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Physical random growth models

Biological growth
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Biological growth
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Physical random growth models

Mineral deposition
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Discrete models for planar random growth

Lattice models for random growth
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Discrete models for planar random growth

Eden model for biological growth (1,500 particles)

Simulation by H.J. Herrmann
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Discrete models for planar random growth

DLA cluster for mineral deposition (2,000 particles)

Simulation by Vincent Beffara
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Discrete models for planar random growth

Other lattice models for random growth

Dielectric breakdown models (DBM)

Internal diffusion-limited aggregation (IDLA)

First passage percolation (FPP)

Interface models: ballistic deposition, corner growth model,
etc.
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Discrete models for planar random growth

What do we know about DLA?

Not much!

H. Kesten: At time t DLA is contained in a ball of radius t2/3.

No proof DLA does not converge to a ball.

Main open problems:
Existence of universal limit.
Growth rate of the cluster.
Structure of the limiting set (e.g. fractal dimension).
Number of arms.
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Discrete models for planar random growth

DLA cluster of size 4,096

Simulation by Vincent Beffara
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Conformal models for planar random growth

Off-lattice DLA

Ball shaped particles perform BM (from infinity) until they attach
to the aggregate.
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Conformal models for planar random growth

Harmonic measure

The attachment point is distributed according to harmonic
measure on the cluster boundary (from infinity).

By conformal invariance of BM, harmonic measure is
conformally invariant.

An algorithm for sampling a boundary point of a set A:
Let D0 denote the exterior unit disk in the complex plane C
and let Φ : D0 → Ac be conformal. Choose a point y ∈ ∂D0

uniformly. Then take Φ(y).
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Conformal models for planar random growth

Conformal mapping representation of a slit-shaped particle

Let P denote the slit [1, 1 + δ] in the complex plane.

There exists a unique conformal mapping F : D0 → D0 \ P that
fixes ∞ in the sense that

F (z) = ecz + O(1) as |z | → ∞,

for some c > 0, the (log of the) capacity, which satisfies

ec = 1 + δ2

4(1+δ) .
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Conformal models for planar random growth

Conformal mapping representation of a cluster

Suppose P1,P2, . . . is a sequence of particles, where Pn has
capacity cn (or length δn) and attachment angle Θn,
n = 1, 2, . . . . Let Fn be the particle map corresponding to Pn.

Set Φ0(z) = z .
Recursively define Φn(z) = Φn−1 ◦ Fn(z), for n = 1, 2, . . . .

This generates a sequence of conformal maps Φn : D0 → K c
n ,

where Kn−1 ⊂ Kn are growing compact sets, which we call
clusters.
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Conformal models for planar random growth

Cluster formed by iteratively composing mappings
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Conformal models for planar random growth

Cluster formed by iteratively composing mappings
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Conformal models for planar random growth

Parameter choices for physical models

By varying the sequences {Θn} and {cn}, it is possible to
describe a wide class of growth models.

For biological growth (Eden model)

P(Θn ∈ (a, b)) ∝
∫ b

a
|Φ′n−1(e iθ)|dθ

and
cn ≈ c |Φ′n−1(e iΘn)|−2

For DLA, cn is as above and

P(Θn ∈ (a, b)) = P(Φ−1
n−1(Bτ ) ∈ (a, b)) ∝ (b − a)

where Bt is Brownian motion started from ∞ and τ is the
hitting time of the cluster Kn−1.
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Conformal models for planar random growth

Further examples of Laplacian models within this
framework

Hastings-Levitov family, HL(α) [1998]:

θn are i.i.d. U(−π, π) random variables;
cn = c |Φ′n−1(e iθn)|−α.

Dielectric-breakdown models, DBM(η) [due to Hastings,
2001, and Mathiesen-Jensen, 2002]:

θn distributed ∝ |Φ′n−1(e iθ)|1−ηdθ;
cn = c |Φ′n−1(e iθn)|−2.

Aggregate Loewner Evolution, ALE(α, η, σ) [due to
Sola-Viklund-T., 2019]:

θn distributed ∝ |Φ′n−1(eσ+iθ)|−ηdθ;
cn = c |Φ′n−1(eσ+iθn)|−α.
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Simulations

HL(0) cluster with 8,000 particles for c = 10−4
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Simulations

“Eden” cluster with 8,000 particles for c = 10−4
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Simulations

“DLA” cluster with 8,000 particles for c = 10−4
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Simulations

ALE(0,2,10−8) cluster with 10,000 particles for c = 10−4
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Simulations

ALE(0,4,10−8) cluster with 10,000 particles for c = 10−4
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Previous results

Previous results for HL(0)

Much of the previous work relates to HL(0) as particle maps are
i.i.d. so the model is mathematically the most tractable.

Norris and Turner (2012):

small-particle scaling limit of HL(0) is a growing disk:
Φn(z) ≈ ecnz
branching structure is related to the Brownian web
expected size of the nth particle is roughly δ exp cn, so HL(0) is
“unphysical”.

Silvestri (2017): fluctuations converge to a log-correlated
Fractional Gaussian Field.
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Previous results

Loewner chain representation

Define the driving measure µt = δe iξt , where

ξt =
N∑

k=1

Θk1(Ck−1,Ck ](t),

with Ck =
∑k

j=1 ck , for angles {Θk} and capacities {ck} as above.

Consider the solution to the Loewner equation

∂tΨt(z) = zΨ′t(z)

∫ 2π

0

z + e iθ

z − e iθ
dµt(e

iθ),

with initial condition Ψ0(z) = z .

Then
Φn = ΨCn , n = 0, 1, 2, . . . .

Amanda Turner Department of Mathematics and Statistics Lancaster University, UK

Scaling Limits of Laplacian Random Growth Models



Previous results

Continuity properties of the Loewner equation

Solutions to the Loewner equation are close if the driving
measures are close in some suitable sense.

Suppose µn = {µn
t }t≥0, n = 1, 2, . . . , and µ = {µt}t≥0 are

families of measures on the unit circle T.
Let Ψn

t be the solution to the Loewner equation corresponding
to µn and Ψt be the solution corresponding to µ.
To show that Ψn

t → Ψt uniformly on compact subsets of D0, it
is enough to show that∫

T×[0,∞)

f (e iθ, t)dµn
t (e iθ)dt →

∫
T×[0,∞)

f (e iθ, t)dµt(e
iθ)dt

for all continuous functions f in T× [0,∞) with compact
support.
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Previous results

Proof of disk scaling limit for HL(0)

If µc is the driving measure for HL(0) then µct = δe iξt , where

ξt =
∞∑
k=1

Θk1(c(k−1),ck](t).

Set n(t) = bt/cc. Then, if f is supported on T× [0,T ],∫
T×[0,∞)

f (e iθ, t)dµct dt = c

n(T )∑
k=1

f (e iΘk , c(k − 1)) + o(c).

When µ is the uniform measure on [0, 2π),∫
T×[0,∞)

f (e iθ, t)dµtdt =
1

2π

∫ T

0

∫ 2π

0
f (e iθ, t)dt.
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Previous results

Proof of disk scaling limit for HL(0) (cont.)

By Riemann approximation,

c

2π

n(T )∑
k=1

∫ 2π

0
f (e iθ, c(k − 1))dθ → 1

2π

∫ T

0

∫ 2π

0
f (e iθ, t)dt,

so it is enough to show that

c

n(T )∑
k=1

(
f (e iΘk , c(k − 1))− 1

2π

∫ 2π

0
f (e iθ, c(k − 1))dθ

)
→ 0.

But this follows from the strong law of large numbers, since the
f (e iΘk , c(k − 1)) are independent with

E(f (e iΘk , c(k − 1))) =
1

2π

∫ 2π

0
f (e iθ, c(k − 1))dθ.
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Previous results

Example: Anisotropic Hastings-Levitov

Suppose Θn are i.i.d. with density h(θ) on [0, 2π).

Suppose cn = cg(Θn), for some bounded continuous function
g on [0, 2π).

Let Ψt solve

∂tΨt(z) = zΨ′t(z)

∫ 2π

0

z + e iθ

z − e iθ
g(θ)h(θ)dθ,

with initial condition Ψ0(z) = z .

Theorem (Viklund, Sola, T. ’12): Fix T > 0. As c → 0,
Φn(T ) → ΨT in probability.
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Previous results

Clusters with non-uniform attachment angles

Simulations by Alan Sola
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Previous results

Previous results for HL(α) for α 6= 0

All results for HL(α) with α 6= 0 require regularization.

Rohde and Zinsmeister (2005): estimates on the dimension of
scaling limits for a regularized version of HL(α) under capacity
rescaling.

Sola, Turner, Viklund (2015): small-particle scaling limit of a
sufficiently regularized HL(α) is a growing disk for all α.

Liddle and Turner (2020): fluctuations for very regularized
HL(α) under capacity rescaling.

Norris, Turner, Silvestri (2019 and 2021): disk scaling limit
and fluctuations for HL(α) when α ≤ 1 (under mild
regularization).
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Previous results

Singular-regime results for ALE(α, η, σ)

Sola, Turner, Viklund (2019): scaling limit of ALE(α, η, σ) is
a growing slit if α ≥ 0 and η > 1 when using slit particles,
provided σ → 0 sufficiently fast as c → 0.

Higgs (2021): scaling limit of ALE(0, η, σ) converges to a
SLE4 for η < −2 when using slit particles, provided σ is very
small. Other SLEκ’s with κ > 4 can be obtained by using
different particle shapes.
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Previous results

Other model variants

Turnbull and Turner (2020): HL(0) with competition

Berestycki and Silvestri (2021): Constrained HL(0)

Berger, Turner, Procaccia (2021): Stationary HL(0)
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Future directions

Open questions / conjectures

Phase transitions

From disks to non-disks
From absolutely continuous support to singular support

Universality

Of scaling limits
Of fluctuations

Connections

Between model variants
With lattice models
With SLE
With GMC
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