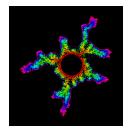
Scaling Limits of Laplacian Random Growth Models

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK



イロト 不同 トイヨト イヨト

э

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Biological growth

Photo by James Wearn

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Biological growth

Gift by Sir Alexander Fleming to Edinburgh University Library, Scotland

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Mineral deposition

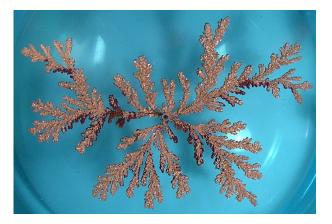


Photo by Kevin R Johnson

イロン イロン イヨン イヨン

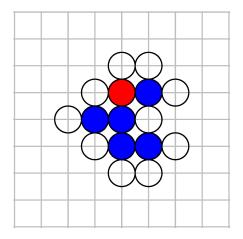
Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Mineral deposition

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Lattice models for random growth

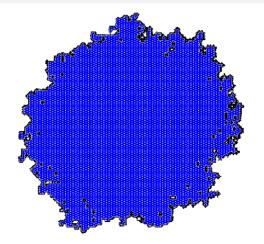


ヘロト ヘロト ヘヨト ヘヨト

э

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

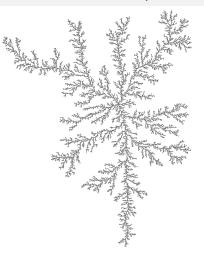
Eden model for biological growth (1,500 particles)



Simulation by H.J. Herrmann

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

DLA cluster for mineral deposition (2,000 particles)



Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Scaling Limits of Laplacian Random Growth Models

👝 Simulation by Vincent Beffara 🛛 🖉 🔿 🔍 (~

Other lattice models for random growth

- Dielectric breakdown models (DBM)
- Internal diffusion-limited aggregation (IDLA)
- First passage percolation (FPP)
- Interface models: ballistic deposition, corner growth model, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

What do we know about DLA?

Not much!

• H. Kesten: At time t DLA is contained in a ball of radius $t^{2/3}$.

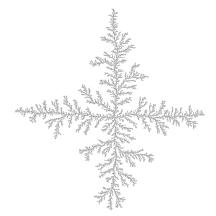
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

No proof DLA does not converge to a ball.

 Main open problems: Existence of universal limit. Growth rate of the cluster. Structure of the limiting set (e.g. fractal dimension). Number of arms.

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

DLA cluster of size 4,096

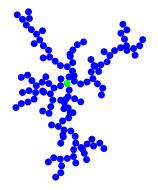


Simulation by Vincent Beffara

< ロ > < 回 > < 回 > < 回 > < 回 >

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Off-lattice DLA



Ball shaped particles perform BM (from infinity) until they attach to the aggregate.

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Harmonic measure

- The attachment point is distributed according to harmonic measure on the cluster boundary (from infinity).
- By conformal invariance of BM, harmonic measure is conformally invariant.
- An algorithm for sampling a boundary point of a set A: Let D_0 denote the exterior unit disk in the complex plane \mathbb{C} and let $\Phi : D_0 \to A^c$ be conformal. Choose a point $y \in \partial D_0$ uniformly. Then take $\Phi(y)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

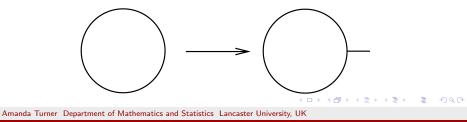
Conformal mapping representation of a slit-shaped particle

Let *P* denote the slit $[1, 1 + \delta]$ in the complex plane.

There exists a unique conformal mapping $F: D_0 \to D_0 \setminus P$ that fixes ∞ in the sense that

$${\sf F}(z)=e^{c}z+O(1)$$
 as $|z| o\infty,$

for some c>0, the (log of the) capacity, which satisfies $e^c=1+rac{\delta^2}{4(1+\delta)}.$



Conformal mapping representation of a cluster

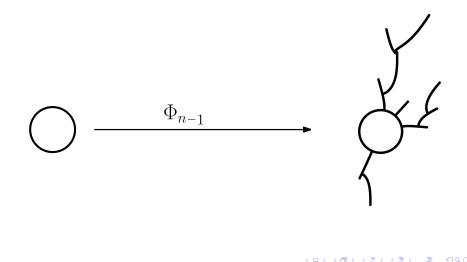
Suppose P₁, P₂,... is a sequence of particles, where P_n has capacity c_n (or length δ_n) and attachment angle Θ_n, n = 1, 2, Let F_n be the particle map corresponding to P_n.

• Set
$$\Phi_0(z) = z$$

- Recursively define $\Phi_n(z) = \Phi_{n-1} \circ F_n(z)$, for n = 1, 2, ...
- This generates a sequence of conformal maps $\Phi_n : D_0 \to K_n^c$, where $K_{n-1} \subset K_n$ are growing compact sets, which we call clusters.

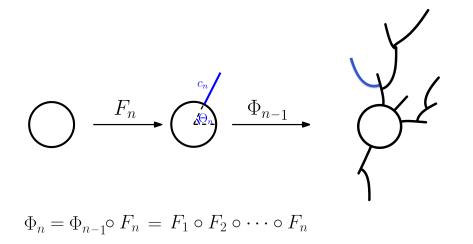
Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Cluster formed by iteratively composing mappings



Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Cluster formed by iteratively composing mappings



・ロト ・回ト ・ヨト ・ヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK Scaling Limits of Laplacian Random Growth Models

Parameter choices for physical models

- By varying the sequences {Θ_n} and {c_n}, it is possible to describe a wide class of growth models.
- For biological growth (Eden model)

$$\mathbb{P}(\Theta_n \in (a,b)) \propto \int_a^b |\Phi_{n-1}'(e^{i heta})| d heta$$

and

$$c_n \approx c |\Phi'_{n-1}(e^{i\Theta_n})|^{-2}$$

For DLA, *c_n* is as above and

$$\mathbb{P}(\Theta_n \in (a,b)) = \mathbb{P}(\Phi_{n-1}^{-1}(B_{\tau}) \in (a,b)) \propto (b-a)$$

where B_t is Brownian motion started from ∞ and τ is the hitting time of the cluster K_{n-1} .

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Further examples of Laplacian models within this framework

• Hastings-Levitov family, $HL(\alpha)$ [1998]:

• θ_n are i.i.d. $U(-\pi, \pi)$ random variables;

$$c_n = c |\Phi'_{n-1}(e^{i\theta_n})|^{-\alpha}.$$

Dielectric-breakdown models, DBM(η) [due to Hastings, 2001, and Mathiesen-Jensen, 2002]:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

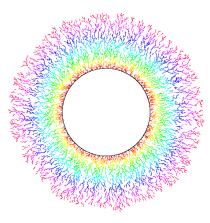
•
$$\theta_n$$
 distributed $\propto |\Phi'_{n-1}(e^{i\theta})|^{1-\eta} d\theta$
• $c_n = c |\Phi'_{n-1}(e^{i\theta_n})|^{-2}$.

Aggregate Loewner Evolution, ALE(α, η, σ) [due to Sola-Viklund-T., 2019]:

•
$$\theta_n$$
 distributed $\propto |\Phi'_{n-1}(e^{\sigma+i\theta})|^{-\eta}d\theta;$
• $c_n = c|\Phi'_{n-1}(e^{\sigma+i\theta_n})|^{-\alpha}.$

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

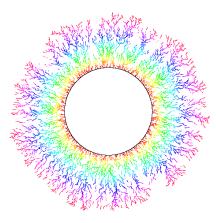
HL(0) cluster with 8,000 particles for $c = 10^{-4}$



イロト イボト イヨト イヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

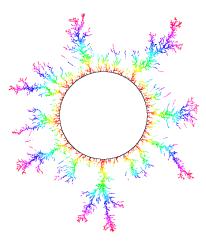
"Eden" cluster with 8,000 particles for $c = 10^{-4}$



イロト イロト イヨト イヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

"DLA" cluster with 8,000 particles for $c = 10^{-4}$

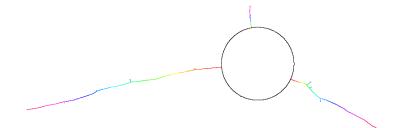


・ロト ・四ト ・ヨト ・ヨト

э

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

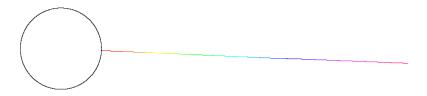
ALE(0,2,10⁻⁸) cluster with 10,000 particles for $c = 10^{-4}$



・ロト ・四ト ・ヨト ・ヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

ALE(0,4,10⁻⁸) cluster with 10,000 particles for $c = 10^{-4}$



ヘロト ヘロト ヘヨト ヘヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Previous results for HL(0)

Much of the previous work relates to HL(0) as particle maps are i.i.d. so the model is mathematically the most tractable.

- Norris and Turner (2012):
 - small-particle scaling limit of HL(0) is a growing disk: $\Phi_n(z) \approx e^{cn}z$
 - branching structure is related to the Brownian web
 - expected size of the n^{th} particle is roughly $\delta \exp cn$, so HL(0) is "unphysical".

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 Silvestri (2017): fluctuations converge to a log-correlated Fractional Gaussian Field.

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Loewner chain representation

Define the driving measure $\mu_t = \delta_{e^{i\xi_t}}$, where

$$\xi_t = \sum_{k=1}^N \Theta_k \mathbb{1}_{(C_{k-1}, C_k]}(t),$$

with $C_k = \sum_{j=1}^k c_k$, for angles $\{\Theta_k\}$ and capacities $\{c_k\}$ as above. Consider the solution to the Loewner equation

$$\partial_t \Psi_t(z) = z \Psi_t'(z) \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} d\mu_t(e^{i\theta}),$$

with initial condition $\Psi_0(z) = z$.

Then

$$\Phi_n = \Psi_{C_n}, \quad n = 0, 1, 2, \dots$$

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Continuity properties of the Loewner equation

- Solutions to the Loewner equation are close if the driving measures are close in some suitable sense.
 - Suppose $\mu^n = {\mu_t^n}_{t \ge 0}$, n = 1, 2, ..., and $\mu = {\mu_t}_{t \ge 0}$ are families of measures on the unit circle \mathbb{T} .
 - Let Ψ_t^n be the solution to the Loewner equation corresponding to μ^n and Ψ_t be the solution corresponding to μ .
 - To show that $\Psi_t^n \to \Psi_t$ uniformly on compact subsets of D_0 , it is enough to show that

$$\int_{\mathbb{T}\times[0,\infty)} f(e^{i\theta},t) d\mu_t^n(e^{i\theta}) dt \to \int_{\mathbb{T}\times[0,\infty)} f(e^{i\theta},t) d\mu_t(e^{i\theta}) dt$$

イロン 不得 とうほう イロン 二日

for all continuous functions f in $\mathbb{T}\times [0,\infty)$ with compact support.

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Proof of disk scaling limit for HL(0)

If μ^{c} is the driving measure for HL(0) then $\mu^{c}_{t} = \delta_{e^{i\xi_{t}}}$, where

$$\xi_t = \sum_{k=1}^{\infty} \Theta_k \mathbb{1}_{(c(k-1),ck]}(t).$$

Set $n(t) = \lfloor t/c \rfloor$. Then, if f is supported on $\mathbb{T} \times [0, T]$,

$$\int_{\mathbb{T}\times[0,\infty)}f(e^{i\theta},t)d\mu_t^cdt=c\sum_{k=1}^{n(\mathcal{T})}f(e^{i\Theta_k},c(k-1))+o(c).$$

When μ is the uniform measure on $[0, 2\pi)$,

$$\int_{\mathbb{T}\times[0,\infty)}f(e^{i\theta},t)d\mu_t dt=\frac{1}{2\pi}\int_0^T\int_0^{2\pi}f(e^{i\theta},t)dt.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Proof of disk scaling limit for HL(0) (cont.)

By Riemann approximation,

$$rac{c}{2\pi}\sum_{k=1}^{n(T)}\int_0^{2\pi}f(e^{i heta},c(k-1))d heta
ightarrow rac{1}{2\pi}\int_0^T\int_0^{2\pi}f(e^{i heta},t)dt,$$

so it is enough to show that

$$c\sum_{k=1}^{n(\mathcal{T})}\left(f(e^{i\Theta_k},c(k-1))-rac{1}{2\pi}\int_0^{2\pi}f(e^{i heta},c(k-1))d heta
ight)
ightarrow 0.$$

But this follows from the strong law of large numbers, since the $f(e^{i\Theta_k}, c(k-1))$ are independent with

$$\mathbb{E}(f(e^{i\Theta_k},c(k-1))) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta},c(k-1))d\theta.$$

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Example: Anisotropic Hastings-Levitov

- Suppose Θ_n are i.i.d. with density $h(\theta)$ on $[0, 2\pi)$.
- Suppose c_n = cg(Θ_n), for some bounded continuous function g on [0, 2π).
- Let Ψ_t solve

$$\partial_t \Psi_t(z) = z \Psi_t'(z) \int_0^{2\pi} \frac{z + e^{i\theta}}{z - e^{i\theta}} g(\theta) h(\theta) d\theta,$$

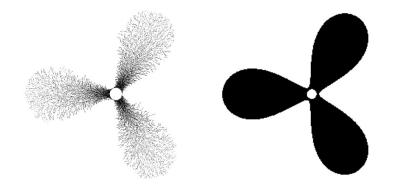
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

with initial condition $\Psi_0(z) = z$.

Theorem (Viklund, Sola, T. '12): Fix T > 0. As $c \to 0$, $\Phi_{n(T)} \to \Psi_T$ in probability.

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Clusters with non-uniform attachment angles



Simulations by Alan Sola

э

・ロト ・四ト ・ヨト ・ヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Previous results for $HL(\alpha)$ for $\alpha \neq 0$

All results for HL(α) with $\alpha \neq 0$ require regularization.

- Rohde and Zinsmeister (2005): estimates on the dimension of scaling limits for a regularized version of HL(α) under capacity rescaling.
- Sola, Turner, Viklund (2015): small-particle scaling limit of a sufficiently regularized HL(α) is a growing disk for all α.
- Liddle and Turner (2020): fluctuations for very regularized HL(α) under capacity rescaling.
- Norris, Turner, Silvestri (2019 and 2021): disk scaling limit and fluctuations for $HL(\alpha)$ when $\alpha \leq 1$ (under mild regularization).

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK Scaling Limits of Laplacian Random Growth Models

Singular-regime results for ALE(α, η, σ)

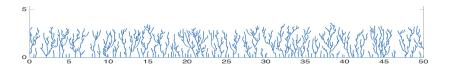
- Sola, Turner, Viklund (2019): scaling limit of ALE(α, η, σ) is a growing slit if α ≥ 0 and η > 1 when using slit particles, provided σ → 0 sufficiently fast as c → 0.
- Higgs (2021): scaling limit of ALE(0, η, σ) converges to a SLE₄ for η < −2 when using slit particles, provided σ is very small. Other SLE_κ's with κ > 4 can be obtained by using different particle shapes.

ヘロト ヘロト ヘヨト ヘヨト

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Other model variants

- Turnbull and Turner (2020): HL(0) with competition
- Berestycki and Silvestri (2021): Constrained HL(0)
- Berger, Turner, Procaccia (2021): Stationary HL(0)



Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Open questions / conjectures

Phase transitions

- From disks to non-disks
- From absolutely continuous support to singular support

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Universality
 - Of scaling limits
 - Of fluctuations
- Connections
 - Between model variants
 - With lattice models
 - With SLE
 - With GMC

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

References

[1] M.B.Hastings and L.S.Levitov, *Laplacian growth as one-dimensional turbulence*, Physica D 116 (1998).

[2] F.Johansson Viklund, A.Sola, A.Turner, *Small particle limits in a regularized Laplacian random growth model*, CMP, 334 (2015).

[3] J.Norris, V.Silvestri, A.Turner, *Scaling limits for planar aggregation with subcritical fluctuations*, arXiv:1902.01376.

[4] J.Norris, A.Turner, *Hastings-Levitov aggregation in the small-particle limit*, CMP, 316 (2012).

[5] S.Rohde, M.Zinsmeister *Some remarks on Laplacian growth,* Topology and its Applications, 152 (2005).

[6] A.Sola, A.Turner, F.Viklund, *One-dimensional scaling limits in a planar Laplacian random growth model*, CMP, 371 (2019).

[7] V.Silvestri, Fluctuation results for Hastings-Levitov planar growth. PTRF, 167 (2017).

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK