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1. Dyadic Martingales



A filtration is a increasing sequence of σ-algebras {Fn}.

Example: Fn generated by nth generation dyadic intervals in [0, 1].

A martingale with respect to a filtration is a sequence of functions {Mn} so that

Mn is Fn measurable and E(Mn+1|Fn) =Mn.

Brownian motion stopped at time n.

A simple random walk on Z.



An atom of a σ-field is an element with no non-empty subset in the field.

Every finite σ-field has a finite number N of atoms and has 2N elements.

A filtration {Fn} is called dyadic of for all n, Fn contains 2
n atoms and each of

these is a union of two atoms in Fn+1.

If {Mn} is an {Fn}-martingale, and {Fm} is dyadic with P(A) = 2−n for every

atom A, then {Mn} is a dyadic martingale.



A dyadic martingale Mn on [0, 1] is constant on each nth generation dyadic

interval. The average of Mn+1 over the two children of I is equal to Mn on I .

Example: average of a L1 function over dyadics.

Example: average of a measure over dyadics.

Example: Simple random walk.



A stopping time τ with respect to Fn is a function with values in N ∪ {∞} so

that {τ ≤ n} ⊂ Fn for all n.

Less precisely, we can decide if τ (x) ≤ n by only checking if x is contained in

certain elements of Fn.



Recall a ∧ b = min(a, b).

Lemma 1.1. (Easy Optimal Stopping) If {Mn} is a martingale for Fn,

then

(a) {Mτ∧n} is also a martingale

(b) EMτ∧n = EM0.

Proof. (a)

E[Mτ∧(n+1) −Mτ∧n|Fn] = E[(Mn+1 −Mn)1τ>n|Fn]

= 1τ>n|E[(Mn+1 −Mn)|Fn]

= 0

(b) Since EMτ∧(n+1)|Fn = Mτ∧n almost everywhere, taking expectations of

both sides gives EMτ∧(n+1) = EMτ∧n . �



The martingale increment is defined as

∆n+1 =Mn+1 −Mn.

The conditional variance for n ≥ 1 is

Var(∆n) = σ2n = E[∆2
n|Fn−1]

This is just the L2 norm squared.

∆n is constant on atoms of Fn, but |∆n| is constant on atoms of Fn−1.



The square function is

Sn =

n
∑

k=1

σ2k.

Sn is predictable for {Fn}, i.e., is Fn−1-measurable.

Let S∞ = limn Sn (may be = +∞ at some points).



Theorem 1.2. Let {Mn} be a martingale with increments {∆n}.
(a) Almost everywhere on the set {limn Sn < ∞} the limit of Mn exists

and is finite.

(b) If supn |∆n| ≤ C < ∞, then almost everywhere on {limn Sn = ∞} we

have lim supnMn = +∞ and lim infnMn = −∞ and

Corollary 1.3. If supn |∆n| ≤ C <∞, then lim infMn <∞ a.e..

Corollary 1.4. If
∑

a2n <∞ then
∑

ǫnan <∞ a.e. ǫn ∈ {±1}N.
Otherwise the sum diverges almost surely.

To prove theorem we need some preliminary results.



Lemma 1.5. For a {Fn}-martingale {Mn} with M0 = 0, if Sn ∈ L1 for all

n, then the process Zn =M 2
n − Sn is an {Fn}-martingale.

Proof.

E[M 2
n+1 −M 2

n|Fn] = E[(Mn +∆n+1)
2 −M 2

n|Fn]

= E[2∆n+1Mn −∆2
n+1|Fn]

= E[∆2
n+1|Fn]

= σ2n+1.

Thus

E[Zn+1 − Zn|Fn] = E[M 2
n+1 − Sn+1 − (M 2

n − Sn)|Fn]

= σ2n+1 − (Sn+1 − Sn)

= 0.

�



Lemma 1.6. (Doob’s maximal inequality on L2) For a {Fn}-martingale

{Mk}nk=0, write

M ∗
k = max

0≤k≤n
|Mk −M0|.

Then for λ > 0

P(M ∗
n ≤ λ) ≤ λ−2

E[(Mn −M0)
2].

Proof.Without loss of generality we may assume M0 = 0.

Fix n and define the stopping time

γ = γλ,n = inf{k ≥ 1 : |Mk −M0| ≥ λ} ∧ n,
(let γ = n if the set in the infimum is empty). Then

λ2P(M ∗
n ≥ λ) ≤ E(|Mγ −M0|21M∗

n≥λ) ≤ E|Mγ −M0|2.



Next we claim thatMn−Mγ andMγ−M0 are orthogonal. First for all k ∈ [0, n],

E(Mn −Mγ)1γ=k(Mγ −M0)|Fk] = 0.

Since γ ≤ n, we have ∪nk=0{γ = k} is the whole space. Thus summing the

equality over k gives

E[(Mn −Mγ)(Mγ −M0)] = 0.

Thus

E[(Mn −M0)
2] = E[(Mn −Mγ)

2] + E[(Mγ −M0)
2].

and so

E[(Mn −M0)
2] ≥ E[(Mγ −M0)

2] ≥ λ2P(M ∗
n ≥ λ).

�



Proposition 1.7. (Martingales bounded in L2 converge almost surely) If

{Mn}∞n=0 is a {Fn}-martingale V∞ = supnEM
2
n < ∞, then limnMn exists

and is finite almost surely.

Proof. Note that

E[M 2
n] = E[(Mn −Mn−1)

2 + · · · + E[(M1 −M0)]
2 + E[M 2

0 ]

is non-decreasing. Given ǫ, δ > 0 there exists ℓ so that

V∞ − EM 2
ℓ ≤ ǫ2δ.

For each n ≥ 1 applying Doob’s maximal inequality to {Mℓ+n}nk=0 gives

P[ max
0≤k≤n

|Mℓ+k −Mℓ| ≥ ǫ] ≤ (ǫ2δ)/ǫ2 = δ.



These events increase with n so

P[sup
k≥0

|Mℓ+k −Mℓ| ≥ ǫ] ≤ δ.

Thus for every ǫ > 0

P[lim supMn − lim infMn ≥ 2ǫ| ≥ 2δ.

Since this holds for all δ > 0, we have

P[lim supMn − lim infMn ≥ 2ǫ] = 0.

Taking ǫց 0 shows limMn exists almost surely. �



Now we are ready to prove Theorem 1.2, which we restate for convenience

Theorem 1.8. Let {Mn} be a martingale with increments {∆n}.
(a) Almost everywhere on the set {limn Sn < ∞} the limit of Mn exists

and is finite.

(b) If supn |∆n| ≤ C < ∞, then almost everywhere on {limn Sn = ∞} we

have lim supnMn = +∞ and lim infnMn = −∞ and



Proof of part (a):

Proof.We may assume M0 = 0. Given R > 0 define

T = TR = inf{n ≥ 1 : Sn+1 ≥ R}
where we take the infimum of the empty set to be +∞.



Note T is a stopping time since

{T ≤ k} = { max
1≤j≤k+1

Sj ≥ R} ⊂ Fk.

By Lemma 1.5 {M 2
T∧n − ST∧n} is a martingale so

EM 2
T∧n = EST∧n ≤ R.

Thus {MT∧n} is a martingale bounded in L2.

Hence for every R, limnMT∧n exists almost surely. On the set {S∞ < R}
this implies limnMn exists. Taking the limit as R ր ∞ we see limnMn exists

almost surely on {S∞ < R}. �



Proof of part (b):

Proof. As before, we may assume M0 = 0.

Given R,Q > 0 define the stopping time

τ = τR,Q = inf{n ≥ 0 :Mn 6∈ (−R,Q)}.
As before, the infimum over the empty set is +∞.



Recall that C is the upper bound for the L∞ norm of the increments. By Lemma

1.5, the process

Yn = (R + C +Mn) ∗ (Q + C −Mn) + Sn

= (R + C)(Q + C) + (Q−R)Mn − (M 2
n − Sn))

is a {Fn}-martingale.

Since |∆n| ≤ C we have Mτ∧n ∈ (R− C,Q + C). Hence

(R + C +Mn) ∗ (Q + C −Mn) ≥ 0.

The optimal stopping lemma (Lemma 1.1) then gives

(R + C)(Q + C) = E(Y0) = EYτ∧n

= E[(R + C +Mn) ∗ (Q + C −Mn) + Sτ∧n]

≥ ESτ∧n.



Thus

⇒ (R + C)(Q + C) ≥ ESτ ≥ E[S∞ · 1τ=∞]

⇒ P({S∞ = ∞} and {τ = ∞}) = 0

⇒ {S∞ = ∞} ⊂ {τ <∞} almost surely

⇒ P(S∞ = ∞) ≤ P(τ <∞)

Note

0 =M0 = EMτ∧n ≤ (Q + C)P(Mτ∧n ≥ −R)−R · P(Mτ∧n ≤ −R)
so

P(Mτ∧n ≤ −R) ≤ Q + C

R
P(Mτ∧n ≥ −R) ≤ Q + C

R
.



This implies

P(τ ≤ n) ≤ P(Mτ∧n ≤ −R) + P(Mτ∧n ≥ Q) ≤ Q + C

R
+ P(Mτ∧n ≥ Q).

Finally,

P(sup
ℓ
Mℓ ≥ Q) ≥ P(τ <∞)− P(Mτ∧n ≤ −R)

≥ P(τ <∞)− Q + C

R

≥ P(S∞ = ∞)− Q + C

R
.

Now let R ր ∞. We get

P(sup
ℓ
Mℓ ≥ Q) ≥ P(S∞ = ∞).



Intersecting the nested events over all integers Q > 0 gives

P(sup
ℓ
Mℓ = ∞) ≥ P(S∞ = ∞).

Part (a) tells us that

P(sup
n
Mn = ∞|S∞ <∞) = 0

so

P(sup
n
Mn = ∞|S∞ = ∞) = 1.

For any real sequence, supnMn = ∞ iff lim supnMn = ∞, so this prove the

“limsup” part of (b).

Finally, apply this argument to −Mn to show

P(lim inf
n

Mn = −∞|S∞ = ∞) = 1.

�



Bounded increments are needed for part (b).

Example 1: Let

∆n =

{

−1 with probability 1− 2−n

2n − 1 with probability 2−n

This implies E(Mn) = 0, where Mn =
∑n

k=0∆k is a martingale. In this case

Sn = ∞ almost surely, but by Borel-Cantelli, with probability 1 we have that

∆n = 1 for all large enough n. Thus Mn → −∞ almost surely.



Example 2: Let

∆n =











2n with probability 2−n

2n with probability 2−n

0 with probability 1− 2−n+1

.

Then Mn =
∑n

1 ∆k is a martingale with Sn → ∞ almost surely, but again by

Borel-Cantelli ∆k is eventually all zeros, so Mn is eventually constant, hence

finite, almost everywhere.



2. Bloch Functions and Bloch Martingales



For g analytic on the disk we define

‖g‖B = |g(0)| + sup
z∈D

|g′(z)|(1− |z|2),
which is called the Bloch norm of g. The collection of analytic functions with

finite Bloch norm is called the Bloch space B.

Note that these are exactly the holomorphic Lipschitz functions from the hyper-

bolic metric on the disk to the Euclidean metric on the plane.

Any bounded holomorphic function is Bloch by the Cauchy estimate for f ′.

We proved earlier that log f ′ is Bloch for any conformal map f .

Another example of a Bloch function is the lacunary series

ϕ(z) =

∞
∑

n=1

z2
n
.



To prove this is Bloch, fix a point z ∈ D and choose n so that

(n− 1)−1 ≥ 1− |z| > n−1.

Split the sum defining ϕ at n and use the fact that (1− 1/n)n < e−1 to get

|ϕ′(z)| ≤
∑

k:2k≤n
2k|z|2k−1 +

∑

k:2k>n

2k|z|2k−1

≤
∑

k:2k≤n
2k +

∑

j>0

n2j|(1− 1

n
)n−1|2j

≤ 2n + n
∑

j>0

2je−2j

≤ Cn

≤ C

1− |z|.



Of course, a similar computation works for
∑

zb
n
for any integer b ≥ 2.

The example is suggestive because {z2n} looks roughly like a sum if independent

random variables. In fact, we will later show that all Bloch functions look like

martingales.



Consider a Whitney decomposition of the disk, as illustrated on the next page.

The innermost part of the decomposition is a central disk of radius 1/4. Outside

of the central disk, the annulus A1 = {14 < |z| < 1
2} is divided into eight equal

sectors, the annulus A2 = {12 < |z| < 3
4} into sixteen sectors.



Each Whitney box has two radial sides and two circular arc sides concentric

with the origin. The circular arc closer to the origin is called the top of the box

and the arc further from the origin is called the bottom.



Each bottom arc is divided into two pieces by the tops of the Whitney boxes

below it (“below” means between the given box and the unit circle). We call

these the left and right sides of the bottom arc (left is the one further clockwise).



The sides and bottoms of Whitney boxes we will call the Whitney edges, their

endpoints we call Whitney vertices. The union of these edges and vertices forms

an infinite graph in D which we call the Whitney graph.



The radial projection of a closed Whitney box B onto the unit circle, T, is

a closed arc that we denote B∗ (this is sometimes called the “shadow” of B,

thinking of a light source at the origin).



The union of a closed Whitney box B and all the closed Whitney boxes B′ so

that (B′)∗ ⊂ B∗ is called the Carleson square with base I = B∗.



A dyadic martingale on the unit circle is a sequence {fn} of functions so

that each fn is constant on the interiors of the nth level dyadic intervals and so

that value of fn on any such interval I is the sum of values of fn+1 on the two

children of I .

We shall use fn to denote the martingale as a function on the circle and fI to

denote the value taken by fn on I , if I is a nth generation dyadic interval. Thus

we can write

fn(x) =
∑

I

fI1I(x),

where the sum is over all nth generation dyadic intervals.



The dyadic martingale on the circle is called a Bloch martingale if

sup
n

sup
I,J

|fI − fJ | <∞

whenever I, J are adjacent dyadic intervals of the same length.

This implies the increments of the martingale are bounded, but is stronger. The

latter condition only says |fI − fJ | is bounded if I and J have the same parent.

Bounded increments implies difference is O(k) if I, J are adjacent but only have

a kth generation ancestor in common.



Lemma 2.1. For any harmonic Bloch function u on the disk, there is a

Bloch martingale {fn} on the circle so that ‖{fn}‖B ≤ C‖u‖B and

sup
I∈Dn

|u(zI)− fn(I)| ≤ C‖u‖B.

There is a converse we will prove later: given a Bloch martingale, there is a

corresponding Bloch harmonic function u.



Proof. Suppose u is a harmonic Bloch function. Without loss of generality we

may assume its Bloch norm is 1.

Suppose I ⊂ T. We claim that the limit

uI = lim
rր1

1

|I|

∫

I

u(reiθ)dθ(2.1)

exists and satisfies

|uI − u(zI)| = O(‖u‖B).(2.2)

If so, then {uI} defines a Bloch martingale, as I ranges over all dyadic subin-

tervals of T defined the desired martingale.



We apply Green’s theorem over the truncated Carleson box

Qr = {seiθ : r < 1− s < |I|, eiθ ∈ I},
for r ≪ |I|. Taking v = log 1

|z|, Green’s theorem
∫∫

Q

(v∆u− u∆v)dxdy =

∫

∂Q

v
∂u

∂n
− u

∂v

∂n
ds

says that since both u and v are harmonic in Qr, the boundary integral

∫

Qr

u
∂v

∂n
− v

∂u

∂n
ds = 0.

Thus the integral over the “bottom” of the truncated box is the negative of the

integral over the other three sides.



The integral over the top side is
1

|I|

∫

I

[u(|I|eiθ)− u(zI)]dθ = O(1)

since u itself varies by less than O(1) over this arc.

To handle the sides of the box, note that a Bloch function satisfies for s < r < 1

|u(rx)− u(sx)| ≤
∫ r

s

dt

1− t2
≤ 2

∫ r

s

dt

1− t
≤ 2 log

1− s

1− r



Thus the integrand over each radial side of Qr is bounded by

|(u− u(zI))
∂v

∂n
| + |v∂u

∂n
| ≤ (log

1− |I|
1− t

)(1) + (1− t)
1

1− t
.

This is integrable on [1− |I|, 1) and the integral is bounded by O(1).

Hence the limits over the radial sides as r ր 1 exists and are O(1). Thus the

limit in (2.1) exists and satisfies (2.2) as desired. �



Lemma 2.2. If {fn} is a real-valued Bloch martingale, then

lim inf
n→∞

fn(θ) <∞,

for almost every θ.

Proof. By Corollary 1.3, Bloch martingales satisfy lim inf fn <∞ a.e. �



Lemma 2.3. If f : D → Ω is a conformal map then

lim inf
rր1

|f ′(reiθ)| <∞,

for almost every θ.

Proof. Let {fn} be the dyadic martingale associated to the real-valued harmonic

Bloch function u = Re(log f ′). By Lemma 2.2, the martingale as finite liminf

almost everywhere, and by Lemma 2.1, so does u. Since |f ′| = exp(u), the

lemma follows. �

This also follows from Plessner’s theorem: almost everywhere on the circle, a

holomorphic function on the disk either has a non-tangential limit or is non-

tangentially dense.

Plessner’s theorem follows from Fatou’s theorem: a harmonic function on the

disk has non-tangential limits a.e. where it is non-tangentially bounded.



For a Bloch martingale, |fn(θ)| = O(n) for every θ by definition. We need the

following slight improvement of this.

Lemma 2.4. If {fn} is a Bloch martingale, then for almost every θ, we

have |fn(θ)| = o(n).

Amuch stronger result is true. By the LIL for martingales |fn(θ)| = O(
√
n log log n).

We will prove this later.



Proof. Let C be the Bloch norm of {fn}. Since {fk − fk+1} are orthogonal,
∫

f 2ndθ =
n−1
∑

k=0

|fk+1 − fk|2dθ ≤ C2n,

so by Chebyshev’s inequality

{fn > λ} ≤ 1

λ
‖fn‖1 ≤

1

λ
‖fn‖1/22 ≤ C

√
n

λ
.

Taking λ = ǫn we get

{fn > ǫn} = O(
1

ǫ
√
n
).



Taking n = m3, this becomes

{fm3 > ǫm3} = O(
1

ǫm3/2
),

which is summable over m, so by Borel-Cantelli

lim sup
m→∞

fm3(θ)

m3
≤ ǫ,

holds almost everywhere.

For m3 < n < (m + 1)3, we have n−m3 = O(m2), so the bounded difference

condition for Bloch martingales implies, for almost every θ,

fn(θ) ≤ fm3(θ) +O(m2) = (ǫ +
1

m
)O(m3) = (ǫ + n−1/3)O(n).

Since ǫ > 0 was arbitrary, this proves the lemma. �



Corollary 2.5. If f : D → Ω is a conformal map and ǫ > 0, then

lim inf
r→1

|f ′(reiθ)|
(1− r)ǫ

≥ 1

for almost every θ.

Proof. Lemmas 2.4 and Lemma 2.1 imply

Re log f ′(z) = o(log(1− |z|))
almost everywhere, and this implies the lemma. �

Similarly,

lim sup
r→1

|f ′(reiθ)|(1− r)ǫ ≤ 1



3. Makarov’s theorem: dim(ω) ≤ 1



The dimension of a measure µ is defined to be

dim(µ) = inf{dim(A) : A has full µ measure}.

Note that if E = ∪En has full measures for µ then dim(µ) ≤ supn dim(En).



Suppose Ω ⊂ R
d is open and suppose ω is harmonic measure on ∂Ω. What can

we say about dim(ω)? Harmonic measure depends on a choice of base point in

Ω, but the different points all give mutually absolutely continuous measures, so

this question does not depend on the base point.

For d ≥ 3 there are a few results, but still many open questions. For d = 2,

things are much better understood. One of the key results is due to Makarov

who proved that if Ω ⊂ R
2 is simply connected then dim(ω) = 1.



Vitali Covering Theorem:

Theorem 3.1. If E ⊂ R
n and {Qk} is a family of cubes so that each x ∈ E

is contained in cubes from the family with arbitrarily small diameter, then

there is a pairwise disjoint subcollection of the cubes that covers Lebesgue

almost every point of E.

Proof in most analysis textbooks.



A Stolz cone Γα(x) is a α-neighborhood of the radial segment from 0 to x ∈ T

(an “ice cream cone”).

We say f has a non-tangential limit at x if the limit of f (z) exists as z approaches

x through any Stolz cone.

Similarly, a function is non-tangentially bounded at x if it is bounded on each

Stolz cone at x (the bound may depend on α).

A Bloch function is radially bounded iff it is non-tangentially bounded at x.



Fatou’s theorem says that a bounded harmonic functions on the disk has non-

tangential limits almost everywhere on the circle.

Local version says that if f is bounded on some Stolz cone at each point of E,

then f has non-tangential limits almost everywhere on E.

Proof is a corollary of the Hardy-Littlewood maximum theorem; sometimes

covered in 1st year analysis course.



Plessner’s theorem: If f is holomorphic on the disk, then as almost every

x ∈ T, f either has a non-tangential limit or is non-tangentially dense.

Non-tangentially dense means that every non-degenerate Stolz cone has dense

image in the plane.

Cor: If f is holomorphic on D then at almost every x ∈ T, f ′ either has a

finite limit or f ′(rnx) → 0 for some rn ր 1.

Can prove Makarov’s theorem upper bound using this, but we will avoid Pless-

ner’s theorem by using martingales.



Theorem 3.2 (Makarov’s upper bound). Suppose Ω is a simply connected

plane domain with a locally connected boundary. Then there exists E ⊂ ∂Ω

with full harmonic measure and σ-finite H1 measure.



Proof. Let f : D → Ω be conformal (injective and holomorphic). Let {ϕn} be

the Bloch martingale associated to the Bloch harmonic function ϕ = log f ′.

By Theorem 1.8, a.e. on T, ϕn either has a finite limit or the liminf is −∞.

Thus almost everywhere f ′ is non-tangentially bounded, or |f ′| has liminf = 0.



Divide the unit circle into three disjoint sets E1, E2, E3 with the properties

(1) f ′ has a non-tangential limit at all eiθ ∈ E1.

(2) lim infz→eiθ,z∈Γ(eiθ) |f ′(z)| = 0 for all eiθ ∈ E2.

(3)H1(E3) = 0.

By the conformal invariance of harmonic measure, the harmonic measure for Ω

is supported on f (E1) and f (E2).



First we will show that there is a subset F ⊂ f (E2) so that ω(F ) = ω(f (E2))

and H1(f (F )) = 0. Fix an integer k and for each z in the disk where |f ′(z)| ≤
2−k let Iz denote the largest dyadic arc on the unit circle with containing z/|z|
and length ≤ 1− |z|.

Each point of E2 is in infinitely many such arcs (with arbitrarily small size) so

by the Vitali covering theorem, we can choose a disjoint subcollection of the arcs

{Ikj }∞j=1 so that H1(E \ ∪jIkj ) = 0.



Let {zkj } be the points in the disk corresponding to the chosen arcs. Also set

wk
j = f (zkj ), dkj = dist(wk

j , ∂Ω),

Dk
j = {|w − wk

j | ≤ Ck2dkj}, Gk = ∪jDk
j ,

Fn = ∪k≥nGk, F = ∩nFn.
Where C is as in Beurling’s estimate.



Then

ω(wk
j , D

k
j ∩ ∂Ω,Ω) ≥ 1− 1

k
> 0,

and so

ω(zkj , f
−1(Gk),D) ≥ 1− 1

k
,

which implies

|Ikj \Gk| ≤ O(1/k).



Thus for an interval Ikj ,

|(E ∩ Ikj ) \Gk| ≤ |Ikj \Gk| ≤ O(|Ikj |/k).
Therefore

|E \ Fn| ≤ inf
k≥n

|E \Gk| = 0.

Since {Fk} are nested decreasing, {E \ Fk} is nested increasing and their mea-

sures converge to the measure of E \ F , which therefore must be zero.



Finally, we just have to show H1(F ) = 0.

By Koebe’s theorem |Dk
j | ∼ k2|f ′(zkj )|Ikj |,

H1(F ) ≤ inf
n

∑

k>n

∑

j

|Dk
j |

≤ C inf
n

∑

k>n

∑

j

k2|f ′(zkj )||Ikj |

≤ C inf
n

∑

k>n

2−kk2
∑

j

|Ikj |

≤ C inf
n

∑

k>n

2−kk2
∑

j

2π

= 0.



Now we have to deal with E1. For each integer n ≥ 1, let En
1 be the subset of

E1, where |f ′| is radially bounded by n. The union of these sets is all of E1.

Choose a compact subset F n
1 so that |En

1 \ F n
1 | ≤ 1/n. By definition Re log f ′

is in Bloch and so is bounded by log n +O(1) on any hyperbolic neighborhood

of a radial segment ending in F n
1 , hence |f ′| = O(n) on the region WF , the

“sawtooth” region associated to F .

The boundary of WF has length at most 2π2, so its image under f has length

at most O(n), and this includes the set f (F n
1 ). Since ∪nF n

1 is a full measure

subset of E1, the dimension of harmonic measure is ≤ 1. �



Theorem 3.3 (Jones-Wolff). For any compact planar set E with positive

logarithmic capacity, harmonic measure for Ω = C \ E with respect to ∞
gives full measure to a set of Hausdorff dimension at most 1.

The proof uses properties of Green’s function in place of conformal maps.

The proof becomes much easier if we make some regularity assumptions on the

boundary: the capacity density condition. This means that for any x ∈ ∂Ω and

0 < r < diam(∂Ω) the logarithmic capacity of D(x, r) ∩ ∂Ω is comparable to

the capacity of D(x, r).



Tom Wolff later proved a stronger result: for any planar domain, there is a

subset of the boundary of σ-finite length and full harmonic measure.

For domains in R
n, Wolff showed the dimension of harmonic measure may be

either strictly larger or strictly smaller than n− 1.



4. Makarov’s theorem: dim(ω) ≥ 1



Next we prove that harmonic measure has dimension at least one. To avoid

technicalities we will make a regularity assumption on the boundary of Ω; this

assumption will be removed later.

We say that a closed Jordan curve γ is a quasidisk if there is a M < ∞ so

that diam(γ(x, y)) ≤M |x− y|, where γ(x, y) is the subarc of γ between x and

y of smaller diameter. Such curves are also called “bounded turning”, or said

to satisfy Ahlfors’ 3-point condition.





The name “quasicircle” comes from the fact that these curves are exactly the

images of the unit circle under quasiconformal mappings of the plane to itself.

Although we will not prove this, we will use the word “quasicircle” since this is

the most common term for this class of curves. Similarly, a bounded domain

whose boundary is a quasicircle is called a quasidisk. The definition is suffi-

ciently general to include many fractal curves, such as the von Koch snowflake.



Theorem 4.1. If Ω is a quasidisk and ω is harmonic measure for Ω, then

dim(ω) = 1.

Proof.We have already see dim(ω) ≤ 1, so we only need to prove the other

direction.

Fix ǫ > 0. Suppose X ⊂ ∂Ω has positive harmonic measure. By Lemma 2.5

we can choose a compact set E ⊂ [0, 2π] and 0 < s < 1 so that Y = f (E)∩X
has positive harmonic measure and

|f ′(reiθ)| ≥ (1− r)ǫ

for all r > s and θ ∈ E. We claim that dim(Y ) ≥ 1− ǫ.



Suppose {Dj} is a cover of Y by disks. By the quasicircle assumption, we can

associate to each disk an arc γj so thatDj∩∂Ω ⊂ γj and diam(γj) ≃ diam(Dj).

Each γj corresponds to an arc Ij ⊂ T. By assumption Ij contains a point e
iθ of

E, and by the Koebe 1
4-theorem,

|f ′(zj)| & |Ij|ǫ,
where zj = zIj .



Therefore

diam(γj)
1−ǫ ≥ (|Ij| · |f ′(zj)|)1−ǫ ≥ |Ij|(1+ǫ)(1−ǫ) ≥ |Ij|(1−ǫ

2) ≥ |Ij|.

Since {Ij} covers the set f−1(Y ), we deduce that
∑

j

|Ij| ≥ |f−1(Y )| > 0,

is bounded away from zero. Hence the (1 − ǫ) Hausdorff content of Y is also

bounded away from zero, so dim(X) ≥ dim(Y ) ≥ 1 − ǫ. Since ǫ > 0 was

arbitrary, we have shown dim(X) ≥ 1 for any set X of positive harmonic

measure. �



5. The Law of the Iterated Logarithm for Dyadic

Martingales (easy version)



For a dyadic martingale the increments ∆n are {Fn+1} measurable and the

square function can written

Sn =

n
∑

k=1

∆2
k.

Sharp version of the Law of the Iterated Logarithm for dyadic martingales:

Theorem 5.1. For a dyadic martingale {Mn} with supn ‖∆n‖∞ ≤ C <∞,

then

P

(

lim sup
n→∞

Mn√
2Sn log logSn

= 1|S∞ = ∞
)

= 1(5.1)

There is an easier and less precise version that is sufficient for proving Makarov’s

theorems on harmonic measure.

The sharp version is proven later in these notes.



We will prove these two weaker versions first.

Theorem 5.2. For a dyadic martingale {Mn} with supn ‖∆n‖∞ ≤ C <∞,

then almost surely

lim sup
n→∞

Mn√
n log log n

<∞(5.2)

Theorem 5.3. For a dyadic martingale {Mn} with supn ‖∆n‖∞ ≤ C <∞,

then almost surely on the set where lim supn
1
nSn > 0,

lim sup
n→∞

Mn√
n log log n

> 0(5.3)



The idea is to deduce the LIL for dyadic martingales from the LIL for Brownian

motion, as we did for simple random walks before.

For a random walk, we defined a stopping time τ0 = 0 and

τn = min{t > τn−1| |B(t)− B(τn−1)| = 1}, n ≥ 1.

For a dyadic martingale (say on [0, 1]) we want to take

τn = min{t > τn−1| |B(t)−B(τn−1)| = ∆n}, n ≥ 1.

But does this make sense? ∆n is a function on [0, 1] so when to stop Brownian

motion depends on a choice of x ∈ [0, 1].

We need a map from Brownian paths to [0, 1] so we know where to evaluate

∆n(x) and when to stop the path.



Proof. Let Ω = {0, 1}N be the space where our dyadic martingale is defined.

For our applications we can think of this as identified with [0, 1] (or the unit

circle) via binary expansions.

Let F be the completion of the Borel sets. The are our measurable sets in Ω.

Let P = (12,
1
2)

N be the probability measure on Ω. (This is the same as Lebesgue

measure, if we replace Ω by [0, 1].)



Assume we have a dyadic filtration {Fn}. This is generated by n bit-functions

bk : Ω → {0, 1} that give the k co-ordinate of a sequence in Ω. Specifying values

for b1, . . . bn specifies one of the 2
n atoms.

When Ω is identified with [0, 1] these functions are the Radamacher functions.

The bit functions are iid with mean zero (fair coin flips) with respect to P.



Suppose we are given a {Fn}-adapted martingale {Mn}.

We assume M0 = 0.

The values of Mn are determined from the values of b1, . . . , bn. (Since Mn is

constant on the atoms of Fn.)



Recall the increment function ∆ =Mn −Mn−1.

∆ is constant on elements of Fn.

But |∆n| is constant on elements of Fn−1. (Only sign of ∆n depends on bn.)

Thus |∆n| is function of the bits b1, . . . , bn−1.



We assume Brownian motion is defined on a probability space (Γ,H,P∗).

Define a stopping time and map from Brownian paths to bits as follows.

Let τ0 = 0.

Define τ1 = min{t ≥ 0 : |B(t)| = |∆1|}.

Since |∆1| is constant on the whole space, this is well defined.



Define a function b1 on Ω (space of Brownian paths) so that

∆1(b1) = B(τ1).

In other words, B(τ1) = ±|∆1| and b1 is defined by whether it is |∆1| or −|∆1|.

Inductively, assume {τk}n−1
1 and {bk}n−1

1 have been defined and let

τk = min{t ≥ τk−1 : |B(t)−B(τk)| = |∆k|}.

and define bk so that

∆(b1, . . . bk) = B(τk)− B(τk−1).



More formally, we have defined b = (b1, . . . bk) : Γ → Ω so that

Mk(b1, . . . , bk) = B(τk).

The functions b1, . . . bk define a dyadic filtration {Gn} on (Γ,H,P∗)

Since |∆n| is a function of b1, . . . bn−1, we can think of it as a Gn−1 measurable

function on Γ (Brownian path space).

Hence the same is true for the square function

Sn =
n
∑

k=1

|∆n|2.



Claim: {τn − Sn}n≥0 is a {Gn}-martingale.

To prove this we just need to verify the definition of a martingale:

E(τn − Sn|Gn−1) = τn−1 − Sn−1.

Since Sn is constant on atoms of Gn−1, we have E(τn−Sn|Gn−1) = E(τn|Gn−1)−
Sn, so also using the fact that Sn − Sn−1 = ∆2

n, it suffices to show

E(τn|Gn−1) = τn−1 + Sn − Sn−1 = τn−1 +∆2
n.

or

E(τn − τn−1|Gn−1) = ∆2
n.

However, τn − τn−1 is the time needed for a 1-dimensional Brownian motion to

travel distance |∆n|. By Wald’s lemma the expectation of this is |∆n|2, so the

claim is true.



Let

Zn = (τn − τn−1)−∆2
n = (τn − Sn)− (τn−1 − Sn−1.

Since these functions are increments of a martingale (the claim on the previous

slide), they are orthogonal. They also have uniformly bounded L2 norms because

Mn has bounded increments.

Thus by the Strong Law of Large Numbers, almost surely

1

N

N
∑

n=1

Zn → 0

1

N
(τN − SN) → 0(5.4)

Thus

lim sup
n→∞

τn
n

= lim sup
n→∞

Sn
n

≤ C2.

This implies, almost surely τn ≤ 2C2n for all large n.



Hence with (as usual) ψ(t) =
√
2t log log t,

lim sup
n→∞

ψ(τn)

ψ(n)
≤

√
2C <∞.

Therefore

lim sup
n→∞

Mn

ψ(n)
= lim sup

n→∞

B(τn)

ψ(τn)
· ψ(τn)
ψ(n)

<∞.

Thus a Bloch martingale almost surely satisfies the LIL upper bound

lim sup
n→∞

Mn√
n log log n

<∞.

�



Lemma 5.4. If {Mn} is a Bloch martingale, then

lim sup
n→∞

Mn

ψ(n)
> 0,

almost surely on the set where lim supn→∞
1
nSn > 0.

Proof. If Sn ≥ ǫn→ ∞ (5.4) implies

τn − Sn = o(n) = o(Sn)

and hence
ψ(τn)

ψ(Sn)
=
ψ(Sn + o(Sn))

ψ(Sn)

ψ(Sn) + o(ψ(Sn))

ψ(Sn)
= 1 + o(1)

Therefore

lim sup
n→∞

Mn

ψ(Sn)
= lim sup

n→∞

B(τn)

ψ(τn)
· ψ(τn)
ψ(Sn)

= 1

Since Sn ≥ ǫn, this proves the lemma. �



Next we consider a case when the hypothesis of the previous lemma can be easily

verified in practice.

Lemma 5.5. Suppose the dyadic martingale {Mn} satisfies the follow-

ing: for some fixed δ and integer ℓ, and for every b1, . . . , bn there are

bn+1, . . . , bk+ℓ so that

∆2
n+ℓ(b1, . . . , bn+ℓ) ≥ δ2.

Then almost surely

lim inf
n→∞

1

n
Sn ≥ 2−ℓδ2.

This will be useful later when we want to show some some fractal curves, like

the von Koch snowflake, are sharp for Makarov’s theorem.



Proof. Fix 0 ≤ r < ℓ. Then

{∆2
n − E(∆2

n|Fn−ℓ : n = ql + r}∞q=1

are orthogonal bounded variables, so by the Strong Law of Large Numbers, the

averages summed over these ℓ-arithmetic sequences tend to zero almost surely

1

N

N
∑

n=ℓ+1

[∆2
n − E(∆2

n|Fn−ℓ)] → 0

Our hypothesis implies E(∆2
n|Fn−ℓ) ≥ 2−ℓδ2 which gives

lim inf
n→∞

1

n
Sn = lim inf

n→∞
1

n

n
∑

k=1

∆2
k ≥ 2−ℓδ2 > 0.

�



6. Makarov’s Law of the Iterated Logarithm



Theorem 6.1 (Makarov’s LIL for Bloch functions).There is constant C <∞
so that the following holds. Suppose u is a real-valued Bloch function and

ψ(t) =

√

log
1

t
log log

1

t
.

Then

lim sup
rր1

u(reiθ)

ψ(1− r)
≤ O(‖u‖B),

for almost every θ.

This is immediate from the LIL for Bloch martingales and the correspondence

between Bloch martingales and Bloch harmonic functions.



Theorem 6.2 (Makarov’s LIL for harmonic measure). There is constant C <

∞ so that the following holds. Suppose Ω is a quasidisk and E ⊂ ∂Ω has

zero ϕ-measure for the guage function

ϕC(t) = t exp(C

√

log
1

t
log log

1

t
).

Then E has zero harmonic measure in Ω.

This is sharp except for C.

For some fractal domains like the von Koch snowflake this fails for a different

value of C.

The theorem is true with C = 1, but it is not known if this is best possible.

LIL proved for self-similar curves by Feliks Przytycki, Mariusz Urbański, Anna

Zdunik.



Proof. The proof is essentially the same as Theorem 4.1, except that instead of

the easy o(n) upper bound for martingales, we use the more difficult LIL for

martingales.

If f : D → Ω is a conformal map, then g = Re log f ′ is a real Bloch harmonic

function and therefore satisfies the LIL for Bloch functions: for a.e. x ∈ T

lim sup
r→1

|g(rx)|
√

log 1
1−r log log log

1
1−r

≤ C <∞.



Let

ψ−1 = t exp

(

−C
√

log
1

t
log log log

1

t

)

Then for almost every x ∈ T,

lim inf
r→1

(1− r)|f ′(rx)|
ψ−1(1− r)

≥ 1.

This implies ω ≪ Hψ.

A calculation shows

ψ(t) = O(ϕ(t)) = O

(

t exp

(

C

√

log
1

t
log log log

1

t

))

and this implies ω ≪ Hψ ≪ HϕC . �



7. Sharpness of Makarov’s LIL



Theorem 7.1. There is an ǫ > 0, so that if ϕ is in Bloch with norm at

most ǫ, then ϕ = log f ′ for some conformal map f onto a quasidisk.

Proof.We will need the following inequality

∫ y

x

((
1− x

1− t
)ǫ − 1)dt ≤ ǫ

1− ǫ
(y − x),

for 0 < ǫ < 1, 0 ≤ x ≤ y ≤ 1. This can be proved by observing that the left

hand side is a convex function of y (for fixed x) and equals the the linear right

hand side at y = x and y = 1.

Given z1 6= z2 in the disk we wish to show f (z1) 6= f (z2). First consider the

case when z1 = 0 and z2 = r > 0 . Then for 0 < t < r,

|ϕ(t)| = |
∫ t

r1

ϕ′(s)ds| ≤ ǫ

∫ t

0

ds

1− s
= ǫ log

1

1− t
.



Thus,

|f (r2)− f (r1)− (r2 − r1)| = |
∫ r

0

(f ′(t)− 1)dt|

≤
∫ r

0

(e|ϕ(t)| − 1)dt

≤
∫ r

0

((
1− r1
1− t

)ǫ − 1)dt

≤ ǫ

1− ǫ
r

≤ 1

2
r,

if ǫ ≤ 1/3. Thus f (0) 6= f (r).



Now we consider the general case. It is easy to see that if f is not univalent

then there are points z1, z2 such that f (z1) = f (z2) and |z1| = |z2|. Without

loss of generality we may take z1 = r and z2 = reiθ with 0 < θ ≤ π. If r < θ,

then the previous estimate gives

|f (z1)− f (z2)| ≥ |z2 − z1| − |f (z2)− f (0)− z2| − |f (z1)− f (0)− z1|
≥ |z2 − z1| −

2ǫr

1− ǫ

≥ 2

3
|z2 − z1|,

if ǫ < 1/4.



Finally, if r ≥ θ define a third point z3 = (r − θ)eiθ/2. This point is approxi-

mately “between” z1 and z2 and will play the role the origin did in the previous

argument.

●

●

●

z1

z2

z
3



WLOG we may assume f (z3) = 0 and f ′(z3) = 1 (so ϕ(z3) = 0). Then if w lies

on the line segment between z3 and z1, i.e., w = (1− t)z3 + tz1, then we have

|ϕ(w)| = |
∫ w

z3

ϕ′(ζ)dζ| ≤ 2ǫ

∫ |w|

|z3|

dζ

1− |ζ| ≤ 2ǫ log(
1− |z3|
1− |w|).

Thus by repeating the argument from above,

|f (z1)− f (z3)− (z3 − z1)| = |
∫ z1

z3

(f ′(t)− 1)dt|

≤ 2

∫ |z1|

|z3|
((
1− r1
1− t

)2ǫ − 1)dt

≤ 4ǫ

1− 2ǫ
(|z1| − |z3|)

≤ 4ǫ

1− 2ǫ
|z1 − z3|.

Of course, the same works with z1 replaced by z2.



Thus

|f (z1)− f (z2)| ≥ |z2 − z1| − |f (z2)− (z2 − z3)| − |f (z1)− (z1 − z3)|
≥ |z2 − z1| −

8ǫ

1− 2ǫ
|z1 − z2|

≥ 1

2
|z2 − z1|,

if ǫ is sufficiently small. �



Lemma 7.2. Given any Bloch martingale {fn} on the circle, there is har-

monic Bloch function u on the disk, such that ‖u‖B ≤ C‖{fn}‖B and

sup
I∈Dn

|u(zI)− fn(I)| ≤ C‖{fn}‖B.

Proof. Suppose {fn} is a Bloch martingale of norm 1. Without loss of generality

we may assume f0 = 0 and hence all the elements have mean value zero.

Let un is the harmonic extension of fn to the unit disk. By our assumption

un(0) = 0 for all n.

un(z) =

∫

T

Pz(e
iθ)fn(e

iθ)dθ

=

n−1
∑

k=0

∫

T

Pz(e
iθ)[fn+1(e

iθ)− fn(e
iθ)]dθ

=

n−1
∑

k=0

∫

T

Pz(e
iθ)∆n(e

iθ)dθ



Note that ∆n has means value zero over each dyadic interval of generation n, is

bounded by 1 everywhere, and Pz differ from a constant by at most O( 2−n
1−|z|) on

such an interval.

Thus if n < m,

|un(z)− um(z)| ≤
m−1
∑

k=n

∫

T

2−k

1− |z|dθ = O(
2−n

1− |z|),

which shows the sequence of harmonic functions converges uniformly on compact

sets to a harmonic function u.



Next we want to prove

u(z)− fI = O(1), z ∈ T (I).

This automatically proves that u is Bloch, since its variation over T (I) is uni-

formly bounded.

Given a dyadic interval I we form a disjoint collection C of dyadic intervals J

that cover the circle and so that |I| ≤ |J | ≃ dist(J, I) and there are only a

bounded number of intervals of any given size.



un(z)− fI =

∫

T

Pzfn − PzfIdθ

=

∫

T

Pz(fn − fI)dθ

=
∑

J∈C

∫

J

Pz(fn − fI)dθ

=

∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

Pz(fn − fI)dθ

=

∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

Pz(fn − fJ) + (fJ − fI)dθ

=

∞
∑

k=0

∑

J∈C,|J |=2k|I|

(∫

J

Pz(fn − fJ)dθ +

∫

J

Pz(fJ − fI)dθ

)



Note that |J | = 2k|I| and dist(J, I) ≤ 2k|I| implies that |fJ − fI| = O(k) by

the Bloch condition

Thus the sum of the second integral
∫

J Pz(fJ − fI)dθ is bounded by
∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

O(2−2k|I|−1k)dθ ≤
∞
∑

k=0

∑

J∈C,|J |=2k|I|

∑

k=0∞
O(2−k)k = O(1).

Next we handle the first integral
∫

J Pz(fn − fJ)dθ.

Let I be of generation m.

If n > m then fn − fI has mean zero on I and fn − fJ has mean zero on each

J ∈ C, since these are all in earlier generations and hence at least as long as I .

Since Pz varies by less than 2−n−2k|I|−1 on intervals of length 2−n in Jk, we get:



|
∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

Pz(fn − fJ)dθ| = |
∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

Pz

n−1
∑

j=m−k
∆jdθ|

= |
∞
∑

k=0

∑

J∈C,|J |=2k|I|

∫

J

n−1
∑

j=m−k
|I|−12−2k−jdθ|

≤
∞
∑

k=0

∑

J∈C,|J |=2k|I|
O(2m2−2k−m+k)

= O(

∞
∑

k=0

∑

J∈C,|J |=2k|I|
2−k)

= O(1)

This completes the proof. �



Theorem 7.3. There is a c > 0, a quasidisk Ω and a set E ⊂ ∂Ω that has

full harmonic measure, but zero Hausdorff ϕ-measure for

ϕ(t) = t exp(c

√

log
1

t
log log

1

t
).

Proof. It suffices to show there is a dyadic Bloch martingale so that the square

function grows linearly almost everywhere. Then a small multiple of this mar-

tingale will correspond to a harmonic Bloch function u of small norm, that has

growth rate at least ǫ
√

log 1
1−r log log log

1
1−r almost everywhere on the circle,

for some ǫ > 0.

Then u will be of the form u = log f ′ for some conformal map, and using

arguments from earlier, it is easy to see the image curve Γ = f (T) has harmonic

measure is supported on a set of zero Hausdorff ϕ-measure if c is chosen small

enough. �
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The von Koch snowflake provides an example where Makarov’s LIL occurs.

It requires some work to show that log f ′ is has the correct square function

estimate.

Lemma 7.4. Suppose f : D → Ω is the conformal map onto the interior

of the von Koch snowflake. Given any M > 0, there is positive integer N

so the following holds. Given any dyadic interval I ⊂ T, there is a dyadic

interval J ⊂ I with |J | ≥ 2−N |I| and so that

log |f ′(zI)| − log |f ′(zJ)| > M.



Assuming this, then by takingM large enough, we can deduce t that the dyadic

martingale associated to log |f ′| has values differing by 1 at I and J , so it satisfies
the hypothesis of Lemma 5.5. Thus the square function of the martingale has

linear growth a.e., and hence the martingale grows faster that ǫ
√
n log log n by

Lemma 5.4. Thus the same is true for log |f ′|.



More generally, Peter Jones showed if the boundary of Ω deviates from a straight

line (in a certain precise sense) at every point and every scale, then harmonic

measure satisfies Makarov’s LIL for some constant C.

Such domains give functions ϕ = log |f ′| that are maximal Bloch: there is

a constants C < ∞ and ǫ > 0 so that every point z ∈ D is within hyperbolic

distance c of a point w where

|ϕ′(w)| ≤ ǫ

1− |w|.

One can prove that maximal Bloch functions satisfy

lim sup
|ϕ(rx)|

log 1
1−r log log log

1
1−r

> 0

for a.e. x ∈ T.



8. Law of the Iterated Logarithm for dyadic martingales

(sharp version)



Recall the sharp version of the LIL we stated earlier.

Theorem 8.1. For a dyadic martingale {Mn} with supn ‖∆n‖∞ ≤ C <∞,

then

P

(

lim sup
n→∞

Mn√
2Sn log logSn

= 1|S∞ = ∞
)

= 1(8.1)

I will give the proof of this for completeness, but we will not use this version.



Proof.We use the same definitions of the bit functions {bk}, stopping times

{τn} and σ-fields {Gn} as before.

Also as before we have (by Wald’s lemma),

E(τn − τn−1|Gn−1) = ∆2
n.

It is left as an exercise to check that

E(τn − τn−1)
2|Gn−1) ≤ 4∆4

n.

(Any multiple of |∆n|2 is OK for us; the expectation actually equals 2
3∆

4
n.)



Define λn = τn for all n if S∞ = limn Sn =
∑∞

1 ∆2
n = ∞.

Otherwise, let λn = n.

The assumption that |∆n| ≤ C implies Sn+1 = Sn +O(1) and hence that

Sn+1

Sn
= 1 +O

(

1

Sn

)

→ 1

on the set {S∞ = ∞}.

Therefore λn+1/λn → 1 almost surely on whole space.



The corollary about the LIL for Brownian motion evaluated at random times

that we proved earlier now implies
B(λn)

ψ(λn)
→ 1

almost surely. Since λn = τn on {S∞ = ∞}, we get
Mn

ψ(τn)
→ 1

almost surely on the set {S∞ = ∞}.

We are done if we can prove that almost surely of {S∞ = ∞}.
lim
n

τn
Sn

= 1.(8.2)

This will follow from Lemma 8.2 below with Yn = ∆2
n.

Thus the proof of the sharp LIL is complete, except for Lemma 8.2 �



Suppose {Gn}n≥0 is a filtration.

A sequence {Yn} is called predictable if for all n ≥ 1 Yn is Gn−1-measurable.

A sequence {τn} is called adapted if τn is is Gn-measurable.

Lemma 8.2. Suppose {Gn} is a filtration, {Yn} i s predictable with 0 ≤
Yn ≤ C2, and {τn} is adapted and satisfy 0 = τ0 < τ1 < τ2 < . . . . Define

Sn =
∑n

k=1 Yk and S∞ = limn Sn. Suppose that there is an A < ∞ so that

for all n ≥ 1,

E(τn − τn−1|Gn−1) = Yn

Var(τn − τn−1|Gn−1) ≤ AY 2
n .

Then almost surely on the set {S∞ = ∞},
lim
n→∞

τn
Sn

= 1.



Proof.We may assume P(S∞ = ∞) > 0, since otherwise the lemma is trivial.

Let N0 = 0 and set

Nk = min{n > Nk−1 : Sn − SNk−1
≥ C2}

if the set is nonempty, and otherwise Nk = Nk−1.

If Nk > Nk−1 then C
2 ≤ SNk − SNk−1

≤ 2C2.

Let Zk = τNk − SNk. We claim {Zk − Zk−1} are orthogonal functions with

Var(Zk − Zk−1) ≤ 2AC4.(8.3)



Assuming the claim, the Strong Law of Large Numbers implies (using a tele-

scoping series) that 1
kZk → 0 almost surely. Hence

τNk − SNk
k

→ 0,

τNk − SNk
SNk

· SNk
k

→ 0,
(

τNk
SNk

− 1

)

SNk
k

→ 0,

By definition SNk ≥ C2k, so we must have
τNk
SNk

→ 1

almost surely on the set {SNk} → ∞.

This is the desired result, but only along the sequence {Nk}.



For n between Nk−1 and Nk, we have
τNk−1

SNk
≤ τn
SNk

≤ τNk
SNk−1

But right hand term satisfies

τNk
SNk−1

=
τNk
SNk

· SNk
SNk−1

≤ τNk
SNk

· SNk−1
+ 2C2

SNk−1

→ 1.

Similarly for the lower bound.

This proves the lemma, except for verifying the claim. �



Proof of the claim.

Note that {Nk−1 < j} ∈ Gj−1, since this only requires knowing Sk for k < j.

Since σ-fields are closed under complements, we also have {Nk−1 ≥ j} ∈ Gj−1.

Thus

E[(τj − τj−1 − Yj)
2 · 1[Nk−1<j≤Nk]|Gj−1]

= 1[Nk−1<j≤Nk]Var(τj − τj−1|Gj−1)

≤ AY 2
j ≤ AC2Yj

We can take expectations and sum over j to get
∞
∑

j=1

E[(τj − τj−1 − Yj)
2 · 1[Nk−1<j≤Nk]] ≤ AC2

E





∞
∑

j=1

Yj · 1[Nk−1<j≤Nk]





= AC2
E(SNk − SNk−1

)

≤ 2AC4.



But

E[(τj − τj−1 − Yj) · 1[Nk−1<j≤Nk]|Gj−1] = 0,

since the indicator is Gj−1-measurable.

Thus by the orthogonality of martingale increments,

Var(Zk − Zk−1) = E











∞
∑

j=1

(τj − τj−1 − Yj) · 1[Nk−1<j<Nk]





2





≤ 2AC4.

This proves the claim and finishes the proof of the LIL for martingales.



9. From Quasicircles to Jordan domains



Next we remove the quasidisk assumption from Makarov’s theorem, and prove

the result for all Jordan domains. An approximation argument shows that

special case of Jordan domains implies the general case of all simply connected

domains.

In the previous case we assumed that for any disk D, all the components of

D ∩ ∂Ω were contained in a single arc of ∂Ω whose diameter was comparable

to the diameter of D.



In general, this is not true, so we consider the components of 2D∩∂Ω separately.

Although there may be infinitely many such components, using extremal length

we can show that at most O(− log diam(D)) of these components account for

most of the harmonic measure of D ∩ ∂Ω and the extra logarithmic factor can

be absorbed into the Makarov’s guage function by changing the constant.



A crosscut of Ω is a Jordan arc σ in Ω with both endpoints on ∂Ω.

By Beurling’s estimate we can choose a δ so any disk of radius δ has harmonic

measure less than 1/n (with respect to any base point distance ≥ 1 from the

boundary).



The following lemma says that the diameter of a crosscut can be estimated in

terms of the size of its preimage and and the estimates on |f ′|.

Recall

ϕC(t) = t exp

(

C

√

log
1

t
log log

1

t

)

.

and let

En = {eiθ : |f ′(reiθ)| ≥ ϕ−a(1− r)

1− r
, 1− 1

n
≤ r < 1},



Lemma 9.1. Suppose σ is a crosscut on Ω contained in some disk D of

radius ≤ δ. Let β be the subarc of ∂Ω separated from z0 by σ, let Dσ be the

region bounded by σ ∪ β and let I ⊂ T be the arc corresponding arc to β.

Assume I ∩ En 6= ∅. Then

diam(Dσ) ≥ diam(σ) ≥ Cϕ−a(|I|).



Proof. The left hand inequality is trivial since σ ⊂ ∂Dσ implies

diam(Dσ) = diam(∂Dσ) ≥ diam(σ).

To prove the right hand inequality, choose eiθ ∈ I ∩En and let z = (1− |I|)eiθ.
By our choice of δ, |I| ≤ 1/n, so

|f ′(z)| ≥ ϕ−a(|I|)|I|−1.

By the Koebe 1/4 theorem,

d = dist(f (z), ∂Ω) ≥ Cϕ−a(|I|),
and so by Beurling’s estimate

ω(f (z), σ,Ω \ σ) ≤ C(
|σ|
d
)1/2,

for some C <∞.

However, if d≫ |σ| we will show this gives a contradiction.



Note that

ω(f (z), σ,Ω \ σ) = ω(z, f−1(σ),D \ f−1(σ))

≥ min{ω(z, I,D), ω(z, Ic,D)},
depending on which side of f−1(σ) the point z lies.

By the definition of z we see that both these terms are bigger than some absolute

constant and so

|σ| ≥ Cd ≥ Cϕ−a(|I|),
as required. �



The following lemma says that a neighborhood on ∂Ω does not have too many

preimages on the unit circle with large measure. The proof uses some simple

facts about extremal length.

Lemma 9.2. Suppose D is a disk of radius r < r0 such that ω(D) ≥ r

and let 2D be the concentric disk with twice the radius. Then there are m

crosscuts {σj} ⊂ 2D, j = 1, . . . ,m with associated arcs {βj}, {Ij} such

that

m ≤ 2π

log 2
log

1

r
,

∑

j

|Ij| ≥
3

4
ω(D).



Proof. To normalize the situation assume that dist(z0, ∂Ω) = 1 and let K be a

disk of radius 1/2 centered at z0.

Let Ω0 be the component of Ω \D containing {z0} and let {Uj} be the compo-

nents of Ω0 ∩ 2D whose boundary contains arcs on both ∂D and ∂2D. Since

ω(D) > 0 this collection is nonempty.



Ω

U 1

U 2

U
3

U4

2D



Fix j and consider Uj.

It is a Jordan domain and ∂Uj∩ (2D\D) is a union of arcs exactly two of which

Γj1,Γ
j
2 connect ∂D to ∂2D. Their complement in ∂Uj consists of arcs, one of

which, call it δj, hits ∂D.

Then the set (∂Uj ∩ ∂D) \ ∂Ω is a union of arcs {γk} of ∂D each of which is a

crosscut of Ω with associated arcs βk of ∂Ω. Let Ej = ∪kγk.



UΓ Γ21

δ jγ
1

γ
2

Ω

β β2
1



Let Fj be the family of all arcs separatingK from Ej and let F̃j be the family of

all arcs in Uj connecting Γ
j
1 to Γ

j
2 andF the family of all arcs in 2D\D separating

the two boundary circles. Then by Pfluger’s theorem relating extremal length

to harmonic measure,

M(Fj) ≤
1

π
log(

C

ω(Ej)
).

By monotonicity of extremal length (fewer arcs ⇒ more metrics ⇒ smaller

modulus)

M(F̃j) ≤M(Fj).



By the series rule
∑

j

λ(F̃j) ≤ λ(F) =
2π

log 2
,

or
∑

j

M(F̃j)
−1 ≤M(F)−1 =

2π

log 2
,

so
∑

(log
C

ω(Ej)
)−1 ≤ 2

log 2
.

By Tchebyshev’s inequality,

|{j : ω(Ej) ≥ Crπk}| ≤ 2π

log 2
k log

1

r
.



Hence
∑

ω(Ej)≤Crπ
ω(Ej) ≤

∞
∑

k=1

(
2π

log 2
(k + 1) log

1

r
)Crπk

≤ (
2πC

log 2
) log

1

r

∞
∑

k=1

(k + 1)rπk

≤ 1

4
r,

if r < r0 is small enough. Thus
∑

ω(Ej)>Crπ

ω(Ej) ≥ ω(D)− 1

4
r ≥ 3

4
ω(D),

and there are at most 2π log 1
r/ log 2 such j’s.

So if we take the σj to be a crosscut of Ω contained in Uj with

βj = Ej ∪ (δj ∩ ∂Ω),
the lemma is proven. �



Now that the technical lemmas are finished, we can complete the proof of

Makarov’s theorem for general Jordan curves.

Proof. By the LIL for conformal maps we can choose a universal a > 0 so that

lim inf
r→1

|f ′(reiθ)|( 1− r

ϕ−a(1− r)
) = +∞,

for almost every θ. So if we define

En = {eiθ : |f ′(reiθ)| ≥ ϕ−a(1− r)

1− r
, 1− 1

n
≤ r < 1},

then ∪nEn has full measure.

Thus it suffices to prove: if E ⊂ f (En) and Hϕ2a(E) = 0, then ω(E) = 0.



Suppose {Dj} is a covering of E by disks of radius {rj} such that maxj rj ≤ δ

and
∑

j ϕ2a(rj) ≤ ǫ. By considering points of density of E (with respect to

harmonic measure) and taking δ to be small enough we may suppose

ω(Dj) ≤ 2ω(Dj ∩ E).

We may also assume ω(Dj) ≥ rj, for the remaining disks satisfy

Ω(∪jDj) ≤
∑

j

rj ≤
∑

j

ϕ2a(rj) ≤ ǫ.



Now for each j let {σjk} be the crosscuts given by the previous lemma which

also satisfy βjk ∩ E 6= ∅. Then
∑

k

ω(βjk) ≥
1

4
ω(Dj),

so by the two lemmas,

ω(E) ≤
∑

j

ω(Dj) ≤ 4
∑

j

∑

k

ω(βjk) ≤
8π

log 2

∑

j

log
1

rj
ϕ−1
−a(

2rj
C

).



Since ϕ−a(t) ≤ t and is convex up, ϕ−1
−a(t) ≥ t and is concave down, so

ϕ−1
−a(t) ≤ t · t/ϕ−a(t) = ϕa(t).

Thus

ϕ−1
−a(t) ≤ ϕa(t) = ϕ2a(t) · ϕ−a(t)/t,

and hence

ω(E) ≤ 2π

log 2

∑

j

ϕ2a(
2rj
C

)(log
1

rj

ϕ−a(2rj/C)

C/2rj
).



Next note that

(log
1

t
)(
ϕ−a(t)

t
) = exp

(

log log
1

t
− a

√

log
1

t
log log log

1

t

)

This tends to zero as t→ 0, so is bounded for t ∈ (0, δ].

Hence

ω(D) ≤ Cϕ2a(|D|),
so

ω(E) ≤ C
∑

j

ϕ2a(2rj/C) ≤ C
∑

j

ϕ2a(rj) ≤ Cǫ.

Since ǫ was arbitrary, we have proven the theorem. �



A triod is a union of three closed Jordan arcs that are disjoint except for sharing

a common endpoint. Homeomorphic to a “Y”.

Theorem 9.3. (Moore’s triod theorem) any collection of disjoint triods in

the plane is countable.

Corollary: If f : D → Ω is conformal then there is a set E ⊂ T of full measure

so that f has non-tangential limits on E and it at most 2-to-1 on E.

●



Proof. If there is an uncountable such collection. then must be integers n,m

and distinct rationals r1, r2, r3 with |ri− rj| > 2/m all i, j and an uncountable

subset of triods so that if x is the common endpoint of a triod T then the three

arcs first intersect {|z−x| = 1/n} within angle 1/m of the arguments r1, r2, r3.

Since any uncountable set has a finite accumulation point, it is easy to drive a

contradiction. �



Theorem 9.4. Suppose f : D → Ω is a conformal map onto a simply

connected domain. If E ⊂ T has positive length, then there is subset F ⊂ E

of positive length so that f (WF ) is a Jordan domain.

Proof. Let E1 ⊂ T be where f has a radial limit and define d : E×E → [0,∞)

as d(z, w) = |f (x)− f (y)|. Let
E1 = {z ∈ E : d(z, w) = 0 only if w = z},

E2 = {z ∈ E : d(z, w) = 0 for exactly one w 6= z}.
By Moore’s triod theorem, E \ (E1 ∪ E2) is a countable set, hence has linear

measure zero. For each n let

En
2 = {z ∈ E2 : d(z, w) = 0, |z − w| < 1

n
implies z = w}.

Since ∪nEn
2 = E2 and these sets are nested, the length of En

2 converges to the

length of E2.



If X ⊂ T has positive measure, then so does either X ∩ E1 or X ∩ E2. If the

former has positive measure, then consider X ∩ E1 ∩ Fm, where {Fm} are of

measure ≥ 1− 1/m with f having nontangential limits on Fm, and m is chosen

so large that X ∩E1 ∩Fm has positive measure. If we take F to be a compact,

positive length subset of this set, then f is continuous on WF and is 1-to-1 on

the whole boundary, so f (WF ) is a Jordan domain.

If X ∩ E2 has positive length, then so does X ∩ En
2 for some n. Fix such an n

and choose an interval I of length 1/2n so that I ∩ X ∩ En
2 also has positive

length. Then the radial limits of f are 1-to-1 restricted to this set, and the proof

is finished exactly as above. �



Corollary 9.5. Harmonic measure for a general simply connected domain

gives full measure to a set of σ-finite 1-measure, and Makarov’s LIL holds.

Sketch of proof. If Ω is a simply connected domain, then any subset of ∂Ω of

positive harmonic measure also has positive harmonic measure for some Jordan

subdomain of Ω.

Thus harmonic measure for Ω dominated by a countable sum of harmonic mea-

sures for Jordan domains and thus gives full measure to σ-finite length.

On the the other hand if harmonic measure for Ω gave positive measure to a set

of zero ϕ-measure (ϕ as in Makarov’s LIL), then some Jordan domain would

also give it positive measure, a contradiction. �



10. The F. and M. Riesz Theorem



Lemma 10.1 (Jensen’s Formula). If f is analytic on the unit disk with zeros

{zn}N1 in D(0, r), and suppose f (0) 6= 0 and f has no zeros on the circle

{|z| = r}. Then

|f (0)|
N
∏

n=1

r

|zn|
= exp

(

1

2π

∫ 2π

0

log |f (reiθ)|dθ
)

.



Proof. Let

B(z) =
N
∏

n=1

r2 − z̄nz

r(zn − z)
.

then B and f have the same zeros and |B| = 1 on the circle {|z| = r}. Thus
g = f/B is analytic in D(0, r), never vanishes in this disk. Thus log |g| is
harmonic in D(0, r), so by the mean value property

log |g(0)| = 1

2π

∫ 2π

0

log |g(reiθ)|dθ.

Since |g| = |f | on the circle of radius r and |f (0)| = |g(0)||B(0)| = |g(0)|∏N
n=1

r
|zn|,

we get the desired equality. �



Hardy space: for f holomorphic on the disk, and 1 ≤ p <∞ let

‖f‖pp = sup
0≤r<1

∫ 2π

0

|f (re−θ)|pdθ.

This is a Banach space Hp. Some properties:

• Non-tangential limits exist a.e. on circle.

• Boundary limits f ∗are in Lp

• f (reiθ) → f ∗(eiθ) in Lp norm

• f is the Poisson integral of its boundary values.

• Zeros of Hp function satisfy
∑

1− |zn| <∞ (iff).

• H∞ denotes bounded holomorphic functions on disk.



Lemma 10.2. If f ∈ H1 is not the constant zero function, then the bound-

ary values f ∗ satisfy |f ∗(eiθ)| > 0 for almost every θ.

This is a generalization of the much simpler fact that an analytic function on

the disk cannot vanish on an interval of the circle.

Proof. Suppose f ∈ H1 did have boundary values which vanish on a set of

positive measure E on the boundary. By replacing f (z) by f (z)/zk for some k,

if necessary, we may assume f (0) 6= 0. Let

E+ = {|f ∗| ≥ 1} = {log |f ∗| ≥ 0},
E− = {|f ∗| < 1} = {log |f ∗| < 0}.



Then since log x ≤ x for x ≥ 1, for any 0 < r < 1,
∫

E+

log |f (reiθ)|dθ| ≤Mf (reiθ)dθ ≤ C‖f‖1.

On the other hand, for any ǫ > 0 there is an r0 so that if r > r0 then |f (reiθ)| < ǫ

on a set of θ’s of measure > |E|/2. Thus
∫

E−
log |f (reiθ)|dθ ≤ 1

2
H1(E) log ǫ

Combining the two estimates we get

lim
r→1

∫ 2π

0

log |f (reiθ)|dθ| = −∞,

which implies |f (0)| = 0, a contradiction, Thus |f ∗| > 0 almost everywhere. �



Theorem 10.3 (F. and M. Riesz, Version 1). Suppose µ is a finite measure

on the unit circle. Then
∫

f (eiθ)dµ(θ) = 0,

for every analytic function on the disk with continuous boundary values,

iff dµ(θ) = h(eiθ)dθ for some H1 analytic function with h(0) = 0. In

particular, µ is mutually absolutely continuous with respect to Lebesgue

measure.



Proof. Suppose µ annihilates analytic functions. Let h be the Poisson integral

of µ, then h is clearly harmonic and satisfies

‖h‖H1 = sup
r

∫ 2π

0

|h(reiθ)|dθ < ‖µ‖.
In fact, h must be analytic since for all n ≥ 1,

∫ 2π

0

h(reiθ)(reiθ)ndθ =

∫ 2π

0

[

∫ 2π

0

Pr(e
i(θ−ψ))dµ(ψ)](reiθ)ndθ

=

∫ 2π

0

[

∫ 2π

0

Pr(e
i(θ−ψ))(reiθ)ndθ]dµ(ψ)

= rn
∫

zndµ(z)

= 0,

Thus h is in the Hardy space H1(D), and so h is the Poisson integral of its

boundary values, i.e., dµ = h∗dθ, as desired. Since µ kills constants, it must

have mean value 0, hence h(0) = 0. The other direction follows easily from the

Cauchy integral formula. �



We say that a connected set is rectifiable if it has finite 1-dimensional measure.

It is easy to check that if K is locally rectifiable, then it is locally connected.

Thus if Ω is a simply connected domain with rectifiable boundary, ∂Ω is locally

connected so by Carathéodory theorem any Riemann mapping of the disk onto

Ω extends continuously to the boundary.

Theorem 10.4. If Φ is univalent mapping of the unit disk onto a simply

connected domain with rectifiable boundary, then Φ′ ∈ H1. In particular,

Φ′ has finite, non-zero, non-tangential limits almost everywhere.



Proof. Since
∫ 2π

0 |Φ(reiθ)|dθ is the length of the image of circle {|z| = r} we

only have to check that these lengths remain uniformly bounded as r → 1.

Since ∂Ω is rectifiable, it is locally connected, so Φ extends continuous to every

boundary point. Thus every point in ∂Ω is the endpoint of a curve which is the

image of a radius of the disk under Φ.

By the Moore triod theorem (Theorem 9.3) only a countable subset of ∂Ω can

be the endpoints of three or more such rays.



Now cover {|z| = r} by intervals {Ij} of length 1 − r and centered at points

{zj}. Let {Jj} be the radial projections of these intervals onto the unit circle.

Since ω(zj, Jj,D) is clearly bounded away from zero, Beurling’s estimate and

Koebe’s theorem implies

H1(Φ(Jj)) ≥ diam(Φ(Jj)) ≥ Cdist(Φ(z), ∂Ω) ≥ C(1− r)|Φ′(zj)|.



Moreover, Moore’s theorem implies that
∑

j 1Φ(Jj)(x) ≤ 2 except possibly on a

countable set.

Since log f ′ is a Bloch function there is a uniform C < ∞ such that if f is

univalent on the unit disk and z0 ∈ D, D = D(z0,
1
2(1− |z0|), then

C−1 ≤ maxD |f ′(z)|
minD |f ′(z)| ≤ C.



Therefore, if d = 1− |z0| and I is the interval of length d centered at z0/|z0|,
∫

I

|Φ′(reiθ)|dθ ≤ C|I||Φ′(zj)|.

Using this and summing over the points {zj}, we get
∫ 2π

0

|Φ′(reiθ)|dθ ≤ C(1− r)
∑

j

|Φ′(zj)|

≤ C
∑

j

H1(Φ(Jj))

≤ 2CH1(∂Ω). �



Theorem 10.5 (F. and M. Riesz Theorem, Version 2). Suppose that Φ is

a univalent map of D onto a simply connected domain Ω with rectifiable

boundary. Suppose E ⊂ T. Then H1(E) = 0 iff H1(Φ(E)) = 0. In other

words, harmonic measure on ∂Ω is mutually absolutely continuous to 1-

dimensional Hausdorff measure.

Proof. Since Φ is smooth inside the unit disk we have

Φ(reiθ1)− Φ(reiθ2) =

∫ θ2

θ1

Φ′(reiθ)ireiθdθ,

for any 0 < r < 1. Clearly the left hand side converges to

Φ(eiθ1)− Φ(eiθ2),

as r → 1.



By Theorem 10.4 Φ′ ∈ H1, so the radial maximal function of Φ′ in is L1. Thus

we may use the Lebesgue dominated convergence theorem to deduce the left

hand side converges to
∫ θ2

θ1

Φ′(eiθ)ireiθdθ,

Therefore,

Φ(eiθ1)− Φ(eiθ2) =

∫ θ2

θ1

Φ′(reiθ)ieiθdθ,

for all θ1, θ2. This implies Φ is absolutely continuous on the unit circle. Thus if

E ⊂ T has zero length we have

H1(Φ(E)) ≤
∫

E

|Φ′|dθ = 0.



Conversely, if E has positive length, then the boundary values of Φ′ are non-zero

almost everywhere on E, so there is a subset F ⊂ E so that Φ′ only takes values

in a ball D0 = D(x, |x|/2) on the set F .

Let W be the union on Stolz cones with vertices on F (and angle close to π)

and let Γ be the boundary of W .

Then using the existence of non-tangential limits we can find a subarc of γ of Γ

which hits F in positive measure and on which Φ′ on takes values in D0. Then

Φ is bi-Lipschitz on this arc and so F is mapped to a set of positive length. This

completes the proof. �



11. McMillan’s Twist Point Theorem



Suppose γ is an analytic Jordan curve defined on [0, 1] such that γ(0) = 0 and

γ(1) = 1. If x is a point not on γ we can define the winding w(x, γ) of γ around

x by taking

arg(0− x)− arg(1− x),

where we take a continuous branch of arg(z − x) defined on γ.

Since the curve is analytic it has a well defined tangent at each endpoint, so

we can also define the windings at the endpoints by truncating the curve and

taking limits.

We can also define the change of argument of γ′ as arg(γ′(0))−arg(γ′(1)) where

again we choose a continuous branch of arg.



Lemma 11.1.

|2π[w(0, γ) + w(1, γ)]− [arg(γ′(0)− arg(γ′(1))]| ≤ 4π.

Proof. If γ is a line segment then there is nothing to do. Otherwise, because

of analyticity we may assume γ hits [0, 1] only finitely often. Replace γ by

a homotopic smooth curve which intersects [0, 1] the least number of times

among all curves homotopic to γ by a homotopy which is the identity in some

neighborhood of 0 and 1 (thus 0 and 1 are fixed and so are the tangent direction

at these points). The two quantities

w(0, γ) + w(1, γ), arg(γ′(0)− arg(γ′(1)),

are invariant under such homotopies (since they can only take a discrete set of

values, they can not be changed under continuous deformations), so it suffices

to prove the result for the new curve.



So we assume γ has the minimum number of intersections with [0, 1], say {0 =
y0, y1, y2, . . . yn = 1}, which map via γ−1 to points say {0 = x0, x1, x2, . . . xn =

1} ⊂ [0, 1]. Divide γ into oriented subarcs γi = γ|[xi,xi+1]. Then γi is a Jordan

arc with endpoints on [0, 1], but otherwise disjoint from [0, 1]. The three possible

types of arcs (up to a homeomorphism of the plane mapping [0, 1] to itself) are

shown in the figure below. We denote the three types as 1,2 and 3.

1 2

3



Except at the points 0 and 1 its makes sense to say that γi approaches it end-

points from either “above” or “below” [0, 1]. For each xi with 0 < i < n it is

easy to see that γi−1 and γi approach from different sides; otherwise there would

be a smooth homotopy which removes the intersection at xi, thus lowering the

total number of intersections.

Similarly, none of these subarcs can be of type 1. Otherwise, using the fact

that γi−1 and γi+1 approach xi and xi+1 respectively from the opposite side we

can homotopy γi across [0, 1] thus removing the intersections at both xi and

xi + 1. Thus the subarcs of γ must be either type 2 or 3.



We say that γi is “good” if yi+1 > yi and is “bad” if yi+1 < yi. We first claim

that the minimality of γ implies there are no bad subarcs.

Suppose that there are bad arcs. We will consider two cases.

First suppose there is a bad arc of type 2. Then there is a bad arc γi of type

2 with endpoint yi as close to 1 as possible (i.e., farthest to the right among

all bad type 2 arcs). Then the preceding arc must be type 2 as well (see the

figure), but this is only possible it is bad as well with a larger endpoint. This is

a contradiction and implies that there are no bad arcs of type 2.
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Now suppose all the bad arcs are type 3. Choose γi to be the last bad arc in

the ordering of γ. Then γi+1 is good and must be type 2. Topologically, the

only possibilities for γi−1 are that it is type 1 or is a bad arc of type 2. Both are

ruled out by hypothesis, so we deduce there are no bad arcs.

γ
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We can now finish the proof. Replace γ by a homotopic arc where the homotopy

is the identity except in small neighborhoods of each intersection point yi, 0 <

1 < n and in those neighborhoods the curve is changed so that γ′ is horizontal

and points to the right as γ crosses [0, 1]. Then for each subarc γi the tangents

points the same direction at either endpoint. Thus the change in argument of

γ′ along each γi is a multiple of 2π. There are only a few cases and it is each

of them it is trivial to check that the change in argument of γ′ is 2π times

w(0, γi) + w(1, γi) where w(z, γ) denotes the change in arg(y − z) for some

branch of the argument function defined on γ.

By summing over i we now get that the change of argument of γ′ on [x1, xn−1

is equal to 2π times w(0, γ|[x1,xn−1]) + w(1, γ|[x1,xn−1]). Adding in the two end

intervals γ0 and γn−1 can only alter the equality by a factor of at most 2π each

so we obtain the lemma. �



If Ω is simply connected we say x ∈ ∂Ω is an inner tangent point of Ω if for

any ǫ > 0 x is the vertex of a cone in Ω with angle π− ǫ, but is the vertex of no

cone with angle > π. We say that x is a cone point if it is the vertex of some

cone in Ω.



Lemma 11.2. If Ω is simply connected then the set of cone points has

σ-finite 1-dimensional measure and almost every cone point is an inner

tangent point.

Proof. By considering cones with rational angles and radius, we can write the

set of cone points as a countable union of sets, each of each are the vertices of

cones in Ω with fixed side directions and diameters. It clearly suffices to prove

the claims for any such set.



Let F ⊂ ∂Ω be the set of points x ∈ ∂Ω so that

Wx = {x + z : |z| < r, | arg(−iz)| ≤ ǫ}} ⊂ Ω.

By again dividing into a countable number of subsets we may assume that F is

contained in the rectangle R = {z : |Im(z)| < r/10, |Re(z)| < rǫ/10}.

Let W = ∪x∈FWx. Then R ∩ ∂W is graph of a Lipschitz function (norm

depending only on ǫ), and hence is rectifiable. Since it contains F , F has finite

1-dimensional measure and a.e. point of F is a tangent point of the arc.

Thus almost every point of F is an inner tangent of W and hence of Ω. �



A point x is called a twist point for Ω if for any branch of arg(z− x) defined on

Ω we have

lim sup
z→x,z∈Ω

arg(z − x) = ∞,

and

lim inf
z→x,z∈Ω

arg(z − x) = −∞.

Thus to approach a twist point x through Ω we must “twist around” x arbitrarily

far in both directions. It is difficult to draw a twist point on the boundary for

a point with one twist), but we shall see later that such things can exist. For

example, harmonic measure on the von Koch snowflake gives full measure to the

twist points (see the exercises).



Theorem 11.3 (McMillan’s Twist Point Theorem). If Ω is a simply con-

nected domain then almost every point on ∂Ω (with respect to harmonic

measure) is either an inner tangent point or a twist point.

Proof. The proof is essentially Plessner’s theorem. Let Φ : D → Ω be a Riemann

mapping and apply Plessner’s theorem to the derivative Φ′. Plessner’s theorem

says that we can write T = E0 ∪ E1 ∪ E2 where E0 has measure zero, Φ′ has

non-zero non-tangential limits at every point of E1 and Φ′ is non-tangentially

dense at every point of E2.



Clearly the set Φ(E1) ∪ Φ(E2) has full harmonic measure on ∂Ω.

Moreover, we saw in the last section that Φ(E1) ⊂ ∂Ω consists of inner tangents.

Thus if we can show that Φ(E2) consists of twist points almost everywhere (with

respect to harmonic measure) we will be done.

In fact, all we have to do is produce a sequence of points zn ∈ Ω with arg(zn −
x) → +∞ and another with arguments tending tending to −∞.



To prove this, suppose it fails. Then there is a set F of positive measure on T

on which Φ has nontangential limits, Φ′ is non-tangentially dense but

arg[Φ(reiθ)− Φ(eiθ)],

remains bounded above as r → 1. We will show this is impossible.

Since Φ′ is non-tangentially dense on F , so is log Φ′ = log |Φ′|+ i arg Φ′. Hence

arg Φ′ must be non-tangentially unbounded above and below by Plessner’s the-

orem.

There is a M so that the images of the rays [0, eiθ) have length less than M

except on a set of measure |F |/2. So be replacing F by a set of half the measure

we may assume of the associated rays have bounded length.



Let θ0 ∈ F be a point of density and consider a sequence {zn} → 1 so that

arg Φ(zn) → +∞.

Fix a large N and choose an n so large that arg Φ′(zn) > 4π(N + 1). Let

γ = Φ([0, zn) be the image of the radial segment from 0 to zn.

The change of argument of γ′ from one endpoint to the other is | arg Φ′(zn)|. By
Lemma 11.1 the curve γ “winds around” one of its endpoints at least N times.

It does not wind around the origin arbitrarily often since Φ has a non-zero radial

limit at x.



More precisely, we proved earlier that if the argument of γ′ changes by more

than 4π(N + 1) between its two endpoints then

w(a, γ) + w(b, γ) ≥ 2N,

By rescaling we may assume Φ′(0) = 1. So by Koebe’s theorem there is a disk

D0 ⊂ Ω of diameter similar to 1 that γ never re-enters once it leaves. Moreover,

γ does not wind around 0 inside this disk.

In order to wind around a = Φ(0), γ must wind around the disk and since it

has length at most M , it can wind around 0 at most M/2π times. If N was

chosen large enough, we see that most of the winding of γ must be around the

point b = Φ(rx).



We would like to deduce that the curve γ also winds around the point Φ(eiθ0),

but this may not be true. Instead we will show that there is another point in F

near b around which the curve does wind.

Recall that θ0 was chosen to be a point of density of F . So if |zn| is close enough
to 1, more that half the interval of length 1 − |zn| centered at eiθ0 consists of

points in F .



We can find a point x in F so that x can be connected to b in Ω by a curve of

length at most Cdist(b, ∂Ω). Just as we argued for the origin above, this curve

cannot wind around b more than a bounded number of times. This implies

that the winding of γ around b and around x can differ by at most a bounded

factor. Thus the winding of γ around x must be very large. This contradicts

the assumption that x ∈ F , proving the theorem. �



Corollary 11.4. Suppose Ω is simply connected and let E be a subset of

the cone points on ∂Ω. Then E has positive harmonic measure iff it has

positive length.

Proof. First suppose E has positive length. Then pass to a subset of positive

measure contained in a rectangle R exactly as in the proof of Lemma 11.2 and

letW be the union of cones constructed there. ThenW1 = W∩R is a rectifiable

subdomain of Ω which hits E in positive length. By the F. and M. Riesz theorem

Theorem 10.5 E has positive harmonic measure in W1 and hence in Ω by the

maximum principle.



Next suppose E has positive harmonic measure. Let Φ be a Riemann mapping

of D to Ω. Then F = Φ−1(E) has positive length and Φ′ has a non-zero non-

tangential limit at almost every point of F . Therefore we can find a α > 0,

M < ∞ and a subset F0 ⊂ F of positive measure so that |Φ′| ≤ M on every

Stolz cone of angle α with vertex in F0.

Let W2 be the union of these cones. Then W has rectifiable boundary, and |Φ′|
is bounded on ∂W2, so Φ(W2) is a subdomain of Ω with rectifiable boundary. By

Theorem 10.5 again, Φ(F0) has positive length (since it has positive harmonic

measure) and hence so does E. �



12. Singular harmonic measures



Two measures µ and ν are called mutually absolutely continuous if they have

the same null sets, i.e., µ(E) = 0 if and only if ν(E) = 0. The measures are

called mutually singular if each is supported on a null set of the other, i.e.,

there is a set E with µ(E) = 0 but ν(Ec) = 0.

Suppose Γ is a closed Jordan curve which divides the Riemann sphere C∞ into

two simply connected domains Ω1 and Ω2. If we choose two points on the same

side of Γ then the two harmonic measures will be mutually absolutely continuous

with respect to each other. But what happens if we choose points from opposite

sides of the curve? Can the two measures be mutually singular?



We have already see that harmonic measure for a simply connected domain

Ω is mutually absolutely continuous with H1 on the set of inner tangents. A

point of Γ is called a tangent point if it is an inner tangent for each of the

two complementary domains. Thus the ω1 and ω2 are mutually absolutely

continuous when restricted to the set tangent points of Γ. The following result

says they are mutually singular on the rest of Γ.



Theorem 12.1. Suppose z1 ∈ Ω1, z2 ∈ Ω2 and let ω1, ω2 denote the cor-

responding harmonic measures. Then ω1 and ω2 are mutually absolutely

continuous on the set of tangent points of Γ and are mutually singular on

the rest of Γ. In particular, ω1 ⊥ ω2 iff H1(tangent points) = 0.

This result follows from the proof of Makarov’s theorem and an estimate of

harmonic measure due to Beurling.



The part of the proof of Makarov’s theorem we need can be summarized as

Lemma 12.2. Suppose Ω is simply connected and let ω be harmonic mea-

sure with respect to some point in Ω. If T ⊂ ∂Ω denotes the set of inner

tangents then there is an F ⊂ ∂Ω \ T ω(F ) = ω(∂Ω \ T ) such that for any

M > 0 there is a disjoint covering of F by disks {Dj} with ω(Dj) ≥M |Dj|.



The estimate of Beurling we want is

Lemma 12.3. Suppose Γ is a closed Jordan curve dividing the sphere into

two simply connected domains Ω1,Ω2. Let zi ∈ Ωi satisfy dist(zi, ∂Ω1) for

i = 1, 2. Then there is a C <∞ so that for any disk D,

ω1(D)ω2(D) ≤ C|D|2.

Proof. This follows from an estimate of harmonic measure known as the Ahlfors

distortion theorem. Suppose Ω is simply connected and x ∈ ∂Ω. For each

t > 0, let θ(t) denote the length of the longest arc in Ω ∩ {|z − x| = t}. Then
if dist(z0, ∂Ω) ≥ 1, the distortion theorem says

ω(z0, D(x, r),Ω) ≤ C exp(−π
∫ 1

r

dt

θ(t)
).



To apply this to our situation, let x ∈ Γ and let θi(t) be the function corre-

sponding to Ωi for i = 1, 2. The multiplying the estimates for each domain

gives

ω1(D)ω2(D) ≤ C exp(−π
∫ 1

|D|
(

1

θ1(t)
+

1

θ2(t)
)dt).

Since Ω1 and Ω2 are disjoint, θ1+ θ+ 2 ≤ 2πt and so a simple calculus exercise

shows that θ−1
1 + θ−1

2 ≥ 2/πt. Thus

ω1(D)ω2(D) ≤ C exp(−π
∫ 1

|D|

2πt

d
t) = C|D|2,

as desired. �



Proof.We can now prove the singularity of harmonic measures. Divide Γ into:

(1) Tangent points,

(2) Twist points,

(3) Inner tangents for Ω1 which are not inner tangents for Ω2,

(4) Inner tangents for Ω2 which are not inner tangents for Ω1,

(5) Everything else.

We already know that the harmonic measures are mutually absolutely continu-

ous on (1) and that (5) has zero harmonic measure from both sides. Moreover,

ω2 gives zero mass to (3), so the measures are singular on that set. Similarly

for (4). Therefore all we need to show is that the measures are singular on the

twist points.



Choose a large n and by the first lemma choose disjoint disks {Dn
j } so that

ω1(D
n
j ) ≥ n|Dn

j |, ⇒ |Dn
j |2 ≤ ω1(D

n
j )

2/n2,

ω(∪jDn
j ) = ω1(twist points).

Then if F = ∩n ∪k>n ∪jDk
j , we have

ω1(F ) = ω1(twist points),

but by Beurling’s estimate,

ω2(F ) ≤
∑

j

C|Dn
j |2

ω1(Dn
j )

≤ C

n2

∑

j

ω1(D
n
j ) ≤

C

n2
→ 0.

Thus the measures are singular on the twist points. �
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