. The process {B(t), t > 0} is independent of the σ-algebra

F+(0)

Theorem 4.3. (Blumenthal’s 0-1 law) Let A ∈ F+(0). Then P(A) ∈ {0, 1}.

Proof. Using the corollary above, for any A ∈ σ(B(t) : t > 0) is independent

of F+(0). But F+(0) ⊂ σ(B(t) : t > 0), so A is independent of itself, i.e.,

P(A) = P(A ∩ A) = P(A)2 and hence has probability zero or one. �



We can use this to give another proof of something we proved earlier:

Corollary 4.4. Let τ = inf{t > 0 : B(t) > 0} and σ = inf{t > 0 : B(t) <

0}. Then P(τ = 0) = P(σ = 0) = 1.

Proof. The event

{τ = 0} =
⋂

n

{∃ 0 < ǫ < 1/n with B(ǫ) > 0}.

is clearly in F+(0). Thus it suffices to show this event has positive probability.

But for t > 0, then P(τ < t) > P(B(t) > 0) = 1/2. Hence P(τ = 0) = 1.

The argument works replacing B(t) > 0 by B(t) < 0 to show P(σ = 0) = 1. �



A random variable τ is a stopping time for a Brownian filtration {F(t)}t≥0

if {τ ≤ t} ∈ F(t) for all t. For any random time τ we define the pre-τ σ-field

F(τ ) := {A : ∀t, A ∩ {τ ≤ t} ∈ F(t)}.

Roughly speaking, we stop a Brownian motion at time t based behavior up to

time t.



A simple example of a stopping time is the time when a Brownian motion first

enters a closed set. More generally, if A is a Borel set then the hitting time τA

is a stopping time.



Theorem 4.5. Suppose that τ is a stopping time for the Brownian filtration

{F(t)}t≥0. Then {B(τ + s)−B(τ )}s≥0 is Brownian motion independent of

F(τ ).

Sketch of Proof. Suppose first that τ is an integer valued stopping time with

respect to a Brownian filtration {F(t)}t≥0. For each integer j the event {τ = j}
is in F(j) and the process {B(t+ j)−B(j)}t≥0 is independent of F(j), so the

result follows from the Markov property in this special case. It also holds if the

values of τ are integer multiples of some ε > 0, and approximating τ by such

discrete stopping times gives the conclusion in the general case. �



The following is an elementary fact we need below:

Lemma 4.6. Let X, Y, Z be random variables with X, Y independent and

X,Z independent. If Y
d
= Z then (X, Y )

d
= (X,Z).



Theorem 4.7 (Reflection Principle). If τ is a stopping time then

B∗(t) := B(t)1(t≤τ) + (2B(τ )− B(t))1(t>τ)

(Brownian motion reflected at time τ) is also standard Brownian motion.

Proof. The strong Markov property states that {B(τ+t)−B(τ )}t≥0 is Brownian

motion independent of F(τ ), and by symmetry this also holds for

{−(B(τ + t)− B(τ ))}t≥0.

We see from Lemma 4.6 that

({B(t)}0≤t≤τ , {B(t + τ )− B(τ )}t≥0)
d
= ({B(t)}0≤t≤τ , {(B(τ )− B(t + τ ))}t≥0),

and the reflection principle follows immediately. �



Set M(t) = max
0≤s≤t

B(s).

Theorem 4.8. If a > 0, then P [M(t) > a] = 2P [B(t) > a] = P [|B(t)| > a] .

Proof. Set τa = min{t ≥ 0 : B(t) = a} and let {B∗(t)} be Brownian motion

reflected at τa. Then {M(t) > a} is the disjoint union of the events {B(t) > a}
and {M(t) > a,B(t) ≤ a}, and since {M(t) > a,B(t) ≤ a} = {B∗(t) ≥ a}
the desired conclusion follows immediately. �



Lemma 4.9 (Wald’s Lemma for Brownian Motion). Let τ be a stopping time

for Brownian motion in Rd.

(i) E[|Bτ |2] = dE[τ ] (possibly both ∞),

(ii) if E[τ ] <∞, then E[Bτ ] = 0.



Proof. (i) We break the proof of (i) into three steps:

(a) τ is integer valued and bounded,

(b) τ is integer valued and unbounded and

(c) general τ .



(a) Let τ be bounded with integer values. Write

|Bτ |2 =
∞
∑

k=1

(|Bk|2 − |Bk−1|2)1τ≥k.(4.1)

If Zk = Bk − Bk−1 and Ft is the σ-field determined by Brownian motion in

[0, t], then

E[|Bk|2 − |Bk−1|2|Fk−1] = E[|Zk|2 + 2Bk−1 · Zk|Fk−1] = d.

The expectation of |Zk|2 is d, since Zk is Brownian motion run for time 1. Given

the conditioning, Bk−1 is constant and Zk has mean zero, so their product has

zero expectation. Since the event {k ≤ τ} is Fk−1 measurable, we deduce that

E[(|Bk|2 − |Bk−1|2)1k≤τ ] = dP(k ≤ τ ). Therefore by (4.1),

E(|Bτ |2) = d

∞
∑

k=1

P(k ≤ τ ) = dE(τ ).



(b) Next, suppose that τ is integer valued but unbounded. Applying (4.1) to

τ ∧ n and letting n→ ∞ yields E|Bτ |2 ≤ dEτ by Fatou’s Lemma.

On the other hand, the strong Markov property yields independence of Bτ∧n
and Bτ − Bτ∧n, which implies that E(|Bτ |2) ≥ dE(τ ∧ n). Letting n → ∞
proves (4.1 ) in this case. By scaling, (4.1) also holds if τ takes values that are

multiples of a fixed ǫ.



(c) Now suppose just that Eτ < ∞ and write τℓ := 2−ℓ⌈τ2ℓ⌉. Then (4.1)

holds for the stopping times τℓ, which decrease to τ as ℓ → ∞. Since we have

0 ≤ τℓ− τ ≤ 2−ℓ and E[|B(τℓ)−B(τ )|2] ≤ 2−ℓ by the strong Markov property,

(4.1) follows.



(ii) We also break the proof of (ii) into the integer-valued and general cases.

(a) Suppose τ is integer valued and has finite expectation. Then

Bτ =

∞
∑

k=1

(Bk − Bk−1)1τ≥k.

The terms in the sum are orthogonal in L2 (with respect to the Wiener measure),

and the second moment of the kth term is dP(τ ≥ k).

The second moment of the sum is the sum of the second moments:

E[B2
τ ] = d

∞
∑

k=1

P(τ ≥ k) = d
∞
∑

j=1

j P(τ = j) = dE[τ ] <∞.



Thus

E[Bτ ] =

∞
∑

k=1

E[(Bk − Bk−1)1τ≥k],

since taking the expectation of an L2 function is just taking the inner product

with the constant 1 function, and this is continuous with respect to conver-

gence in L2. Finally, every term on the right-hand side is 0 by independence of

increments.



(b) We apply Lebesgue dominated convergence to deduce the general case.

Suppose τ is any stopping time with finite expectation and define τℓ := 2−ℓ⌈2ℓτ⌉.
Note that B(τℓ) → B(τ ) almost surely; thus we just want to show this sequence

is dominated in L1. Define

Y = max{|B(τ + s)− B(τ1)| : 0 ≤ s ≤ 1}
and note that

Y ≤ 2max{|B(τ + s)− B(τ )| : 0 ≤ s ≤ 1},
by the triangle inequality.

The right-hand side is in L2 (hence L1) since we earlier showed the maximum

process has the same distribution as |Bt|. Moreover |B(τℓ)| ≤ |B(τ1)| + Y , for

every ℓ, so the sequence {B(τℓ)}ℓ≥1 is dominated by a single L1 function. Thus

E[B(τ )] = limℓE[B(τℓ)] and the limit is zero by part (a). �



5. Area of 2-dimensional Brownian motion



Lemma 5.1. If A1, A2 ⊂ R2 are Borel sets with positive area, then

L2({x ∈ R2 : L2(A1 ∩ (A2 + x)) > 0}) > 0.

Proof.We may assume A1 and A2 are bounded. By Fubini’s Theorem,
∫

R2
1A1 ∗ 1−A2(x) dx =

∫

R2

∫

R2
1A1(w)1A2(w − x) dw dx

=

∫

R2
1A1(w)

(∫

R2
1A2(w − x) dx

)

dw

= L2(A1)L2(A2)

> 0.

Thus 1A1 ∗ 1−A2(x) > 0 on a set of positive area. But 1A1 ∗ 1−A2(x) is exactly

the area of A1 ∩ (A2 + x), so this proves the Lemma. �



Theorem 5.2. Almost surely L2(B[0, 1]) = 0.

Proof. Let X denote the area of B[0, 1], and M be its expected value. First we

check that M <∞. If a ≥ 1 then

P[X > a] ≤ 2P[|W (t)| > √
a/2 for some t ∈ [0, 1] ] ≤ 8e−a/8

where W is standard one-dimensional Brownian motion. Thus

M =

∫ ∞

0

P[X > a] da ≤ 8

∫ ∞

0

e−a/8 da + 1 <∞.

Thus the area is finite, almost surely.



Note that B(3t) and
√
3B(t) have the same distribution, and hence

EL2(B[0, 3]) = 3EL2(B[0, 1]) = 3M.

Note that we have

L2(B[0, 3]) ≤
2
∑

j=0

L2(B[j, j + 1])

with equality if and only if for 0 ≤ i < j ≤ 2 we have

L2(B[i, i + 1] ∩ B[j, j + 1]) = 0.



On the other hand, for j = 0, 1, 2, we have EL2(B[j, j + 1]) =M and

3M = EL2(B[0, 3]) ≤
2
∑

j=0

EL2(B[j, j + 1]) = 3M,

whence the intersection of any two of the B[j, j + 1] has measure zero almost

surely. In particular, L2(B[0, 1] ∩ B[2, 3]) = 0 almost surely.



For x ∈ R2, let R(x) denote the area of B[0, 1] ∩ (x + B[2, 3]− B(2) + B(1)).

If we condition on the values of B[0, 1], B[2, 3]−B(2), then in order to evaluate

the expected value of L2(B[0, 1] ∩ B[2, 3]) we should integrate R(x) where x

has the distribution of B(2)− B(1). Thus

0 = E[L2(B[0, 1] ∩B[2, 3])] = (2π)−1

∫

R2
e−|x|2/2E[R(x)] dx,

where we average with respect to the Gaussian distribution of B(2)− B(1).



Thus R(x) = 0 a.s. for L2-almost all x, or, by Fubini’s Theorem, the area of the

set where R(x) is positive is a.s. zero. From the lemma we get that a.s.

L2(B[0, 1]) = 0 or L2(B[2, 3]) = 0.

The observation that L2(B[0, 1]) and L2(B[2, 3]) are identically distributed and

independent completes the proof that L2(B[0, 1]) = 0 almost surely. �

This also follows from the fact that Brownian motion has probability zero of

hitting a given point (other than its starting point), a fact we will prove using

potential theory later.



6. The Law of the Iterated Logarithm



Theorem 6.1 (The Law of the Iterated Logarithm). For ψ(t) =
√
2t log log t

lim sup
t→∞

B(t)

ψ(t)
= 1 a.s.

By symmetry it follows that

lim inf
t→∞

B(t)

ψ(t)
= −1 a.s.

Khinchin (1924) proved the Law of the Iterated Logarithm for simple random

walks, Kolmogorov (1929) for other walks, and Lévy for Brownian motion. The

proof for general random walks is much simpler through Brownian motion than

directly.
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Proof. The main idea is to first consider a geometric sequence of times, and later

“fill in” between these times.

We start by proving the upper bound. Fix ǫ > 0 and q > 1. Let

An =

{

max
0≤t≤qn

B(t) ≥ (1 + ǫ)ψ(qn)

}

.

By Theorem 4.8 the maximum of Brownian motion up to a fixed time t has the

same distribution as |B(t)|. Therefore

P(An) = P [|B(qn)| ≥ (1 + ǫ)ψ(qn)]

= P

[|B(qn)|√
qn

≥ (1 + ǫ)ψ(qn)√
qn

]



We use the estimate for a standard normal random variable (Lemma 1.3)

P(Z > x) ≤ e−x
2/2

for x > 1 to conclude that for large n ( recall ψ(t) =
√
2t log log t):

P(An) ≤ 2 exp
(

−(1 + ǫ)2 log log qn
)

=
2

(n log q)(1+ǫ)2
,

which is summable in n.

Since
∑

n P(An) <∞, by the Borel–Cantelli Lemma, only finitely many of these

events occur. So for all large enough n, |B(qn)| ≥ (1 + ǫ)ψ(qn).

This is the LIL upper bound for times qn. Next we consider t ∈ [qn−1, qn].



For large t choose n so that qn−1 ≤ t < qn. We have

B(t)

ψ(t)
=
B(t)

ψ(qn)

ψ(qn)

ψ(t)
≤ B(t)

ψ(qn)

ψ(qn)

ψ(qn−1)
≤ (1 + ǫ)q.

Thus

lim sup
t→∞

B(t)

ψ(t)
≤ (1 + ǫ)q a.s.

Since this holds for any ǫ > 0 and q > 1 we have proved that

lim sup
t→∞

B(t)

ψ(t)
≤ 1.

This is the upper bound in the LIL.



For the lower bound, fix q > 1. In order to use the Borel–Cantelli lemma in the

other direction, we need to create a sequence of independent events.

[Borel–Cantelli, part 2:]

If {Ai} are pairwise independent, and
∑∞

i=0 P(Ai) = ∞, then

P(Ai i.o.) = 1. where “i.o.” abbreviates “infinitely often”.



Let

Dn =
{

B(qn)− B(qn−1) ≥ ψ(qn − qn−1)
}

.

We will now use Lemma 1.3 for large x:

P(Z > x) ≥ ce−x
2/2

x
.

Using this estimate with x = ψ(qn − qn−1)/
√

qn − qn−1 we get

P(Dn) = P

(

Z ≥ ψ(qn − qn−1)
√

qn − qn−1

)

≥ c
exp(− log log(qn − qn−1))
√

2log log(qn − qn−1)

≥ c exp(− log(n log q))
√

2 log(n log q)
>

c′

n log n
.



Thus
∑

n P(Dn) = ∞. Hence Dn happens infinitely often with probability 1.

Thus for infinitely many n

B(qn) ≥ B(qn−1) + ψ(qn − qn−1) ≥ −2ψ(qn−1) + ψ(qn − qn−1),

where the second inequality follows from applying the previously proven upper

bound to −B(qn−1).



We claim that that for infinitely many n

(6.1)
B(qn)

ψ(qn)
≥ −2ψ(qn−1) + ψ(qn − qn−1)

ψ(qn)
≥ −2√

q
+
qn − qn−1

qn
.

To obtain the second inequality first note that

ψ(qn−1)

ψ(qn)
=
ψ(qn−1)
√

qn−1

√
qn

ψ(qn)

1√
q
≤ 1√

q

since ψ(t)/
√
t is increasing in t for large t.



For the second term we just use the fact that ψ(t)/t is decreasing in t. Since

qn − qn−1 < qn this implies

ψ(qn − qn−1)

qn − qn−1
≥ ψ(qn)

qn

ψ(qn − qn−1)

ψ(qn)
≤ qn − qn−1

qn
.

Now (6.1) implies that

lim sup
t→∞

B(t)

ψ(t)
≥ − 2√

q
+ 1− 1

q
a.s..(6.2)

Letting q ↑ ∞ concludes the proof of the lower bound. �



Corollary 6.2. If {λn} is a sequence of random times (not necessarily

stopping times) satisfying λn → ∞ and λn+1/λn → 1 almost surely, then

lim sup
n→∞

B(λn)

ψ(λn)
= 1 a.s.

Furthermore, if λn/n→ a > 0 almost surely, then

lim sup
n→∞

B(λn)

ψ(an)
= 1 a.s.



Proof. The upper bound follows from the upper bound for continuous time.

To prove the lower bound, we might run into the problem that λn and qn may

not be close for large n; we have to exclude the possibility that λn is a sequence

of times where the value of Brownian motion is too small.

To get around this problem recall in previous proof we set

Dk =
{

B(qk)− B(qk−1) ≥ ψ(qk − qk−1)
}

. Now define

D∗
k = Dk ∩

{

min
qk≤t≤qk+1

B(t)−B(qk) ≥ −
√

qk
}

def
= Dk ∩ Ωk.

Note that Dk and Ωk are independent events since the depend on disjoint time

intervals.



By Brownian scaling, P(Ωk) = cq > 0 does not depend on k.

By independence, P(D∗
k) = cqP(Dk), so the sum of these probabilities is infinite.

The events {D∗
2k} are independent (disjoint time intervals), so by the Borel–

Cantelli lemma, for infinitely many (even) k,

min
qk≤t≤qk+1

B(t) ≥ B(qk)−
√

qk

≥ ψ(qk)

(

1− 1

q
− 2√

q

)

−
√

qk.

Here we have used (6.2).



Now define n(k) = min{n : λn > qk}. Since the ratios λn+1/λn tend to 1, it

follows that qk ≤ λn(k) < qk+1 for all large k. Thus for infinitely many k

B(λn(k))

ψ(λn(k))
≥ ψ(qk)

ψ(λn(k))

[

1− 1

q
− 2√

q

]

−
√

qk

ψ(λn(k))
.

Note that as k ր ∞,

qk/λn(k)) → 1, ψ(qk)/ψ(λn(k))) → 1,
√

qk/ψ(qk) → 0.

Thus

lim sup
n→∞

B(λn)

ψ(λn)
≥ 1− 1

q
− 2√

q
.

Since the left-hand side does not depend on q, we are done.

For the last part, note that if λn/n→ a > 0 then ψ(λn)/ψ(an) → 1. �



Corollary 6.3. If {Sn} is a simple random walk on Z, then almost surely

lim sup
n→∞

Sn
ψ(n)

= 1.

Proof. Set

λ0 = 0, λn = min{t > λn−1 : |B(t)− B(λn−1)| = 1}.
The waiting times {λn − λn−1} are i.i.d. random variables with mean 1; see

Wald’s lemma.

By the Markov property, P[λ1 > k] ≤ P[|B(1)| < 2]k for every positive integer

k, so λ1 has finite variance. By the Law of Large Numbers λn/n will converge

to 1, and the corollary follows. �



Theorem 6.4 (Strong Law of Large Numbers). Let (X, dν) be a probabil-

ity space and {fn}, n = 1, 2 . . . a sequence of orthogonal functions in

L2(X, dν). Suppose E(f 2n) =
∫

|fn|2 dν ≤ 1, for all n. Then

1

n
Sn =

1

n

n
∑

k=1

fk → 0,

a.e. (with respect to ν) as n→ ∞.
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By 1915 Hausdorff had proved that if {fn} are independent and satisfy
∫

fndν =

0 and
∫

f 2n dν = 1, then

lim
N→∞

1

N
1
2+ǫ

N
∑

n=0

fn(x) = 0 for a.e. x

and for every ǫ > 0.

After that Hardy–Littlewood, and independently Khinchin, proved

lim
N→∞

1√
N logN

N
∑

n=0

fn(x) = 0 for a.e. x.

The “final” result, found by Khinchin for a special case in 1928 and proved in

general by Hartman–Wintner says

lim sup
N→∞

1√
2N log logN

N
∑

n=0

fn(x) = 1 for a.e. x.



Proof of SLLN.We begin with the simple observation that if {gn} is a sequence
of functions on a probability space (X, dν) such that

∑

n

∫

|gn|2 dν <∞,

then
∑

n |gn|2 <∞ ν-a.e. and hence gn → 0 ν-a.e.



Using this, it is easy to verify the Strong Law of Large Numbers (LLN) for

n→ ∞ along the sequence of squares.

The functions {fn} are orthogonal, so
∫ (

1

n
Sn

)2

dν =
1

n2

∫

|Sn|2dν =
1

n2

n
∑

k=1

∫

|fk|2 dν ≤ 1

n
.

Thus if we set gn =
1
n2
Sn2, we have

∫

g2n dν ≤ 1

n2
.

This is summable, so the previous observation implies gn = n−2Sn2 → 0 ν-a.e.



For the limit over all positive integers, suppose that m2 ≤ n < (m+ 1)2. Then

∫

| 1
m2

Sn −
1

m2
Sm2|2 dν =

1

m4

∫

|
n
∑

k=m2+1

fk|2 dν

=
1

m4

∫ n
∑

k=m2+1

|fk|2 dν

≤ 2

m3
,

since the sum has at most 2m terms, each of size at most 1.



Set m(n) = ⌊√n⌋ and
hn =

Sn
m(n)2

−
Sm(n)2

m(n)2
.

Now each integer m equals m(n) for at most 2m + 1 different choices of n.

Therefore,

∞
∑

n=1

∫

|hn|2 dµ ≤
∞
∑

n=1

2

m(n)3
≤
∑

m

(2m + 1)
2

m3
<∞,

so by the initial observation, hn → 0 a.e. with respect to ν. This yields that
1

m(n)2
Sn → 0 a.e.

But m(n)2 ≤ n, so 1
nSn → 0 a.e., as claimed. �



7. Solving the Dirichlet problem with Brownian motion



Definition 1. Let D ⊂ Rd be a domain. We say that D satisfies the

Poincaré cone condition if for each point x ∈ ∂D there exists a cone

Cx(α, h) of height h(x) and angle α(x) such that Cx(α, h) ⊂ Dc and Cx(α, h)

is based at x.



Proposition 7.1 (Dirichlet Problem). Suppose D ⊂ Rd is a bounded domain

with boundary ∂D, such that D satisfies the Poincaré cone condition, and

f is a continuous function on ∂D. Then there exists a unique function u

that is harmonic on D, continuous on D and satisfies u(x) = f (x) for all

x ∈ ∂D.



Proof. The uniqueness claim follows from the maximum principle for harmonic

functions.

To prove existence, let W be a Brownian motion in Rd and define

u(x) = Exf (Wτ∂D), where τA = inf{t ≥ 0 : Wt ∈ A}
for any Borel set A ⊂ Rd.

For a ball B(x, r) ⊂ D, the strong Markov property implies that

u(x) = Ex[Ex[f (Wτ∂D)|FτS(x,r)]] = Ex[u(WτS(x,r))] =

∫

S(x,r)

u(y)d µr,

where µr is the uniform distribution on the sphere S(x, r). Therefore, u has the

mean value property and so it is harmonic on D.



It remains to be shown that the Poincaré cone condition implies

lim
x→z,x∈D

u(x) = f (z) for all z ∈ ∂D.

Fix z ∈ ∂D, then there is a cone with height h > 0 and angle α > 0 in Dc

based at z. Let

φ = sup
x∈B(0,12)

Px[τS(0,1) < τC0(α,1)].

Then φ < 1.



Note that if x ∈ B(0, 2−k) then by the strong Markov property:

Px[τS(0,1) < τC0(α,1)] ≤
k−1
∏

i=0

sup
x∈B(0,2−k+i)

Px[τS(0,2−k+i+1) < τC0(α,2−k+i+1)] = φk.

Therefore, for any positive integer k, we have

Px[τS(z,h) < τCz(α,h)] ≤ φk

for all x with |x− z| < 2−kh.



Given ǫ > 0, there is a 0 < δ ≤ h such that |f (y) − f (z)| < ǫ for all y ∈ ∂D

with |y − z| < δ. For all x ∈ D̄ with |z − x| < 2−kδ,

(7.1) |u(x)− u(z)| = |Exf (Wτ∂D)− f (z)| ≤ Ex|f (Wτ∂D)− f (z)|.

If the Brownian motion hits the cone Cz(α, δ), which is outside the domain D,

before it hits the sphere S(z, δ), then |z −Wτ∂D| < δ, and f (Wτ∂D) is close to

f (z). The complement has small probability. More precisely, (7.1) is bounded

above by

2‖f‖∞Px{τS(z,δ) < τCz(α,δ)} + ǫPx{τ∂D < τS(z,δ)} ≤ 2‖f‖∞φk + ǫ.

Hence u is continuous on D̄. �



8. 2-dimensional Brownian motion is recurrent



Given x ∈ R2, 1 ≤ |x| ≤ R, we know that

Px[τS(0,R) < τS(0,1)] = a + b log |x|.
The left-hand side is clearly a function of |x|, and it is a harmonic function of x

for 1 < |x| < R by averaging over a small sphere surrounding x.

Setting |x| = 1 implies a = 0, and |x| = R implies b = 1
logR. It follows that

Px[τS(0,R) < τS(0,1)] =
log |x|
logR

.

By scaling, for 0 < r < R and r ≤ |x| ≤ R,

(8.1) Px[τS(0,R) < τS(0,r)] =
log |x|

r

log R
r

.



Definition 2. A set A is polar for a Markov process X if for all x we

have

Px[Xt ∈ A for some t > 0] = 0.

The image of (δ,∞) under Brownian motion W is the random set

W (δ,∞)
def
=

⋃

δ<t<∞
{Wt}.



Proposition 8.1. Points are polar for a planar Brownian motion W , that

is, for all z ∈ R2 we have P0{z ∈ W (0,∞)} = 0.

Proof. Take z 6= 0 and 0 < ǫ < |z| < R,

P0{τS(z,R) < τS(z,ǫ)} =
log |z|

ǫ

log R
ǫ

.

Let ǫ→ 0+,

P0{τS(z,R) < τ{z}} = lim
ǫ→0+

P0{τS(z,R) < τS(z,ǫ)} = 1,

and then

P0{τS(z,R) < τ{z} for all integers R > |z|} = 1.



It follows that

P0{z ∈ W (0,∞)} = P0{τ{z} <∞} = 0.

Let f (z) = Pz(0 ∈ W (0,∞)). Given δ > 0, by the Markov property

P0{0 ∈ W (δ,∞)} = E0[f (Wδ)] = 0.

Finally, f (0) = P(
⋃∞
n=1{0 ∈ W (1n,∞)}) = 0. Hence any fixed single point is a

polar set for a planar Brownian motion. �



Corollary 8.2. Almost surely, a Brownian path has zero area.

Proof. The expected area E0[L2(W (0,∞))] of planar Brownian motion is

E0[

∫

R2
I{z∈W (0,∞)} dz] =

∫

R2
P0{z ∈ W (0,∞)} dz = 0,

where the first equality is by Fubini’s Theorem, the second from the previous

theorem. So almost surely, the image of a planar Brownian motion is a set with

zero Lebesgue measure. �



Proposition 8.3. Planar Brownian motion W is neighborhood recurrent.

In other words,

P0{W (0,∞) is dense in R2} = 1.

Proof. Note that lim supt→∞ |Wt| = ∞, so for all z ∈ R2 and ǫ > 0,

P0{τB(z,ǫ) = ∞} = lim
R→∞

P0{τS(z,R) < τB(z,ǫ)} = 0.

Summing over all rational z and ǫ completes the proof. �



Evan’s theorem says that X ⊂ R2 is a Gδ with zero capacity iff it supports a

measure µ whose potential Uµ tends to infinity everywhere on X .

G.C. Evans. Potentials and positively infinite singularities of harmonic func-

tions. Monatshefte für Math. u. Phys., 43: 419–424, 1936.

Using this, we can mimic the proof that a point is never hit by Brownian mo-

tion to show that a set of zero capacity is never hit: evaluating the expected

value of the potential function along Brownian paths gives a finite value, so the

probability of visit the set where the potential is infinite is zero.

A recent generalization of Even’s theorem is given in

On Evans’ and Choquet’s theorems for polar sets by Hansen and Netuka.

https://arxiv.org/pdf/2002.08091.pdf




Lemma 8.4. Define

a = Px(Brownian motion W hits S(0, r) before S(0, R)),

where r < |x| < R. Then

(8.2) a =
(r/|x|)d−2 − (r/R)d−2

1− (r/R)d−2
.

Proof. The given function in harmonic in the annulus, equals 1 on the inner

boundary and equals 0 on the outer boundary. �



In R2 a Brownian motion started on {|z| = 2n} is equally likely to firs hit

{|z| = 2n−1} or {|z| = 2n+1}.

In R3 a Brownian motion started on {|z| = 2n} hits {|z| = 2n−1} with proba-

bility 1/3 and hits {|z| = 2n+1} with probability 2/3.

The corresponding random walk on powers of two has positive mean, so by the

strong law of large numbers, Brownian motion in R3 tends to ∞.



Proposition 8.5. Brownian motion W in dimension d ≥ 3 is transient,

i.e., limt→∞ |W (t)| = ∞.

Kakutani is credited with summarizing this by saying “A drunk man will find

his way home, but a drunk bird may get lost forever.”



9. 2-dimensional Brownian motion is conformally invariant



In R3 the conformal image of a Brownian motion is not Brownian motion.

In R3 Brownian motion tends to ∞ almost surely.

Reflection through a sphere is conformal, but maps Brownian motion to a process

that converges to the center of the sphere. This image can’t be Brownian motion.

Alternatively, reflect {12 < |z| < 2} through the unit sphere. Harmonic measures

w.r.t z = (1, 0, 0) of the two boundaries are not preserved since they are not

equal.



If u is harmonic on U and f : V → U is conformal, then u ◦ f is harmonic on

V . In fact, conformal and anti-conformal maps are the only homeomorphisms

with this property.

Since the hitting distribution of Brownian motion solves the Dirichlet problem

on both domains, it is easy to verify that, assuming f extends continuously

to ∂V , it maps the Brownian hitting distribution on ∂V (known as harmonic

measure) to the harmonic measure on ∂U .



Does f take individual Brownian paths in V to Brownian paths in U? This is

not quite correct: if f (z) = 2z, then f (B(t)) leaves a disk of radius 2 in the

same expected time that B(t) leaves a disk of radius 1, so f (B(t)) is “too fast”

to be Brownian motion. However, it is Brownian motion up to a time change.



What does this mean? Suppose f : V → U is conformal and suppose 0 ∈ V .

For a Brownian path started at 0 let τ be the first hitting time on ∂V . For

0 ≤ t < τ , define

(9.1) ϕ(t) =

∫ t

0

|f ′(B(t))|2 dt .

Why does the integral makes sense? For 0 ≤ t < τ , we know that B([0, t])

is a compact subset of V and that |f ′| is a continuous function that is bounded

above and below on this compact set. Thus the integrand above is a bounded

continuous function. Therefore ϕ(t) is continuous and strictly increasing, and

so ϕ−1(t) is well defined.



We will need the following well known result.

Lemma 9.1. (Kolomogorov’s maximal inequality) Let Xi be independent

with mean zero and finite variance. Write Sn =
∑n

k=1Xi. Then

P[ max
1≤k≤n

|Sk| ≥ h] ≤ VarSn
h2

.

Proof. Let Ak denote the event that k is minimal such that |Sk| ≥ h. Then

since independence implies orthogonality,

ES2
n1Ak ≥ ES2

k1Ak ≥ h2P(Ak).

Now sum over k,

VarSn = ES2
n =

n
∑

k=1

ES2
n1Ak ≥ h2

n
∑

k=1

P(Ak) = h2P[ max
1≤k≤n

|Sk| ≥ h].

�



Theorem 9.2. Suppose that V, U ⊂ C are open sets with 0 ∈ V , the map

f : V → U is conformal and ϕ is defined by (9.1). If B(·) is Brownian

motion in V and τ is the exit time from V , then {X(t) : 0 ≤ t ≤ φ(τ )}
defined by X(t) := f (B(ϕ−1(t))) is a Brownian motion in U started at f (0)

and stopped at ∂U .

Proof. Let Y (t) be Brownian motion in U started at f (0). The idea of the proof

is to show that both X(t) and Y (t) are limits of discrete random walks that

depend on a parameter ǫ, and that as ǫ → 0, the two random walks get closer

and closer, and hence have the same limiting distribution.



Fix a small ǫ > 0, and starting at f (0), sample Y (t) every time it moves distance

ǫ from the previous sample point. We stop when a sample point lands within

2ǫ of ∂U . Since Y (t) is almost surely continuous, it is almost surely the limit of

the linear interpolation of these sampled values.

Because Brownian motion is rotationally invariant, the increment between sam-

ples is uniformly distributed on a circle of radius ǫ. Thus Y (t) is the limit of

the following discrete process: starting at z0 = f (0), choose z1 uniformly on

|z − z0| = ǫ. In general, zn+1 is chosen uniformly on |z − zn| = ǫ.



Now sample X(t) starting at z0, each time it first moves distance ǫ from the

previous sample. We claim that, as above, zn+1 is uniformly distributed on an

ǫ-circle around zn. Note that if D = D(zn, ǫ) ⊂ U , then the probability that

X(t) first hits ∂D in a set E ⊂ ∂D is the same as the probability that B(t)

started at wn = f−1(zn) first hits ∂f
−1(D) in F = f−1(E).

This probability is the solution at wn of the Dirichlet problem on f−1(D) with

boundary data 1F .



Since f is conformal, this value is the same as the solution at zn of the Dirich-

let problem on D with boundary data 1E, which is just the normalized angle

measure of E.

Thus the hitting distribution of X(t) on ∂D starting from zn is the uniform

distribution, just as it is for usual Brownian motion, only the time needed for

f (B(t)) to hit ∂D may be different.



How different? The time Tn − Tn−1 between the samples zn−1 and zn for

the Brownian motion Y are i.i.d. random variables with expectation ǫ2/2 and

variance O(ǫ4), (exercise using Wald’s lemma).

So taking tn := nǫ2/2, the time Tn for Y (t) to reach zn satisfies E[|Tn− tn|2] =
O(nǫ4) = O(tnǫ

2). Moreover, by Kolomogorov’s maximal inequality we have

P[ max
1≤k≤n

|Tk − tk| ≥ h] ≤ O(nǫ4/h2) .

This remains true even if we condition on the sequence {zk}.



Next we do the same calculation for the process X(t). Note that we may pick

the points {zn} to be the same for the two processes X and Y without altering

their distributions – this amounts to a coupling of X and Y .

The exit time forX(t) fromD = D(zn, ǫ) is same as the exit time for B(ϕ−1(t))

from f−1(D) starting at the point p = f−1(zn). Since f is conformal, f is close

to linear on a neighborhood of p with estimates that only depend on the distance

of p from ∂V .



Thus for any δ > 0, we can choose ǫ so small (uniformly for all p in any compact

subset of V ) that

D(p,
ǫ

(1 + δ)|f ′(p)|) ⊂ f−1(D) ⊂ D(p,
ǫ(1 + δ)

|f ′(p)| ).

Therefore the expected exit time for the Brownian motion B(·) from f−1(D)

starting at p is bounded above and below by the expected exit times for these

two disks, which are

1

2

(

ǫ

(1 + δ)|f ′(p)|

)2

and
1

2

(

ǫ(1 + δ)

|f ′(p)|

)2

.



As long as B(s) is inside f−1(D), and ǫ is small enough, we have

|f ′(p)|2
(1 + δ)2

≤ |f ′(B(s))|2 ≤ |f ′(p)|2(1 + δ)2.

Therefore ϕ(s) has derivative between these two bounds during this time and

so ϕ−1 has derivative bounded between the reciprocals, i.e.,

1

(1 + δ)2|f ′(p)|2 ≤
d

ds
ϕ−1 ≤ (1 + δ)2

|f ′(p)|2 .

Thus the expected exit time of B ◦ ϕ−1 from f−1(D) is between

ǫ2

2(1 + δ)4
and

ǫ2(1 + δ)4

2
.

The bounds are uniform as long as ǫ is small enough and zn is in a compact

subset of U .



Let Sn denote the time it takes X(·) to reach zn. The random variables Sn −
Sn−1 are not i.i.d., but they are independent given the sequence {zk}, and have

variances O(ǫ4), so

P[ max
1≤k≤n

|Sk − sk| ≥ h| {zk}nk=1] = O(nǫ4/h2) ,

where sn = E(Sn| {zk}nk=1).



We have already proved that

(1 + δ)−4 ≤ sn/tn ≤ (1 + δ)4 ,

so it follows that for n ≤ 2Cǫ−2

P[ max
1≤k≤n

|Sk − Tk| ≥ 5Cδ + 2h | {zk}nk=1] → 0 as ǫ→ 0.

Using the uniform continuity of Brownian motion on [0, C], given any η > 0 we

can choose δ and h sufficiently small so that

P[max
t≤C

|X(t)− Y (t)| ≥ η | {zk}nk=1] → 0

as ǫ→ 0. Since η can be taken arbitrarily small, this coupling implies that X(·)
and Y (·) indeed have the same distribution until the first exit from U . �



The following elegant result is due to Markowsky.

Lemma 9.3. Suppose that f (z) =
∑∞

n=0 anz
n is conformal in D. Then the

expected time for Brownian motion to leave Ω = f (D) starting at f (0) is
1
2

∑∞
n=1 |an|2.

We give two proofs, the first relies on Wald’s Lemma and the second on an

exercise involving Green’s theorem.



Proof 1.We may assume that f (0) = 0 since translating the domain and start-

ing point does not change either the expected exit time or the infinite sum (it

doesn’t include a0). We use the identity

2E[τ ] = E[|Bτ |2],
where τ is a stopping time for a 2-dimensional Brownian motion B (Lemma

4.9). W apply it in the case when B starts at p = f (0) and is stopped when it

hits ∂Ω.



Then the expectation on the right side above is
∫

∂Ω

|z|2 dωp(z),
where ωp is harmonic measure on ∂Ω with respect to p, i.e., the hitting distribu-

tion of Brownian motion started at p. By the conformal invariance of Brownian

motion, we get

E[|Bτ |2] =
1

2π

∫

∂D

|f (z)|2 dθ =
∞
∑

n=1

|an|2.

�



Proof 2. By definition, the expected exit time from Ω for Brownian motion

started at w = f (0) is (writing z = x + iy)
∫∫

Ω

GΩ(z, w)dxdy.

By the conformal invariance of Green’s functions, this is the same as
∫∫

D

GD(z, 0)|f ′(z)|2dxdy.

The Green’s function for the disk is GD(z, 0) =
1
π log |z|−1 (we leave this as an

exercise), so this formula becomes
1

π

∫∫

D

|f ′(z)|2 log 1

|z|dxdy.



This can be evaluated using the identities (writing z = eiθ),
∫ 2π

0

|
∑

cnz
n|2 dθ =

∫ 2π

0

(

∑

cnz
n
)(

∑

cnzn
)

dθ = 2π
∑

|cn|2,
and

∫ x

0

tm log t dt = xm+1

(

log x

m + 1
− 1

(m + 1)2

)

, m 6= −1,

as follows:
1

π

∫∫

D

log
1

|z||f
′(z)|2dxdy =

1

π

∫ 2π

0

∫ 1

0

log
1

r
|f ′(reiθ)|2r drdθ

= 2

∞
∑

n=1

n2|an|2
∫ 1

0

r2n−1 log
1

r
dr

= 2

∞
∑

n=1

n2|an|2
[

−r2n
(

log r

2n
− 1

(2n)2

)]1

0

= 2

∞
∑

n=1

n2|an|2
1

4n2

=
1

2

∞
∑

n=1

|an|2. �(9.2)



Corollary 9.4. Among all simply connected domains with area π and con-

taining 0, Brownian motion started at 0 has the largest expected exit time

for the unit disk.

Proof. If f : D → Ω is conformal, then

π = area(Ω) =

∫∫

D

|f ′(z)|2dxdy

=

∫ 2π

0

∫ 1

0

|
∞
∑

n=1

nanr
n−1ei(n−1)θ|2r drdθ

= 2π

∫ 1

0

∞
∑

n=1

n2|an|2r2n−1 dr

= π
∞
∑

n=1

n|an|2 ≥ π
∞
∑

n=1

|an|2 .

By Lemma 9.3 the expected exit time is ≤ 1
2 with equality if and only if |a1| = 1,

an = 0 for n ≥ 2, so the disk is optimal. �



The expected time for a 1-dimensional Brownian motion started at zero to leave

[−1, 1] is 1 (this was calculated earlier using Wald’s lemma and is the same as the

time for a 2-dimensional path to leave the infinite strip S = {x+ iy : |y| < 1}.

This strip is the image of the unit disk under the conformal map

f (z) =
2

π
log

1 + z

1− z
since the linear fractional map (1 + z)/(1− z) maps the disk to the right half-

plane and the logarithm carries the half-plane to the strip {|y| ≤ π/2}.



Since

f (z) =
2

π
[log(1 + z)− log(1− z)] =

4

π

(

z +
1

3
z3 +

1

5
z5 + · · ·

)

,

the expected time a Brownian motion spends in S is

1 =
1

2

(

4

π

)2(

1 +
1

9
+

1

25
+ · · ·

)

,

so
π2

8
=

(

1 +
1

9
+

1

25
+ · · ·

)

.



From this we can deduce

ζ(2) = 1 +
1

4
+
1

9
+

1

16
+ · · ·

= (1 +
1

9
+

1

25
+ · · · ) + (

1

4
+

1

16
+

1

36
+ · · · )

=
π2

8
+

1

4
ζ(2)

which implies ζ(2) = π2/6.
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