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Conformal maps and conformal invariants

This is a book about fractals that all have some sort of invariance under con-

formal maps. A fundamental tool for understanding such sets are conformal

invariants, i.e., numerical values that can be associated to a certain geometric

configurations and that remain unchanged (or at least change in predictable

ways) under the application of conformal or holomorphic maps. There are

three conformal invariants that will be particularly important through the book:

extremal length, harmonic measure and hyperbolic distance. Of these, extremal

length is the most important because it can be defined in many situations and

estimated by direct geometric arguments. The other two are defined on the disk

and then transferred to other domains by a conformal map. In this chapter, we

introduce extremal length, hyperboli distance and harmonic measure, and de-

rive a famous estimate for the latter, due to Arne Beurling, using the former. As

a reward for our efforts we will deduce a growth bound, due to Harry Kesten,

for diffusion limited aggregation (DLA), one of the most appealing, and most

challenging, conformal fractals.

1.1 Extremal length

Our first conformal invariant is extremal length. Consider a positive function

ρ on a domain Ω. We think of ρ as analogous to | f ′| where f is a conformal

map on Ω. Just as the image area of a set E can be computed by integrating∫
E | f ′|2dxdy, we can use ρ to define areas by

∫
E ρ2dxdy. Similarly, just as

we can define ℓ( f (γ)) =
∫

γ | f ′(z)|ds, we can define the ρ-length of a curve γ

by
∫

γ ρds. For this to make sense, we need γ to be locally rectifiable (so the

arclength measure ds is defined) and it is convenient to assume that ρ is Borel

(so that its restriction to any curve γ is also Borel and hence measurable for

length measure on γ).
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1.1 Extremal length 3

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and

ρ is a non-negative Borel function on Ω. We say ρ is admissible for Γ if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ
ρds ≥ 1.

In this case we write ρ ∈ A (Γ). We define the modulus of the path family Γ

as

Mod(Γ) = inf
ρ

∫

M
ρ2dxdy,

where the infimum is over all admissible ρ for Γ. The extremal length of Γ is

defined as

λ (Γ) = 1/M(Γ).

Note that if the path family Γ is contained in a domain Ω, then we need

only consider metrics ρ are zero outside Ω. Otherwise, we can define a new

(smaller) metric by setting ρ = 0 outside Ω; the new metric is still admissible,

and a smaller integral than before. Therefore M(Γ) can be computed as the

infimum over metrics which are only nonzero inside Ω.

Modulus and extremal length satisfy several useful properties that we list as

a series of lemmas.

Lemma 1.1.1 (Conformal invariance) If Γ is a family of curves in a domain

Ω and f is a one-to-one holomorphic mapping from Ω to Ω′ then M(Γ) =

M( f (Γ)).

Proof This is just the change of variables formulas
∫

γ
ρ ◦ f | f ′|ds =

∫

f (γ)
ρds,

∫

Ω
(ρ ◦ f )2| f ′|2dxdy =

∫

f (Ω)
ρdxdy.

These imply that if ρ ∈ A ( f (Γ)) then | f ′| · ρ ◦ f ∈ A ( f (Γ)), and thus by

taking the infimum over such metrics we get M( f (Γ))≤ M(Γ) Note that there

might be admissible metrics for f (Γ) that are not of this form, possibly giving

a strictly small modulus. However, by switching the roles of Ω and Ω′ and

replacing f by f−1 we see equality does indeed hold.

Lemma 1.1.2 (Monotonicity) If Γ0 and Γ1 are path families such that every

γ ∈ Γ0 contains some curve in Γ1 then M(Γ0)≤ M(Γ1) and λ (Γ0)≥ λ (Γ1).

Proof The proof is immediate since A (Γ0)⊃ A (Γ1).
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Figure 1.1.1 The Monotone rule: each curve of the first family contains a curve

of the second family.

Lemma 1.1.3 (Grötsch Principle) If Γ0 and Γ1 are families of curves in dis-

joint domains then M(Γ0 ∪Γ1) = M(Γ0)+M(Γ1).

Proof Suppose ρ0 and ρ1 are admissible for Γ0 and Γ1. Take ρ = ρ0 and ρ =

ρ1 in their respective domains. Then it is easy to check that ρ is admissible for

Γ0 ∪Γ1 and, since the domains are disjoint,
∫

ρ2 =
∫

ρ2
1 +

∫
ρ2

2 . Thus M(Γ0 ∪
Γ1)≤ M(Γ0)+M(Γ1). By restricting an admissible metric ρ to each domain,

a similar argument proves the other direction.

The Grötsch principle and the monotonicity combine to give

Corollary 1.1.4 (Parallel Rule) Suppose Γ0 and Γ1 are path families in dis-

joint domains Ω0,Ω1 ⊂ Ω that connect disjoint sets E,F in ∂Ω. If Γ is the path

family connecting E and F in Ω, then

M(Γ)≥ M(Γ0)+M(Γ1).

Ω2

E

F

ΩΩ1

Figure 1.1.2 The Parallel Rule: curves connecting two boundary sets in the whole

domain and in two disjoint subdomains.
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Lemma 1.1.5 (Series Rule) If Γ0 and Γ1 are families of curves in disjoint

domains and every curve of F contains both a curve from both Γ0 and Γ1,

then λ (Γ)≥ λ (Γ0)+λ (Γ1).

Proof If ρ j ∈ A (Γ j) for j = 0,1, then ρt = (1− t)ρ0 + tρ1 is admissible for

Γ. Since the domains are disjoint we may assume ρ0ρ1 = 0. Integrating ρ2 then

shows

M(Γ)≤ (1− t)2M(Γ0)+ t2M(Γ1),

for each t. To find the optimal t set a = M(Γ1), b = M(Γ0), differentiate the

right hand side above, and set it equal to zero

2at −2b(1− t) = 0.

Solving gives t = b/(a+b) and plugging this in above gives

M(F )≤ t2a+(1− t2)b =
b2aa2b

(a+b)2

=
ab(a+b)

(a+b)2
=

ab

a+b
=

1
1
a
+ 1

b

or
1

M(Γ)
≥ 1

M(Γ0)
+

1

M(Γ1)
,

which, by definition, is the same as

λ (Γ)≥ λ (Γ0)+λ (Γ1).

Next we actually compute the modulus of some path families. The funda-

mental example is to compute the modulus of the path family connecting op-

posite sides of a a×b rectangle; this serves as the model of almost all modulus

estimates. So suppose R = [0,b]× [0,a] is a b wide and a high rectangle and Γ

consists of all rectifiable curves in R with one endpoint on each of the sides of

length a.

Lemma 1.1.6 Mod(Γ) = a/b.

Proof Then each such curve has length at least b, so if we let ρ be the constant

1/b function on R we have
∫

γ
ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ)≤
∫∫

T
ρ2dxdy =

1

b2
ab =

a

b
.
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To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(
∫

f gdx)2 ≤ (
∫

f 2dx)(
∫

g2dx).

To apply this, suppose ρ is an admissible metric on R for γ . Every horizon-

tal segment in R connecting the two sides of length a is in Γ, so since γ is

admissible,
∫ b

0
ρ(x,y)dx ≥ 1,

and so by Cauchy-Schwarz

1 ≤
∫ b

0
(1 ·ρ(x,y))dx ≤

∫ b

0
12dx ·

∫ b

0
ρ2(x,y)dx.

Now integrate with respect to y to get

a =
∫ a

0
1dy ≤ b

∫ a

0

∫ b

0
ρ2(x,y)dxdy,

or
a

b
≤

∫∫

R
ρ2dxdy,

which implies Mod(Γ)≥ b
a
. Thus Mod(Γ) = b

a
.

Another useful computation is the modulus of the family of path connecting

the inner and out boundaries of the annulus A = {z : r < |z|< R}.

Lemma 1.1.7 If A = {z : r < |z| < R} then the modulus of the path family

connecting the two boundary components is 2π/ log R
r
. More generally, if Γ is

the family of paths connecting rT to a set E ⊂ RT, then M(Γ)≥ |E|/ log R
r
.

Proof By conformal invariance, we can rescale and assume r = 1. Suppose ρ

is admissible for Γ. Then for each z ∈ E ⊂ T,

1 ≤ (
∫ R

1
ρds)2 ≤ (

∫ R

1

ds

s
)(
∫ R

1
ρ2sds) = logR

∫ R

1
ρ2sds

and hence we get

∫ 2π

0

∫ R

1
ρ2sdsdθ ≥

∫

E

∫ R

1
ρ2sdsdθ ≥ |E|

∫ R

1
ρ2sds ≥ |E|

logR
.

When E = T we prove the other direction by taking ρ = (s logR)−1. This is

an admissible metric and

Mod(Γ)≤
∫ 2π

0

∫ R

1
ρ2sdsdθ =

2π

(logR)2

∫ R

1

1

s
ds =

2π

logR
.
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Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the ex-

tremal distance between E and F (in Ω) is the extremal length of the path

family in Ω connecting E to F (paths in Ω that have one endpoint in E and

one endpoint in F). The series rule is a sort of “reverse triangle inequality” for

extremal distance. See Figure 1.1.3.

Ω1 Ω 2X Y Z

Figure 1.1.3 The series rule says that the extremal distance from X to Z in the

rectangle is greater than the sum the extremal distance from X to Y in Ω1 plus

the extremal distance from Y to Z in Ω2. The bottom figure show a more extreme

case where the extremal distance between opposite sides of the rectangle is much

larger than either of the other two terms.

Extremal distance can be particularly useful when both E and F are con-

nected. In this case, their complement in ∂Ω also consists of two arcs, and the

extremal distance between these is the reciprocal of the extremal distance be-

tween E and F . This holds because of conformal invariance, the fact that it is

true for rectangles and an applications of the Riemann mapping theorem (we

can always map Ω to a rectangle, so that E and F go to opposite sides (See

Exercise 1.1).

Obtaining an upper bound for the modulus of a path family usually involves

choosing a metric; every metric gives an upper bound. Giving a lower bound

usually involves a Cauchy-Schwarz type argument, which can be harder to

do in general cases. However, in the special case of extremal distance between

arcs E,F ⊂ ∂Ω, a lower bound for the modulus can also be computed by giving

a upper bound for the reciprocal separating family. Thus estimates of both

types can be given by producing metrics (for different families) and this is

often the easiest thing to do.
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If γ is a path in the plane let γ̄ be its reflection across the real line and let

γu = γ ∩Hu, γℓ = γ ∩Hl , γ+ = γu ∪ γℓ,

where Hu = {x+ iy : y > 0}, Hl = {x+ iy : y < 0} denote the upper and lower

half-planes. For a path family Γ, define Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+

Figure 1.1.4 The curves γ and γ+

Lemma 1.1.8 (Symmetry Rule) If Γ = Γ then M(Γ) = 2M(Γ+).

Proof We start by proving M(Γ)≤ 2M(Γ+). Given a metric ρ admissible for

γ+, define σ(z) = max(ρ(z),ρ(z̄)). Then for any γ ∈ Γ,

∫

γ
σds =

∫

γu

σ(z)ds+
∫

γℓ

σ(z)ds

≥
∫

γu

ρ(z)ds+
∫

γℓ

ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γℓ

ρ(z)ds

≥
∫

γ+
ρds

≥ inf
γ∈Γ

∫

γ
ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ. Since max(a,b)2 ≤
a2 +b2, integrating gives

M(Γ)≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy+
∫

ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.
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Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal

to 2M(Γ+), proving Mod(Γ)≤ 2Mod(Γ+).

For the other direction, given ρ define σ(z) = ρ(z)+ ρ(z̄) for z ∈ Hu and

σ = 0 if z ∈Hl . Then
∫

γ+
σds =

∫

γ+
ρ(z)+ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γu

ρ(z̄)ds+
∫

γell
ρ(z)+

∫

γℓ

ρ(z̄)ds

=

∫

γ
ρ(z)ds+

∫

γ
ρ(z̄)ds

= 2inf
ρ

∫

γ
ρds.

Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Since (a+b)2 ≤ 2(a2+

b2), we get

M(Γ+)≤
∫
(

1

2
σ)2dxdy

=
1

4

∫

Hu

(ρ(z)+ρ(z̄))2dxdy

≤ 1

2

∫

Hu

ρ2(z)dxdy+
∫

Hu

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right

hand side, proving the lemma.

Lemma 1.1.9 Let D∗ = {z : |z| > 1} and Ω0 = D
∗ \ [R,∞) for some R > 1.

Let Ω = D
∗ \K, where K is a closed, unbounded, connected set in D

∗ which

contains the point {R}. Let Γ0,Γ denote the path families in these domains

with separate the two boundary components. Then M(Γ0)≤ M(Γ).

Proof We use the symmetry principle we just proved. The family Γ0 is clearly

symmetric (i.e., Γ = Γ, so M(Γ+
0 ) =

1
2
M(Γ0). The family Γ may not be sym-

metric, but we can replace it by a larger family that is. Let ΓR be the collection

of rectifiable curves in D
∗ \{R} which have zero winding number around {R},

but non-zero winding number around 0. Clearly Γ⊂ΓR and ΓR is symmetric so

M(Γ)≥ M(ΓR) = 2M(Γ+
R ). Thus all we have to do is show M(Γ+

R ) = M(Γ+
0 ).

We will actually show Γ+
R = Γ+

0 . Since Γ0 ⊂ ΓR is obvious, we need only show

Γ+
R ⊂ Γ+

0 .

Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross both
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Figure 1.1.5 The topological annulus on top has smaller modulus than any other

annulus formed by connecting R to ∞.

the negative and positive real axes. If it never crossed (0,R) then the winding

around 0 and R would be the same, which false, so γ must cross(0,R) as well.

Choose points z− ∈ γ ∩ (−∞,0) and z+ ∈ γ ∩ (0,R). These points divide γ into

two subarcs γ1 and γ2. Then γ+ = (γ1)+ ∪ (γ2)+. But if we reflect (γ2)+ into

the lower half-plane and join it to (γ1)+ it forms a closed curve γ0 that is in Γ0

and (γ0)+ = γ+. Thus γ+ ∈ (Γ0)+, as desired.

Let Ωε ,R = {z : |z| > ε} \ [R,∞). Note that Ω1,R is the domain considered

in the previous lemma (e.g., see the top of Figure 1.1.5). We can estimate the

moduli of these domains using the Koebe map

k(z) =
z

(1+ z)2
= z−2z2 +3z3 −4z4 +5z5 − . . . ,

which conformal maps the unit disk to R
2 \ [ 1

4
,∞) and satisfies k(0) = 0,

k′(0) = 1. Then k−1( 1
4R

z) maps Ωε ,R conformally to an annular domain in

the disk whose outer boundary is the unit circle and whose inner boundary is

trapped between the circle of radius ε
4R
(1±O( ε

R
)). Thus the modulus of Ωε ,R

is

2π log
4R

ε
+O(

ε

R
). (1.1.1)

Next we prove the Koebe 1
4
-theorem for conformal maps. The standard proof

of Koebe’s 1
4
-theorem uses Green’s theorem to estimate the power series coef-

ficients of conformal map (proving the Bieberbach conjecture for the second

coefficient). However here we will present a proof, due to Mateljevic [? ], that

uses the symmetry property of extremal length.
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Theorem 1.1.10 (The Koebe 1
4

Theorem) Suppose f is holomorphic, 1-1 on

D and f (0) = 0, f ′(0) = 1. Then D(0, 1
4
)⊂ f (D).

Proof Recall that the modulus of a doubly connected domain is the mod-

ulus of the path family that separates the two boundary components (and is

equal to the extremal distance between the boundary components). Let R =

dist(0,∂ f (D)). Let Aε ,r = {z : ε < |z|< r} and note that by conformal invari-

ance

2π log
1

ε
= M(Aε ,1) = M( f (Aε ,1)).

Let δ = min|z|=ε | f (z)|. Since f ′(0) = 1, we have δ = ε +O(ε2). Note that

f (Aε ,1)⊂ f (D)\D(0,δ ), so

M( f (Aε ,1))≤ M( f (D)\D(0,δ )).

By Lemma 1.1.9 and Equation (1.1.1),

M( f (D)\D(0,δ ))≤ M(Ωδ ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
)≥ 2π log

1

ε
,

or

log4R− log(ε +O(ε2))+O(
ε

R
)≥− logε,

and hence

log4R ≥−O(
ε

R
)+ log(1+O(ε)).

Taking ε → 0 shows log4R ≥ 0, or R ≥ 1
4
.

1.2 Logarithmic capacity

Logarithmic capacity associates a non-negative number to each Borel subset of

the unit circle. Applying a Möbius transformation can change this value, so it

is not a conformal invariant, but it will act as an intermediate between extremal

and harmonic measure (a conformal invariant that will be defined later).

Suppose µ is a positive, finite Borel measure on C and define its potential

function as

Uµ(z) =

∫
log

2

|z−w|dµ(w),z ∈ C.
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and its energy integral by

I(µ) =
∫∫

log
2

|z−w|dµ(z)dµ(w) =
∫

Uµ(z)dµ(z).

We put the “2” in the numerator so that the integrand is non-negative when

z,w ∈ T, however, this is a non-standard usage.

Lemma 1.2.1 Uµ is lower semi-continuous, i.e.,

liminf
z→z0

Uµ(z)≥Uµ(z0).

Proof Fatou’s lemma.

Recall that µn → µ weak-* if
∫

f dµn →
∫

f dµ for every continuous function

f of compact support.

Lemma 1.2.2 If {µn} are positive measures and µn → µ weak*, then liminfn Uµn(z)≥
Uµ(z).

Proof If we replace ϕ = log 2
|z−w| by the continuous kernel ϕr = max(r,ϕ) in

the definition of U to get U r, then weak convergence implies

lim
n

U r
µn
(z)րU r

µ(z).

Moreover, the convergence is increasing since the measures positive. So for

any ε > 0 we can choose N so that n > N implies

U r
µn
(z)≥U r

µ(z)− ε .

As r → ∞ U r → U (by the monotone convergence theorem), so for r large

enough and n > N we have

Uµn(z)≥U r
µn
(z)≥Uµ(z)−2ε .

which proves the result.

Lemma 1.2.3 If µn → µ weak*, then liminfn I(µn)≥ I(µ).

Proof The proof is almost the same as for the previous lemma, except that we

have to know that if {µn} converges weak*, then so does the product measure

µn×µn. However, weak convergence of {µn} implies convergence of integrals

of the form ∫∫
f (x)g(y)dµn(x)dµn(y).

and Stone-Weierstrass theorem implies that the finite sums of such product

functions are dense in all continuous function on the product space. Since

weak-* convergent sequences are bounded, the product measures µn ×µn also
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have uniformly bounded masses, and hence convergence on a dense set of con-

tinuous functions of compact support implies convergence on all continuous

functions of compact support. This, together with the fact that weak* conver-

gent sequences are bounded ([? ]), implies that µn ×µn converges weak*.

Suppose E is Borel and µ is a positive measure that has its closed support

inside E. We say µ is admissible for E if Uµ ≤ 1 on E and we define the

logarithmic capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}

and we write µ ∈ A (E). We define the outer capacity (or exterior capacity)

as

cap∗(E) = inf{cap(V ) : E ⊂V,V open}.

We say that a set E is capacitable if cap(E) = cap∗(E).
The logarithmic kernel can be replaced by other functions, e.g., |z−w|−α ,

and there is a different capacity associated to each one. To be precise, we

should denote logarithmic capacity as caplog or logcap, but to simplify no-

tation we simply use “cap” and will often refer to logarithmic capacity as just

“capacity”. Since we do not use any other capacities in these notes, this abuse

should not cause confusion.

WARNING: The logarithmic capacity that we have defined is NOT the

same as is used in other texts such as Garnett and Marshall’s book [? ], but

is related to what they call the Robin’s constant of E, denoted γ(E). The ex-

act relationship is γ(E) = 1
cap(E) − log2. Garnett and Marshall [? ] define the

logarithmic capacity of E as exp(−γ(E)). The reason for doing this is that

the logarithmic kernel log 1
|z−w| takes both positive and negative values in the

plane, so the potential functions for general measures and the Robin’s constant

for general sets need not be non-negative. Exponentiating takes care of this.

Since we are only interested in computing the capacity of subsets of the circle,

taking the extra “2” in the logarithm gave us a non-negative kernel on the unit

circle, and we defined a corresponding capacity in the usual way. Since the

kernel is the logarithm, we feel justified in calling the corresponding capacity

the logarithmic capacity, despite the divergence with usual usage.

POSSIBLE ALTERNATES : Robin’s capacity, conformal capacity, circu-

lar capacity.

Lemma 1.2.4 Compact sets are capacitable.

Proof Since cap(E)≤ cap∗(E) is obvious, we only have to prove the opposite

direction. Set Un = {z : dist(z,E) < 1/n} and choose a measure µn supported
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in Un with ‖µn‖≥ cap(Un)−1/n. Let µ be a weak accumulation point of {µn}
and note

Uµ(z) =

∫
log

2

|z−w|dµ(w)≤
∫

log
2

|z−w|dµn(w)≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E)≥ limsup‖µn‖= limcap(Un) = limcap(Un) = cap∗(E).

It is also true that all Borel sets are capacitable. Indeed, this holds for all an-

alytic sets (i.e., continuous images of complete separable topological spaces).

See Appendix B of [? ].

It is clear from the definitions that logarithmic capacity is monotone

E ⊂ F ⇒ cap(E)≤ cap(F). (1.2.1)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,Kcompact}. (1.2.2)

Lemma 1.2.5 (Sub-additive) For any sets {En},

cap(∪En)≤ ∑cap(En). (1.2.3)

Proof We can write any µ = ∑ µn as a sum of mutually singular measures so

that µn gives full mass to En. We can then restrict each µn to a compact subset

Kn of En so that µn(Kn)≥ (1− ε)µ(En). These restrictions are admissible for

each En and hence

∑cap(En)≥ ∑µn(Kn)≥ (1− ε)∑µn(En) = (1− ε)‖µ‖.

Taking ε → 0 proves the result.

Corollary 1.2.6 A countable union of zero capacity sets has zero capacity.

Corollary 1.2.7 Outer capacity is also sub-additive.

Proof Given sets {En} choose open sets Vn ⊃En so that cap(Vn)≤ cap∗(En)+

ε2−n. By the sub-additivity of capacity

cap∗(∪En)≤ cap(∪Vn)≤ ∑cap(Vn)≤ ε +∑cap∗(En).

Taking ε → proves the result.

Although capacity informally “measures” the size of a set, it is not additive,

and hence not a measure. See Exercise 1.4.
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Lemma 1.2.8 If E is compact, there exists an admissible µ that attains the

maximum mass in the definition of capacity and Uµ(z) = 1 everywhere on E,

except possible a set of capacity zero.

Proof Let µn be a sequence of measures on E so that ‖µn‖ → cap(E) and

Un =Uµn is bounded above by 1 on E (such a sequence exists by the definition

of logarithmic capacity). By Lemma 1.2.2, Uµ is also bounded above by 1.

Also, by a standard property of weak* convergence ‖µ‖ ≤ liminfn ‖µn‖ =

cap(E) ([? ]), and by Lemma 1.2.3,

I(µ)≤ liminf
n

I(µn)≤ liminf
n

‖µn‖= cap(E),

so we must have I(µ) = cap(E).

First we claim that Uµ ≥ 1 except possibly on a set of zero capacity. Other-

wise let T ⊂ E be a set of positive capacity on which Uµ < 1− ε and let σ be

a non-zero, positive measure on T which potential bounded by 1. Define

µt = (1− t)µ + tσ .

This is a measure on E so that

I(µt)≤
∫

log
1

|z−w| ((1− t)dµ + tdσ)((1− t)dµ + tdσ)

≤ (1− t)2I(µ)+2t

∫
Uµ dσ + t2I(σ)

≤ I(µ)−2tI(µ)+2t

∫
Uµ dσ +O(t2)

≤ I(µ)−2tI(µ)+2t(1− ε)‖σ‖+O(t2)

< I(µ),

if t > 0 is small enough. This contradicts minimality of µ .

Next we show that Uµ ≤ 1 everywhere on the closed support of µ . By the

previous step we know Uµ ≥ 1 except on capacity zero, hence except on a set

of µ-measure zero. If there is a point z in the support of µ such that Uµ(z)> 1,

then by lower semi-continuity of potentials, Uµ is > 1+ ε on some neigh-

borhood of z and this neighborhood has positive µ measure (since z is in the

support of µ) and thus I(µ) =
∫

Uµ dµ > ‖µ‖, a contradiction.

The following makes a connection between logarithmic capacity and ex-

tremal length. Eventually, this will become a connection between extremal

length and harmonic measure.

If K ⊂ D is a compact connected set with smooth boundary with 0 in the

interior of K. Let K∗ be the reflection of K across T. For any E ⊂ T that is a

finite union of closed intervals, let Ω be the connected component of C\ (E ∪
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K ∪K∗) that has E on its boundary. Let h(z) be the harmonic function in Ω

with boundary values 0 on K and K∗ and boundary value 1 on E. By the usual

theory of the Dirichlet problem (e.g. [? ]), all boundary points are regular (since

all boundary components are non-degenerate continua) and hence h extends

continuously to the boundary with the correct boundary values. Moreover, h is

symmetric with respect to T, and this implies its normal derivative on T\E is

0. Let D(h) =
∫
D\K |∇h|2dxdy.

Lemma 1.2.9 With notation as above, M(ΓE) = D(h).

Proof Clearly |∇h| is an admissible metric for ΓE , so

M(ΓE)≤ D(h)≡
∫

D\K
|∇h|2dxdy.

Thus we need only show the other direction.

Green’s theorem states that

∫∫

Ω
u∆v− v∆udxdy =

∫

∂Ω
u

∂v

∂n
− v

∂u

∂n
ds. (1.2.4)

Using this and the fact that h = 1 on E, we have

∫

∂K

∂h

∂n
ds =−

∫

T

∂h

∂n
ds =−

∫

E

∂h

∂n
ds =−

∫

E
h

∂h

∂n
ds.

and

∫

∂K

∂h

∂n
ds =−1

2

∫

E

∂ (h2)

∂n
ds

=
1

2

∫

T\E

∂ (h2)

∂n
ds+

1

2

∫

∂K

∂ (h2)

∂n
ds+

1

2

∫

D\K
∆(h2)dxdy.

The first term is zero because h has normal derivative zero on T\E, and hence

the same is true for h2. The second term is zero because h is zero on K and so
∂ (h2)

∂n
h2 = 2h ∂h

∂n
= 0. To evaluate the third term, we use the identity

∆(h2) = 2hx ·hx +2h ·hxx +2hy ·hy +2h ·hyy

= 2h∆h+2∇h ·∇h

= 2h ·0+2|∇h|2

= 2|∇h|2,

to deduce

1

2

∫

D\K
∆(h2)dxdy =

∫

D\K
∆(h2)dxdy.
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Therefore,
∫

∂K

∂h

∂n
ds =

∫

D\K
∆(h2)dxdy.

Thus the tangential derivative of h’s harmonic conjugate has integral D(h)

around ∂K and therefore 2πh/D(h) is the real part of a holomorphic function

g on D\K. Then f = exp(g) maps D\K into the annulus

A = {z : 1 < |z|< exp(2π/D(h))}

with the components of E mapping to arcs of the outer circle and the compo-

nents of T \E mapping to radial slits. The path family ΓE maps to the path

family connecting the inner and outer circles without hitting the radial slits,

and our earlier computations show the modulus of this family is D(h).

Theorem 1.2.10 (Pfluger’s theorem) If K ⊂ D is a compact connected set

with smooth boundary with 0 in the interior of K. Then there are constants

C1,C2 so that following holds. For any E ⊂ T that is a finite union of closed

intervals,

1

cap(E)
+C1 ≤ πλ (ΓE))≤

1

cap(E)
+C2,

where ΓE is the path family connecting K to E. The constants C1,C2 can be

chosen to depend only on 0 < r < R < 1 if ∂K ⊂ {r ≤ |z| ≤ R}.

Proof Using Lemma 1.2.9, we only have to relate D(h) to the logarithmic

capacity of E. Let µ be the equilibrium probability measure for E. We know in

general that Uµ = γ where γ = 1/cap(E) almost everywhere on E (since sets

of zero capacity have zero measure) and is continuous off E, but since Uµ is

harmonic in D and equals the Poisson integral of its boundary values, we can

deduce Uµ = γ everywhere on E. Let v(z) = 1
2
(Uµ(z)+Uµ(1/z). Then since

∂K has positive distance from 0, there are constants C1,C2 so that

v+C1 ≤ 0, v+C2 ≥ 0,

on ∂K. Note that C1 ≥ −γ by the maximum principle and C2 ≥ 0 trivially.

Moreover, since µ is a probability measure supported on the unit circle, given

0 < r < R < 1, Uµ is uniformly bounded on both the annulus {r ≤ |z| ≤ R} and

its reflection across the unit circle, since these both have bounded, but positive

distance from the unit circle. This proves that C1,C2 can be chosen to depend

on only these numbers, as claimed in the final statement of the theorem.

The following inequalities are easy to check on K, K∗ and E,

v(z)+C1

γ +C1
≤ h(z)≤ v(z)+C2

γ +C2
.
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and hence hold on Ω by the maximum principle. Since we have equality on E,

we also get

∂

∂n
(

v(z)+C1

γ +C1
)≤ ∂h

∂n
≤ ∂

∂n
(

v(z)+C2

γ +C2
)

for z ∈ E. When we integrate over E, the middle term is −D(h) (we computed

this above) and by Green’s theorem

−
∫

E

∂

∂n

v(z)+C1

γ +C1
ds =

1

γ +C1

∫

D

∆(v)dxdy

=
π

γ +C1

because v is harmonic except for a 1
2

log 1
|z| pole at the origin. A similar com-

putation holds for the other term and hence

π

γ +C1
≤ D(h) = M(ΓE)≤

π

γ +C2
,

since D(h) =
∫

E
∂h
∂n

ds. Hence

γ +C1 ≤ πλ (ΓE)≤ γ +C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals.

Next we prove Pfluger’s theorem for all compact subsets of T. First we need

a continuity property of extremal length. Recall that an extended real-valued

function is lower semi-continuous if all sets of the form { f > α} are open.

Lemma 1.2.11 Suppose E ∩T is compact, K ⊂D is compact, connected and

contains the origin, and ΓE is the path family connecting K and E in D \K.

Fix an admissible metric ρ for ΓE and for each z ∈ T, define f (z) = inf
∫

γ ρds

where the infimum is over all paths in ΓE that connect K to z. Then f is lower

semi-continuous.

Proof Suppose z0 ∈ T and use Cauchy-Schwarz to get

∫ 2−n

2−n−1

(∫

|z−z0|=r
ρds

)2

dr ≤
∫ 2−n

2−n−1

(∫

|z−z0|=r
ρ2ds

)
dr

(∫

|z−z0|=r
1ds

)
dr

≤
∫ 2−n

2−n−1
r

∫ 2π

0
ρ2rdθdr

≤ π2−n

∫

2−n−1<|z−z0|<2−n
ρ2dxdy

= o(2−n).

Therefore we can choose circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z− z0| <
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2−n} of D centered at z0 and with ρ-length εn tending to 0. By taking s subse-

quence we may assume ∑εn < ∞. Now choose zn → z0 with

f (zn)→ α ≡ liminf
z→z0

f (z).

We want to show that there is a path connecting K to z0 whose ρ-length is as

close to α as we wish. Passing to a subsequence we may assume zn is separated

from K by δn. Let cn be the infimum of ρ-lengths of paths connecting γn and

γn+1. By considering a path connecting K to zn, we see that ∑n
1 ck ≤ f (zn), for

all n and hence ∑∞
1 cn ≤ α .

Next choose ε > 0 and choose n so that we can connect K to zn (and hence

to γn) by a path of ρ-length less than α + ε . We can then connect γn to z0 by a

infinite concatenation of arcs of γk, k > n and paths connecting γk to γk+1 that

have total length ∑∞
n (εn +cn) = o(1). Thus K can be connected to z0 by a path

of ρ-length as close to α as we wish.

Corollary 1.2.12 Suppose E ⊂ T is compact and ε > 0. Then there is a finite

collection of closed intervals F so that E ⊂ F and

λ (ΓE)≤ λ (ΓF)+ ε ,

where the path families are defined as above.

Proof Choose an admissible ρ so that
∫

ρ2dxdy ≤ M(ΓE)+ ε . Set

r = (
M(ΓE)+ ε

M(ΓE)+2ε
)1/2

By Lemma 1.2.11 V = {z ∈T : f (z)> r} is open, and therefore we can choose

a set F of the desired form inside V . Then ρ/r is admissible for ΓF , so

M(ΓF)≤
∫
(

ρ

r
)2dxdy =

M(ΓE)+2ε

M(ΓE)+ ε

∫
ρ2dxdy ≤ M(ΓE)+2ε .

Thus an inequality in the opposite direction holds for extremal length.

Corollary 1.2.13 Pfluger’s theorem holds for all compact sets in T.

Proof Suppose E is compact. Using Corollary 1.2.12 and Lemma 1.2.4 we

can choose nested sets En ց E that are finite unions of closed intervals and

satisfy

λ (FEn)→ λ (FE),

and

cap(En)→ cap(E).

Thus the inequalities in Pfluger’s theorem extend to E.
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1.3 Hyperbolic distance

We start on the disk, and then extend to simply connected domains via the Rie-

mann mapping theorem and to general planar domains via the uniformization

theorem.

The hyperbolic metric on D is given by dρ(z) = |dz|/(1−|z|2). This means

that the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =

∫

γ

|dz|
1−|z|2 , (1.3.1)

and the hyperbolic distance between two points z,w ∈ D is the infimum of the

lengths of paths connecting them (we shall see shortly that there is an explicit

formula for this distance in terms of z and w). In many sources, there is a

“2” in the numerator of (1.3.1), but we follow [? ], where the definition is

as given in (1.3.1). For most applications this makes no difference, but the

reader is warned that some of our formulas may differ by a factor of 2 from the

analogous formulas in some papers and books.

We define the hyperbolic gradient of a holomorphic function f : D→D as

DH
H f (z) = | f ′(z)| 1−|z|2

1−| f (z)|2 .

More generally, given a map f between metric spaces (X ,d) and (Y,ρ) we

define the gradient at a point z as

D
ρ
d f (z) = limsup

x→z

ρ( f (z), f (x))

d(x,z)
.

The use of the word “gradient” is not quite correct; a gradient is usually a

vector indicating both the direction and magnitude of the greatest change in a

function. We use the term in a sense more like the term “upper gradient” that

occurs in metric measure theory to denote a function ρ ≥ 0 that satisfies

| f (b)− f (a)| ≤
∫

γ
ρds,

for any curve γ connecting a and b. I hope that the slight abuse of the term will

not be confusing.

In these notes, the most common metrics we will use are the usual Euclidean

metric on C, the spherical metric

ds

1+ |z|2 ,

on the Riemann Sphere, S2 and the hyperbolic metric on the disk or on some

other hyperbolic planar domain. To simplify notation, we use E, S and H to
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denote whether we are taking a gradient with respect to Euclidean, spherical

or hyperbolic metrics. For example if f : U →V , the symbol DH
H f means that

we are taking a gradient from the hyperbolic metric on U to the hyperbolic

metric on V (assuming the domains are clear from context; otherwise we write

DV
U or D

ρv
ρU

if we need to be very precise.)

In this notation, the spherical derivative of a function, usually denoted

f #(z) =
| f ′(z)|

1+ | f (z)|2 ,

is written DS
E f (z) since it is a limit of quotients where the numerator is mea-

sured in the spherical metric and the denominator is measured in the Euclidean

metric. Similarly DS
H denotes a gradient measuring expansion from a hyper-

bolic to the spherical metric. This particular gradient is important in the theory

of normal families (e.g., see Montel’s theorem in [? ]). Another variation we

will use is DE
D

f . If this is bounded on the disk, then f is a Lipschitz function

from the hyperbolic metric on the disk to the Euclidean metric on the plane.

Such functions are called Bloch functions.

A linear fractional transformation is a map of the form

z → a+bx

c+dz
,

where a,b,c,d ∈ C. These exactly the 1-to-1, holomorphic maps of the Rie-

mann sphere to itself. Such maps are also called Möbius transformations.

Lemma 1.3.1 Möbius transformations of D to itself are isometries of the

hyperbolic metric.

Proof When f is a Möbius transformation of the disk we have

f (z) =
z−a

1− āz
, f ′(z) =

1−|a|2
(1− āz)2

.

Thus

DH
H f (z) =

1−|a|2
(1− āz)2

1−|z|2
1−| f (z)|2 =

1−|a|2
(1− āz)2

1−|z|2
1−| z−a

1−āz
|2

=
(1−|a|2)(1−|z|2)
|1− āz|2 −|z−a|2 =

(1−|a|2)(1−|z|2)
(1− āz)(1−az̄)− (z−a)(z̄− ā)

=
(1−|a|2)(1−|z|2)

(1− āz−az̄+ |az|2)− (|z|2 −az̄− zā+ |a|2)

=
(1−|a|2)(1−|z|2)

(1+ |az|2 −|z|2 −|a|2) = 1.
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Note that

ℓρ( f (γ))≤
∫

γ
DH

H f (z)
|dz|

1−|z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one. Since

the inverse also has this property, we see that Möbius transformation preserve

hyperbolic length.

The segment (−1,1) is clearly a geodesic for the hyperbolic metric and since

isometries take geodesics to geodesics, we see that geodesics for the hyperbolic

metric are circles orthogonal to the boundary.

On the disk it is convenient to define the pseudo-hyperbolic metric

T (z,w) = | z−w

1− w̄z
|.

The hyperbolic metric between two points can then be expressed as

ρ(w,z) =
1

2
log

1+T (w,z)

1−T (w,z)
. (1.3.2)

On the upper half-plane the corresponding function is

T (z,w) = | z−w

w− z̄
|,

and ρ is related as before.

Lemma 1.3.2 (Schwarz’s Lemma) If f : D→D is holomorphic and f (0) = 0

then | f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, | f (z)| ≤ |z| for all

|z|< 1, with equality for z 6= 0 iff f is a rotation.

Proof Define g(z) = f (z)/z for z 6= 0 and g(0) = f ′(0). This is a holomor-

phic function since if f (z) = ∑anzn then a0 = 0 and so g(z) = ∑anzn−1 has a

convergent power series expansion. Since max|z|=r |g(z)| ≤ 1
r

max|z|=r | f | ≤ 1
r
.

By the maximum principle |g| ≤ 1
r

on {|z|< r}. Taking r ր 1 shows |g| ≤ 1 on

D and equality anywhere implies g is constant. Thus | f (z)| ≤ |z| and | f ′(0)|=
|g(0)| ≤ 1 and equality implies f is a rotation.

In terms of the hyperbolic metric this says that

ρ( f (0), f (z)) = ρ(0, f (z))≤Hr(0,z),

which shows the hyperbolic distance from 0 to any point is non-increasing. For

an arbitrary holomorphic self-map of the disk f and any point w ∈ D we can

always choose Möbius transformations τ ,σ so that τ(0) =w and σ( f (w)) = 0,

so that σ ◦ f ◦ τ(0) = 0. Since Möbius transformations are hyperbolic isome-

tries, this shows



1.3 Hyperbolic distance 23

Corollary 1.3.3 If f : D→D is a holomorphic then ρ( f (w), f (z))≤ ρ(w,z).

Lemma 1.3.4 If { fn} are holomorphic functions on a domain Ω that con-

verge uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→ f (z).

Proof We may assume {zn} are contained in some disk D ⊂ Ω around z. Let

E = {zn}∞
1 ∪ {z}. This is a compact set so it has a positive distance d from

∂Ω. The points within distance d/2 of E form a compact set F on which the

functions { fn} are uniformly bounded on E, say by M. By the Cauchy estimate

the derivatives are bounded by a constant M′ on E (e.g., see [? ]). Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z− zn|,

and both terms on the right tend to zero by hypothesis.

A planar domain Ω is called hyperbolic if C\Ω has at least two points.

Theorem 1.3.5 Every hyperbolic plane domain Ω is holomorphically cov-

ered by D (i.e., there is a locally 1-to-1, holomorphic covering map from D to

Ω).

We will prove this in three steps: bounded domains, simply connected do-

mains and finally the general case.

Uniformization for bounded domains If Ω is bounded, then by a translation

and rescaling, we may assume Ω ⊂ D and 0 ∈ Ω. We will define a sequence

of domains {Ωn} with Ω0 = Ω and covering maps pn : Ωn → Ωn−1 such that

p(0) = 0. We will show that Ωn contains hyperbolic disks centered at 0 of

arbitrarily large radius and that the covering map qn = p1 ◦ · · · ◦ pn : Ωn →
Ω0 = Ω converges uniformly on compacta to a covering map q : D→ Ω.

If Ω0 = D we are done, since the identity map will work. In general assume

that we have qn : Ωn → Ω0 and that there is a point w ∈D\Ωn. Let τ and σ be

Möbius transformations of the disk to itself so that τ(w) = 0, choose a square

root α of τ(0) and choose σ so σ(α) = 0. Then pn+1(z) = σ(
√

τ(z)) and let

Ωn+1 be the component of U = p−1
n+1(Ωn) that contains the origin (the set U

will have one or two components; two if w is in a connected component of

D\Ωn that is compact in D, and one otherwise). Since σ and τ are hyperbolic

isometries and
√

z expands the hyperbolic metric, we see that Ωn+1 contains a

larger hyperbolic ball around 0 than Ωn did.

More precisely, suppose dist(∂Ωn,0)< r < 1 for all n. Since f (z) = z2 maps

the disk to itself, it strictly contracts the hyperbolic metric; a more explicit

computation shows

DH
H f (z) = |2z|1−|z|2

1−|z|4 =
2|z|

1+ |z|2 < 1.
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Thus g(z) =
√

z is locally an expansion of the hyperbolic metric, at least on a

subdomain W ⊂ D where it has a well defined branch. For z 6= 0,

DH
Hg(z) = | 1

2
√

z
|1−|z|2

1−|z| ≥ 1+ |z|
2
√

z
. (1.3.3)

Then (1.3.3) says that

DH
H pn(0) = DH

H

√
z(τ(0))>

1+ r

2
√

r
> 1,

since |τ(0)| = |w| < r. Hence DH
Hqn(0) increases by this much at every step.

But DH
Hqn(0)≤ 1, which is a contradiction. Thus dn → 1.

Thus {qn} is a sequence of uniformly bounded holomorphic functions on

the disk. By Montel’s theorem, there a subsequence that converges uniformly

on compact subsets of D to a holomorphic map q : D→ Ω. It is non-constant

since it has non-zero gradient at the origin; moreover, by Hurwitz’s theorem

(see [? ]), q′ never vanishes on D since it is the locally uniform limit of the

sequence {q′n}, and these functions never vanish since they are all derivatives

of locally univalent covering maps. Next we show that q is a covering map

D→ Ω.

Fix a ∈ Ω and let d = dist(a,∂Ω). Since Ω is bounded, this is finite. Let

D = D(a,d) ⊂ Ω. Since qn is a covering map, every branch of q−1
n is 1-to-1

holomorphic map of D into D and hence each qn is a contraction from the

hyperbolic metric on D to the hyperbolic metric on D. Thus every preimage of
1
2
D has uniformly bounded hyperbolic diameter.

Now fix a point b ∈ q−1(a). Since qn(b)→ q(b) = a, qn(b) ∈ 1
2
D for n large

enough, so there is branch of q−1
n that contains b. Since these branches are

uniformly bounded holomorphic functions, by Montel’s theorem we can pass

to a subsequence so that they converge to a holomorphic function g from 1
2
D

into D. Moreover,

q(g(z)) = lim
n

qn(q
−1
n (z)) = z,

by Lemma 1.3.4.

This proves the existence of a covering map for bounded domains Ω. If Ω

is bounded and simply connected, then we have proved the Riemann mapping

theorem for Ω. For unbounded simply connected domains we use the following

argument.

Riemann mapping theorem It suffices to show any simply connected planar

domain, except for the plane itself, can be conformally mapped to a bounded

domain. If the domain Ω is bounded, there is nothing to do. If Ω. omits a disk
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D(x,r) then the map z → 1/(z− x) conformal maps Ω to a bounded domain.

Otherwise, translate the domain so that 0 is on the boundary and consider a

continuous branch of
√

z. The image is a 1-1, holomorphic image of Ω, but

does not contain both a point and its negative. Since the image contains some

open ball, it also omits an open ball and hence can be mapped to a bounded

domain by the previous case.

The final step is to deduce the uniformization theorem for all hyperbolic

plane domains (we have only proved it for bounded domains so far). It suf-

fices to show that any hyperbolic plane domain has a covering map from some

bounded domain W , for then we can compose the covering maps D→W and

W → Ω. We can reduce to the following special case:

Theorem 1.3.6 There is a holomorphic covering map from D to C
∗∗ = C \

{0,1}

Proof Let

Ω = {z = x+ iy : y > 0,0 < x < 1, |z− 1

2
|> 1

2
} ⊂Hu.

This is simply connected and hence can be conformally mapped to Hu with

0,1,∞ each fixed. We can then use Schwarz reflection to extend the map across

the sides of Ω. Every such reflection of Ω stays in Hu maps to either the lower

or upper half-planes. Continuing this forever gives a covering map from a sim-

ply connected subdomain U of Hu to W . Since U is simply connected and not

the whole plane (it is a subset of Hu) it is conformally equivalent to D and

hence a covering q : D→W exists. (Actually U =Hu, but we do not need this

stronger result. See Exercise 1.8.)

Uniformization of general planar domains Let q : D→ C
∗∗ = C\{0,1}. be

a covering map of the twice punctured plane. If {a,b} ∈ C \Ω then h(z) =

bq(z)+a is a covering map from U = h−1(Ω)⊂ D to Ω. Any connected com-

ponent of U shows that Ω has a covering from a bounded plane domain, fin-

ishing the proof.

We can now define a hyperbolic metric ρ on any hyperbolic domain using

the covering map p : D → Ω. The function ρ should be defined so that p is

locally an isometry, i.e.,

1 = DΩ
D p(w)

= DE
DId(w) ·DE

E p(w) ·DρΩ
E Id(p(w))

=
1

ρD(w)
· |p′(w)| ·ρΩ(z)
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and so we take

ρΩ(z) =
|p′(w)|
1−|w|2 = |p′(w)|ρD(w)

where p(w) = z. Different choices of p and w give the same value for ρΩ(z)

since they differ by an isometry of D. Thus every hyperbolic planar domain

has a hyperbolic metric.

We want to give some useful estimates for ρΩ in terms of more geometric

quantities, such as the quasi-hyperbolic metric, defined as

ρ̃Ω(z)ds =
ds

dist(z,∂Ω)
.

For simply connected domains, ρ and ρ̃ are boundedly equivalent; for more

general domains this can fail, but some useful estimates are still available.

The first observation is that if f : U → V is conformal and ρU (z)ds and

ρV (z)ds are the densities of the hyperbolic metrics on U and V then

ρV ( f (z)) = ρU (z)/| f ′(z)|.

Applying this to the map τ(z) = (z+1)/(z−1) that maps the right half-plane

Hr = {x+ iy : x > 0} to the unit disk D, we see that the hyperbolic density for

the half-plane is

ρHr
(z) = |τ ′(z)|ρD(τ(z)) =

2

|z−1|2
1

1−|τ(z)|2 =
1

2x
=

1

2dist(z,∂Hr)
.

Thus the hyperbolic density on a half-plane is approximately the same as the

quasi-hyperbolic metric. Using Koebe’s theorem (Lemma 1.1.10) we can de-

duce that that this is true for any simply connected domain.

Lemma 1.3.7 For simply connected domains, the hyperbolic and quasi-hyperbolic

metrics are bi-Lipschitz equivalent, i.e.,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ. (1.3.4)

Proof Using Koebe’s theorem,

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≤ ρD(z)
1−|z|2

dist( f (z),∂Ω
=

1

dist( f (z),∂Ω
= ρ̃( f (z)),

which is one half of the result. The other half is similar:

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≥
1

4
ρD(z)

1−|z|2
dist( f (z),∂Ω)

=
1

4
ρ̃( f (z)).
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Corollary 1.3.8 If f : Ω → Ω′ is conformal, then

dist( f (z),∂Ω′)
4dist(z,∂Ω)

≤ | f ′(z)| ≤ 4dist( f (z),∂Ω′)
dist(z,∂Ω)

.

Proof Write f = g◦h−1 where g : D→ Ω′ and h : D→ Ω and use the chain

rule and Koebe’s theorem.

The following is immediate from Schwarz’s lemma.

Corollary 1.3.9 If U ⊂V are both hyperbolic, then ρU ≥ ρV .

Proof If ΠU : D→U and ΠV : D→V are the covering maps then the inclu-

sion map U →V can be lifted to conformal map D→ Π−1
V (U)⊂ D. Applying

Schwarz’s lemma to this map (and using the fact that the projections are local

isometries) gives the result.

Lemma 1.3.10 If f : D→ Ω is conformal with f ′(0) = 1, then | f ′′(0)| ≤ 200.

Proof We can assume f (0) = 0. Then ∂Ω∩D 6= /0, otherwise | f ′(0)|> 1, so

for z ∈ D∩Ω, dist(z,∂Ω)≤ 1+ |z|. Thus on Ω∩D,

ρΩ(z)≥
1

4
ρ̃Ω(z)≥

1

4(1+ r)
≥ 1

8
.

Therefore | f (z)| ≤ 1 on the ball of hyperbolic radius 1/8 around the origin,

which is the same as the Euclidean ball of radius 1
2

log 9
7
> .1. By the Cauchy

estimate | f ′′(0)| ≤ 200.

In fact, the correct bound is not 200, but 4; we have only given a quick proof

of a weaker result. See Exercise ?? for how to derive the sharp estimate.

Corollary 1.3.11 If f : D → Ω is conformal then ϕ(z) = log | f ′(z)| is Lip-

schitz from the hyperbolic metric to the Euclidean metric, with bound that is

independent of f .

Proof We want to bound DE
Hϕ uniformly on the disk, but by pre-composing

Möbius transformations, it suffices to bound |ϕ ′(0)| uniformly in f . By the

Cauchy estimate for derivatives, it suffices to show |ϕ(z)−ϕ(0)| is uniformly

bounded on a uniform neighborhood of the origin, or equivalently, that | f ′(z)/ f ′(0)|
is uniformly bounded on such a neighborhood. Let d = dist( f (z),∂Ω). Then

every point in the Euclidean ball D = D( f (z),d/2) is at most distance 3d/2

from ∂Ω, so integrating over paths from f (z) to ∂D, we see that every point

in ∂D is at least ρ̃-distance 1/3 from f (z). By Lemma 1.3.7, every boundary

point is at least hyperbolic distance 1/12 from f (z). Thus U = f−1(D) contains
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a hyperbolic disk of radius 1/12 around the origin and on this disk (applying

Corollary 1.3.8 twice),

| f ′(z)| ≤ 4
dist( f (z),∂Ω)

1−|z| ≤ 8dist( f (0),∂Ω)≤ 32| f ′(0)|,

as desired.

Again, this is not sharp; for a proof of the optimal bound, see Exericse 1.23.

The Lipschitz holomorphic functions from the disk with its hyperbolic met-

ric to the plane with its Euclidean metric is called the Bloch class and is a

Banach space with the norm

‖ϕ‖B = |ϕ(0)|+ sup
|z|<1

|ϕ ′(z)|(1−|z|2).

In a later chapter, we shall see that Lemma 1.3.11 leads to an intimate connec-

tion between conformal maps and martingales that allows various results from

probability theory about the latter to be directly to the former, e.g., Makarov’s

law of the iterated logarithm.

1.4 Boundary continuity

The boundary of a simply connected domain need not be a Jordan curve, nor

even locally connected, and such examples arise naturally in complex dynam-

ics as the Fatou components of various polynomials and entire functions. How-

ever, this makes little difference to the study of harmonic measure. In this

section we show that, from the point view of harmonic measure, it is always

enough to consider regions with locally connected boundaries.

Lemma 1.4.1 Suppose Q is a quadrilateral with opposite pairs of sides E,F

and C,D. Assume

1. E and F can be connected in Q by a curve σ of diameter ≤ ε ,

2. any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger than

M(ε) where M(ε)→ ∞ as ε → 0.

Proof Define a metric on Q by ρ(z) = 1
2
|z−a|−1/ log(1/2ε) for ε < |z−a|<

1/2. Any curve γ connecting C and D must cross σ and since γ has diameter

≥ 1 it must leave the annulus where ρ is non-zero. This shows that the modulus

of the path family in Q separating E and F is small, hence the modulus of the

family connecting them is large.
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E

F

C

D

Figure 1.4.1 Proof of Lemma 1.4.1.

The following fundamental fact says that hyperbolic geodesics are almost

the same as Euclidean geodesics.

Theorem 1.4.2 (Gehring-Hayman inequality) There is an absolute constant

C < ∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and simply

connected. Given two points in Ω, let γ be the hyperbolic geodesic connecting

these two points and let σ be any other curve in Ω connecting them. Then

ℓ(γ)≤Cℓ(σ).

Proof Let f : D → Ω be conformal, normalized so that γ is the image of

I = [0,r] ⊂ D for some 0 < r < 1. Without loss of generality we may assume

r = rN1−2−N for some N. Let

Qn = {z ∈ D : 2−n−1 < |z−1|< 2−n},

and let

γn = {z ∈ D : |z−1|= 2−n},

zn = γn ∩ [0,1).

Let Q′
n ⊂ Qn be the sub-quadrilateral of points with |arg(1 − z)| < π/6.

Each of these has bounded hyperbolic diameter and hence by Koebe’s theorem

its image is bounded by four arcs of diameter ≃ dn and opposite sides are

≃ dn apart. In particular, this means that any curve in f (Qn) separating f (γn)

and f (γn+1) must cross f (Q′
n) and hence has diameter & dn. Since Qn has

bounded modulus, so does f (Qn) and so Lemma 1.4.1 says that the shortest

curve in f (Qn) connecting γn and γn+1 has length ℓn ≃ dn. Thus any curve γ in
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Q connecting γn and γn+1 has length at least ℓn, and so

ℓ(γ) = O(∑dn) = O(∑ℓn)≤ O(ℓ(σ)).

Figure 1.4.2 Proof of the Gehring-Hayman inequality.

If f : D→ Ω is conformal define

a(r) = area(Ω\ f (r ·D).

If Ω has finite area (e.g., if it is bounded), then clearly a(r)ց 0 as r ր 1.

Lemma 1.4.3 There is a C < ∞ so that the following holds. Suppose f : D→
Ω and 1

2
≤ r < 1. Let E(δ ,r) = {x ∈ T : | f (sx)− f (rx)| ≥ δ for some r < s <

1}. Then the extremal length of the path family P connecting D(0,r) to E is

bounded below by δ 2/Ca(r).

Proof Let z = f (sx) and suppose w ∈ f (D(0,r)). By the Gehring-Hayman

estimate, the length of any curve from w to z is at least 1/C times the length

of the hyperbolic geodesic γ between them. But this geodesic has a segment

γ0 that lies within a uniformly bounded distance of the geodesic γ1 from f (rx)

to z. By the Koebe distortion theorem γ0 and γ1 have comparable Euclidean

lengths, and clearly the length of γ1 is at least δ . Thus the length of any path

from f (D(0,r)) to f (sx) is at least δ/C. Now let ρ = C/δ in Ω \ f (D(0,r))

and 0 elsewhere. Then ρ is admissible for f (P) and
∫∫

ρ2dxdy is bounded by

C2a(r)/δ 2. Thus λ (P)≥ δ 2

C2a(r)
.

Lemma 1.4.4 Suppose f : D→ Ω is conformal, and for R ≥ 1,

ER = {x ∈ T : | f (x)− f (0)| ≥ R dist( f (0),∂Ω)}.

Then ER has capacity O(1/ logR) if R is large enough.
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Proof Assume f (0) = 0 and dist(0,∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω∩{1 < |z| < R}. Then ρ is admissible for the path family Γ connecting

D(0,1/2) to ∂Ω \D(0,R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By definition M(Γ) ≤
2π/ logR and λ (Γ)≥ (logR)/2π . By the Koebe distortion theorem f−1(D(0,1/2))

is contained in a compact subset of D, independent of Ω. By Pfluger’s theorem

(Theorem 1.2.10),

∩(Er)≤
2

−2C2 + logR
,

which proves the result.

Corollary 1.4.5 If f : D → Ω is conformal, then f has radial limits except

on a set of zero capacity (and hence has finite radial limits a.e. on T).

Proof Let Er,δ ⊂ T be the set of x ∈ T so that diam( f (rx,x)) > δ , and let

Eδ = ∩0<r<1Er,δ . If f does not have a radial limit at x ∈ T, then x ∈ Eδ for

some δ > 0, and this has zero capacity by Lemma 1.4.3. Taking the union

over a sequence of δ ’s tending to zero proves the result. The set where f has

a radial limit ∞ has zero capacity by Lemma 1.4.4, so we deduce f has finite

radial limits except on zero capacity.

Combining the last two results proves

Corollary 1.4.6 Given ε > 0 there is a C < ∞ so that the following holds. If

f : D→ Ω is conformal, z ∈D and I ⊂ T is an arc that satisfies |I| ≥ ε(1−|z|)
and dist(z, I)≤ 1

ε (1−|z|), then I contains a point w where f has a radial limit

and | f (w)− f (z)| ≤C dist( f (z),∂Ω).

We can now prove:
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Theorem 1.4.7 (Carathéodory) Suppose that f : D → Ω is conformal, and

that ∂Ω is compact and locally path connected (for every ε > 0 there is a

δ > 0 so that any two points of ∂Ω that are within distance δ of each other

can be connected by a path in ∂Ω of diameter at most ε). Then f extends

continuously to the boundary of D.

Proof Suppose η > 0 is small. Since ∂Ω is compact Ω\ f ({|z|< 1− 1
n
}) has

finite area that tends to zero as n ր ∞. Thus if n is sufficiently large, this region

contains no disk of radius η .

Choose {z j} to be n equally spaced points on the unit circle and using

Lemma ?? choose interlaced points {w j} so that f has a radial limit f (w j)

at w j and this limit satisfies | f (w j)− f (rw j)| ≤Cη where r = 1−1/n. Then

| f (w j)− f (w j+1)| ≤ | f (w j)− f (rw j)|
+| f (rw j)− f (rw j+1)|

+| f (rw j+1)− f (w j+1)|
≤Cδ ,

where the center term is bounded by Koebe’s theorem and the other two by

definition.

Fix ε > 0 and choose δ > 0 as in the definition of locally connected. Thus

if η is so small that Cη < δ , then the shorter arc of ∂Ω with endpoints f (w j)

and f (w j+1) can be connected in ∂Ω by a curve of diameter at most ε . Thus

the image under f of the Carleson square with base I j (the arc between w j and

w j+1) has diameter at most Cη + ε . This implies f has a continuous extension

to the boundary.

It is an inconvenient fact is that conformal maps do not have to extend con-

tinuously to the boundary. We noted above however, that radial do exist almost

everywhere. Another convenient substitute for full continuity says that every

conformal map is continuous on a subdomain of D whose boundary hits “most

of” ∂D. The precise statement requires a new definition.

Given a compact set E ⊂ T we will now define the associated “sawtooth”

region WE Suppose {In} are the connected components of T \E and for each

n let γn(θ) be the circular arc in D with the same endpoints as In and which

makes angle θ with In (so γn(0) = In and γn(π/2) is the hyperbolic geodesic

with the same endpoints as In). Let Cn(θ) be the region bounded by In and

γn(θ), and let WE(θ) = D\∪nCn(θ). Let WE =WE(π/8) (and let W ∗
E ⊂ D

c
be

its reflection across T).

If f : D→ Ω and 0 < r < 1, then define

d f (r) = sup{| f (z)− f (w)| : |z|= |w|= r and |z−w| ≤ 1− r}. (1.4.1)
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Figure 1.4.3 The sawtooth domain WE

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as r ր 1,

since otherwise any neighborhood of ∂Ω would contain infinitely many dis-

joint disks of a fixed, positive size by Koebe’s theorem (Theorem 1.1.10).

Lemma 1.4.8 Suppose f : D → Ω ⊂ S2 is conformal. Then for any ε > 0

there is a compact set X ⊂ T with cap(T\X)< ε such that f is continuous on

WX .

Proof By applying a square root and a Möbius transformation, we may as-

sume that ∂Ω is bounded in the plane. Given r < 1 let

E(δ ,r) = {x ∈ T : | f (sx)− f (tx)|> ε for some r < s < t < 1}

and note that by Pfluger’s theorem (Theorem 1.2.10) and Lemma 1.4.3

cap(E(δ ,r))≤ exp(−πε2/Ca(r)),

where a(r) = area( f (D)\ f (r ·D)), as before. Moreover, this set is open since f

is continuous at the points sx and tx. Fix ε > 0, take εn = 2−n, and choose rn so

close to 1 that cap(En)≡ cap(E(εn,rn))≤ ε2−n. If we define X = T\∪n>1En,

then X is closed and T\X has capacity ≤ ε by subadditivity.

To show f is continuous at every x ∈WX , we want to show that |x−y| small

implies | f (x)− f (y)| is small. We only have to consider points x ∈ ∂WX ∩T.

First suppose y ∈ ∂WX ∩T. Choose the maximal n so that s = |x− y| ≤ 1− rn.

Then x,y /∈ En, so

| f (x)− f (y)| ≤ | f (x)− f (sx)|+ | f (sx)− f (sy)|+ | f (sy)− f (y)|.

The first and last terms on the right are ≤ εn−1 by the definition of X . The
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middle term is at most d f (1− s) (defined in (1.4.1), which tends to 0 as s → 0.

Thus | f (x)− f (y)| is small if |x− y| is.

Now suppose x ∈ ∂WX ∩T, y ∈ ∂WX \T. From the definition of WX it is easy

to see there is a point w ∈ ∂WX ∩T such that |w− y| ≤ 2(1− |y|) ≤ 2|x− y|.
For the point w we know by the argument above that | f (x)− f (w)| is small.

On the other hand,

| f (y)− f (w)| ≤ | f (y)− f (|y|w)|+ | f (|y|w)− f (w)|.

The first term is bounded by Cd f (|y|) and the second is small since w 6∈ En.

Thus | f (x)− f (y)| is small depending only on |x− y|. Hence f is continuous

on WX .

1.5 Harmonic measure

Suppose Ω is a planar domain bounded by a Jordan curve, z ∈ Ω and E ⊂ ∂Ω

is Borel. Suppose f : DΩ is conformal and f (0) = z (by the Riemann mapping

theorem there is always such a map). By Carathéodory’s theorem, f extends

continuously (even homeomorphically) to the boundary, so f−1(E)⊂T is also

Borel. We define “the harmonic measure of the set E for the domain Ω, with

respect to the point z” as

ω(z,E,Ω) = |E|/2π,

where |E| denotes the Lebesgue 1-dimensional measure of E. This depends

on the choice of the Riemann map f , but any two maps, both sending 0 to

z, will differ only by a pre-composition with a rotation. Thus the two possi-

ble pre-images of E differ by a rotation and hence have the same Lebesgue

measure. If we fix E and Ω, then ω(z,E,Ω) is a harmonic function of z (Ex-

ercise 1.12), giving rise the name “harmonic measure”. Since we always have

0 ≤ ω(z,E,Ω) ≤ 1, we can deduce that if E has harmonic measure with re-

spect to one point z in Ω then it has zero harmonic measure with respect to all

points (Exercise 1.13). If ∂Ω is merely locally connected, then Carathéodory’s

theorem still implies that the Riemann map f has a continuous extension to the

boundary, so the same definition of harmonic measure works.

Theorem 1.4.8 allows us to define harmonic measure on a general simply

connected proper subdomain of C by

ω(z,E,Ω) = sup
n

ω(z,E ∩∂Ωn,Ωn),

where f :D→Ω is conformal with f (0)= z, Ωn = f (WFn) and {Fn} are nested,
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increasing compact sets with measure tending to |T| chosen using Lemma 1.4.8

so that f is continuous on each WFn . It is easy to verify that this definition does

not depend on any of the choice involved.

In general, we can not assume that Ωn in the previous paragraph is a Jordan

domain. For example, if Ω = D \ [0,1) is a slit disk, then any approximating

domains will have to hit both sides of the slit in nearly full harmonic measure,

and thus ∂Ω will contain self-intersections. However, if we are willing to give

up approximation of the whole boundary, and only approximate sets of positive

measure, then we can do this with Jordan subdomains. This will be discussed

in Section ??, after we have proven the Moore triod theorem and the F. and M.

Riesz Theorem.

We want estimate harmonic measure in terms of extremal length. We have

already seen how to relate extremal length to logarithmic capacity, and the

following relates the latter to harmonic measure:

Lemma 1.5.1 For any compact E ⊂ T,

cap(E)≥ 1

1+ log2+π + log 1
|E|

.

If E ⊂ T has positive Lebesgue measure, then it has positive capacity. In par-

ticular, if E ⊂ T is an arc, then

cap(E)≤ 1

log4+ log 1
|E|

.

For arcs of small measure, the two bounds are comparable.

Proof If µ is Lebesgue measure restricted to E, then clearly the correspond-

ing potential function is less than potential function of an arc I of the same

measure evaluated at the center x of that arc. Since 2
π t ≤ |x− y| ≤ t if the ar-

clength between x,y ∈ T is t, this value is at most

∫

I
log

2

|x− y|dy ≤ 2

∫ |E|/2

0
log

π

t
dt = |E| log

2

|E| +(1+π)|E|

If we normalize the measure to have mass one, then we get

Uµ ≤ log
2

|E| +1+π = log
1

|E| +1+ log2+π.

If E is an arc, then the center x of the arc is at most distance |E|/2 from any

other point of the arc, and so

Uµ(x)≥ log
2

|E|/2
= log

4

|E| = log
1

|E| + log4,
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for any probability measure supported on E. This gives the desired estimate.

The following is the fundamental estimate for harmonic measure, from which

all other estimates flow (at least, all the ones that we will use).

Theorem 1.5.2 Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0,∂Ω)≥ 1

and E ⊂ ∂Ω. Let Γ be the family of curves in Ω which connects D(z0,1/2) to

E. Then

ω(z0,E,Ω)≤C exp(−πλ (Γ)).

If E ⊂ ∂Ω is an arc then the two sides are comparable.

Proof Let f :D→Ω be conformal. By Koebe’s 1
4
-theorem (Theorem 1.1.10),

the disk D(z, 1
2
) in Ω maps to a smooth region K in the unit disk that contains

the origin, and ∂K is uniformly bounded away from both the origin and the unit

circle. Thus by Pfluger’s theorem applied to the curve family ΓX connecting K

and the compact set X = f−1(E),

1

cap(X)
+C1(K)≤ πλ (ΓX )≤

1

cap(X)
+C2(K),

for constants C1,C2 that are bounded independent of all our choices.

By Lemma 1.5.1 the right-hand side of

1+ log4+ log
1

|X | +C1(K)≤ πλ (ΓX )≤ 1+ log2+ log
1

|X | +C2(K).

holds in general, and the left-hand side also holds if X is an interval. Multiply

by −1 and exponentiate to get

|X |
2e1+π+C2

≤ exp(−πλ (ΓX ))≤
|X |

4eC1

under the same assumptions. Now use ω(z,E,Ω) = ω(0,X ,D) = |X |/2π to

deduce the result.

One of the most famous and most useful applications of this result is

Corollary 1.5.3 (Ahlfors distortion theorem) Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0,∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let ℓ(t) be the

length of Ω∩{|w− x|= t}. Then there is an absolute C < ∞, so that

ω(z0,D(x,r),Ω)≤C exp(−π

∫ 1

r

dt

ℓ(t)
).
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Proof Let K be the disk of radius 1/2 around z0 and let Γ be the family of

curves in Ω which connects D(x,r)∩ ∂Ω to K. Define a metric ρ by ρ(z) =

1/ℓ(t) if z ∈ Ct = {z ∈ Ω : |x− z| = t} and ℓ(t) is the length of Ct . Any curve

γ ∈ Γ has ρ-length at least

L =
∫ 1/2

r

dt

ℓ(t)
,

and

A =
∫∫

Ω
ρ2dxdy ≥

∫ 1/2

r

∫

Cr∩Ω
ℓ(z)−2rdrdθ =

∫
ℓ(z)−1dr = L.

Therefore

λ (Γ)≥ A/L2 = 1/L,

and this proves the result.

Corollary 1.5.4 (Beurling’s estimate) There is a C < ∞ so that if Ω is simply

connected, z ∈ Ω and d = dist(z,∂Ω) then for any 0 < r < 1 and any x ∈ ∂Ω,

ω(z,D(x,rd),Ω)≤Cr1/2

Proof Apply Corollary 1.5.3 at x and use θ(t)≤ 2πt to get

exp(−π

∫ d

rd

dt

θ(t)t
)≤C exp(−1

2
logr)≤C

√
r.

Corollary 1.5.5 There is an R < ∞ so that for any Ω is a Jordan domain and

any z ∈ Ω

ω(z,∂Ω\D(z,Rdist(z,∂Ω),Ω)≤ 1/2.

Proof Rescale so z = 1 and dist(z,∂Ω) = 1. Then apply w → 1/w which

fixes z and maps ∂Ω \D(z,R) into D(0,1/R− 1). Then Lemma 1.5.4 implies

the result if R ≥ 4C2 +1 (C is as in Lemma 1.5.4).

Corollary 1.5.6 For any Jordan domain and any ε > 0,

ω(z,∂Ω∩D(z,(1+ ε)dist(z,∂Ω)),Ω)>Cε ,

for some fixed C > 0.

Proof Renormalize so z = 0 and 1 is a closest point of ∂Ω to z. By Corol-

lary 1.5.5, the set E = ∂Ω∩D(0,1+ ε) has harmonic measure at least 1/2

from the point 1− ε/R. Since ω(z,E,Ω) is a positive, harmonic function on

D, Harnack’s inequality says it is larger than Cε/R at the origin.
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This is a weak version of the Beurling projection theorem which says that the

sharp lower bound is given by the slit disk D(0,1+ε)\ [1,1+ε). The harmonic

measure of the slit in this case can be computed as an explicit function of ε

because this domain can be mapped to the disk by sequence of elementary

functions.

Theorem 1.5.7 Suppose Ω is a Jordan domain and E ⊂ ∂Ω has zero 1
2
-

Hausdorff measure. Then E has zero harmonic measure in Ω.

Proof Since dilations do not change dimension or harmonic measure, we can

rescale so that Ω contains a unit disk centered at some point z. By Exercise

1.13, it suffices to show E has harmonic measure zero with respect to z.

By definition, the hypothesis means that for any ε > 0, the set E can be cov-

ered by open disks {D(x j,r j)} that satisfy ∑ j r
1/2
j ≤ ε . By Beurling’s estimate,

this implies

ω(z,E,Ω)≤ ∑
j

ω(z,D j,Ω)≤ O(∑
j

r
1/2
j ) = O(ε).

This result was not improved until Lennart Carleson [? ] showed in a tour

de force that the 1
2

could be replaced by some α > 1
2

in [? ]. That result was

not improved until Makarov showed it holds for all α < 1 [? ]. We will prove

Makarov’s theorem in Chapter ??. Even though we have not defined harmonic

measure for multiply connected domains, it is clear that no analog is possible

in that case: if the boundary of Ω is a Cantor set of dimension α , then it must

have full harmonic measure, even if α is small.

Corollary 1.5.8 If Ω is Jordan domain, then harmonic measure is singular

to area measure.

Proof By the Lebesgue density theorem, at Lebesgue almost every point z of

a set E of positive area, all small enough disks satisfy

area(E ∩D(z,r))≥ (1− ε)area(D(z,r)),

for all r < r0. In particular we must have ℓ(t)≤ ε
t

on a set of measure at least

r/4 in [r/2,r]. Thus by the Ahlfors distortion theorem

ω(D(z,r02−n)≤C exp(−π

∫ r0

2−nr0

dt

εt
)≤C2−πn/ε .

This is much less than (2−nr0) if n is large. Thus almost every point of ∂Ω can

be covered by arbitrarily small disks so that ω(D(z j,r j)) = o(r2
j ). Use Vitali’s
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covering theorem to take a disjoint cover of a set of full harmonic measure,

and we deduce that harmonic measure gives full mass to set of zero area.

Corollary 1.5.9 There is an ε > 0 so that harmonic measure on a planar

Jordan domain always gives full measure to a set of Hausdorff dimension at

most 2− ε .

Proof Fix a large integer b and consider the b-adic squares in the plane. Take

one such square Q that intersects ∂Ω and consider its b2 children squares.

We claim that if b is large enough, then at least one of them has harmonic

measure that is less than (2b2)−1 times the harmonic measure of Q. If there is

a subsquare that misses ∂Ω, then its harmonic measure is zero, and the claim

is true. Therefore we may assume every subsquare hits ∂Ω. Suppose Q has

side length 1 and define a finite sequence of squares Sk, concentric with Q

and with side lengths 1
b
, 3

b
, 6

b
, . . . ,1. If z ∈ ∂Sk, then dist(z,∂Ω) ≤

√
2/b and

dist(z,Sk−1)> 3/b, so by Corollary ?? ,

max
z∈∂Sk

ω(z,∂Ω∩Sk−1,Ω\Sk−1)< 1−δ ,

for some uniform δ > 0 (independent of k and b). By the maximum principle

and induction,

ω(S1)≤ (1−δ )b/3,

and this is less than 1/(2b2) if b is large enough. This prove the claim, that ω

deviates from the uniform distribution on the sub-squares by a fixed amount.

The rest is standard. The deviation from uniformity implies that the entropy

h(µ) =−
b2

∑
k=1

ω(Q j) logb ω(Q j),

is strictly less than 2, the maximum that occurs when every square has equal

measure (Exercise ??). The strong law of large numbers and Billingsley’s

lemma now imply that ω has dimension strictly less than 2, with a bound that

depends on b, but not on Ω.

Jean Bourgain [? ] proved this holds for general domains in higher dimen-

sions, with a δ that depends only on the dimension. We shall see later that the

bound dim(ω)≤ 1 holds in the plane.

1.6 Diffusion Limited Aggregation

Start with a unit disk centered at the origin. Imagine another unit disk, whose

center moves as a Brownian motion starting near infinity unit the it hits the first
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disk and the stops. Now send in another random disk until it hits one of the first

two. Continue in this way until n disks have accumulated to form a connected

set as illustrated in Figure 1.6.1.

-400 -300 -200 -100 0 100 200 300 400

-400

-300

-200

-100

0

100

200

300

400
DLA

Figure 1.6.1 A diffusion limited aggregates, n = 10,000.

It is conjectured that these aggregates, properly rescaled, will have contin-

uous limits that are fractals of dimension approximately 1.71 (based on large

numerical simulations), but almost nothing is known rigorously. Indeed, the

only rigorous result about DLA is the following upper bound due to Harry

Kesten (see [? ], [? ], [? ]), although our presentation follows the one in [? ].

Theorem 1.6.1 Almost surely, the diameter of DLA at the nth step is O(n2/3).

Proof The first step is to make the definition of DLA a little more precise.

A moving disk will hit a set E when the center is precisely distance 1 from

that set. In our case, the set is a union of n unit disks centered at a finite set of

points Pn = {p1, . . . , pn}. Thus the process of adding the next disk by letting
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Figure 1.6.2 A diffusion limited aggregation with 384,000 disks. The disks are

colored according to when they entered the cluster. Upper left is the full cluster.

Upper right is an enlargement of the center. The bottom two pictures are succes-

sive enlargements of tip.

it wander by Brownian motion, is precisely the same as choosing a point pn+1

on the set

En = {z : dist(z,Pn) = 2},

with respect to harmonic measure at ∞ for the domain Ωn that is the unbounded

complementary component of En.. Since En is, by definition, a connected set,

Ωn is simply connected and will be bounded by a finite number of circular arcs.

Actually, almost surely Ωn will be the entire complement of En. Otherwise,

we must have chosen a disk that made contact with two or more earlier disks.

But there are only a finite number of points on Ek where this happens, and finite

sets have harmonic measure zero (e.g., Beurling’s theorem), so the probability

of making such a choice is zero. Thus, almost surely, each disk in the cluster
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(except the one at the origin) hits exactly one previously chosen disk, although

it may be hit by several (at most four, almost surely) later ones.

Consider

rad(n) = max{|p| : p ∈ Pn},

which measures the size of the DLA cluster in terms of a disk around the origin,

and its inverse

exit(m) = max{n : rad(n)≤ m},

which measures how soon the cluster grows beyond a given radius. The theo-

rem is stated in terms of an upper bound for rad(n), but is equivalent to a lower

bound for exit(m):

liminf
m→∞

exit(m)

m3/2
≥ β , (1.6.1)

holds almost surely for some constant β > 0. More precisely, we define

Vm = {exit(m)≤ βm3/2},

and we will prove that ∑mP(Vm)< ∞. The Borel-Cantelli lemma then implies

that the probability that Vm occurs infinitely often is zero. Thus almost surely

Vm only occurs finitely often, which gives (1.6.1).

We estimate the probability of Vm by placing these events inside larger events

and estimating those. If Vm occurs, it means that the DLA cluster contains a

path of at most βm3/2 disks {D1, . . .DN} that starts at the origin and ends with

a disk that hits the circle {|z|= m}. Moreover, every D j+1, j = 1, . . .N−1 was

selected after D j in the growth process. Otherwise suppose D j+1 is the first

counterexample in the path. Then D j+1 is the unique earlier disk hit by D j, so

D j−1, which also touches D j, must have been chosen later than D j, making D j

a counterexample too.

Every unit disk contains a point in the lattice N×N, so for each path of

unit disks as above, we can choose a sequence of lattice points z = {z1, . . .zN}
such z j ∈ D j, j = 1, . . .zN and |z j −|z j+1| ≤ 4 since the union of two touching

unit disks has diameter 4. We will say that sequence of distinct lattice points

{z1, . . . ,zk} is m-admissible if

|z1| ≤ m/2, |zk| ≥ m, |z j − z j+1| ≤ 4.

Note that there are at most m280k−1 m-admissible sequences of length k; there

are m2 possible choices for z1, and each following choice is made from a 9×9

square, omitting the center. Moreover, the length of an m-admissible sequence

is at least m/8 since the first and last points are at least distance m/2 apart.

Given an m-admissible sequence z of length k, we define Wm(z) to be the set
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of clusters so that:

(1) the cluster contains at most βm3/2 disks,

(2) the cluster contains the sequence z, and

(3) the disk containing z j+1 was chosen after the disk containing z j. By our

comments above each cluster in Vm contained in the event Wm(z) for some m-

admissible sequence of length k ≤ βm3/2. Thus all of Vm is contained Wm, the

union of Wm(z) over all m-admissible sequences of length at most βm3/2.

We claim that if z has length k, then

P(Wm(z))≤ (Cβ )k. (1.6.2)

We will finish the proof of the theorem assuming this is true, and then prove

the estimate. Given (1.6.2)

P(Wm)≤ ∑
z

P(W (z))

≤ #(m− admissible z) · (Cβ )k

≤ m280k−1(Cβ )k

≤ m2(80Cβ )k

≤ m2(80Cβ )m/4,

since k ≥ m/4. Thus

∑
m

P(Vm)≤ ∑
m

P(Wm)≤ ∑
m

m2(80Cβ )m/4 < ∞,

if we choose β < 1/80C. This completes the proof of Theorem 1.6.1, except

for the proof of (1.6.2).

First we explain the general idea for proving (1.6.2). Suppose we have al-

ready grown a cluster that contains the points z1, . . . ,z j. How long do we have

to wait before the cluster contains z j+1? We must add a disk within distance 4

of the disk containing z j. Since the cluster has diameter at least m/2, by Beurl-

ing’s estimate (Lemma 1.5.4) the probability of choosing such a disk is less

that C/
√

m. Therefore the expected number of disks we add before covering

z j+1 is at least
√

m/C. This has to happen k times, so we expect that k
√

m/C

disks need to be added to the cluster before the whole sequence z is covered.

Since k ≥ m/8, we therefore expect to need about m3/2/C disks to be added.

However, clusters in the event Wm(z) only use βm3/2 disks to cover z. If β is

small compared to 1/C, this event should have small probability.

To make this idea precise, let D1, . . . be an enumeration of the disks in the

cluster, in the order they are added. Suppose z j is contained in disk Dk( j) and

let w( j) = k( j+1)− k( j); this is the time we “wait” between covering z j and
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z j+1. Then

P(w( j)> t)≥ (1− p)t ,

where p ≤ C/
√

m. Therefore w( j) is bounded below by a geometric random

variable (the same one for each j), and ∑ j w( j) will be bounded below by the

corresponding sum of geometric variables. We estimate this distribution using:

Lemma 1.6.2 Suppose X1, . . .Xn are independent geometric random vari-

ables, i.e., P(X j = s) = p(1− p)s−1 for some 0 < p < 1/2, and Y = ∑n
j=1 X j.

If a ≥ 2p, then

P(Y ≤ an/p)≤ (2e2a)n.

Proof As usual, we define the moment generating function of the random

variable Y as the expected value of exp(tY ). If X is a geometric random vari-

able, then

E(etX ) =
∞

∑
j=1

et j p(1− p) j−1 = pet
∞

∑
j=0

(et(1− p)) j =
p

1− et(1− p)
.

Since Y is a sum of independent copies of X ,

E(etY ) =
∞

∏
j=1

E(etX ) =
[ p

e

t

1− et(1− p)
]w

.

By Chebyshev’s inequality

P(Y <
lnλ

−t
) = P(e−tY > λ )≤ 1

λ
E(e−tY ).

Set λ = exp(−ant/p) to get

P(Y < an/p)≤ exp(ant/p)E(e−tY ) =
exp(ant/p)e−nt pn

(1− e−t(1− p))n
=

exp(ant/p)pn

(et − (1− p))n
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Now set t = ln(a(1− p)/(a− p) and this becomes

P(Y < an/p)≤
pn

(
a(1−p)

a−p

)an/p

( (a(1−p)
a−p

− (1− p))n

≤
pn

(
a(1−p)

a−p

)an/p

(1− p)n( (a
a−p

−1)n

≤
pn

(
a(1−p)

a−p

)an/p

(1− p)n( p
a−p

)n

≤
(

a(1− p)

a− p

)an/p(
a− p

1− p

)n

.

Using p < 1/2 and a ≥ 2p, we get a ≤ 2(a− p) and 1− p > 1/2, so

P(Y < an/p)≤
(

a(1− p)

a− p

)an/p

(2a)n

≤
(

a

a− p

)an/p

(2a)n

≤
(

1+
p

a− p

)an/p

(2a)n

≤
(

1+
p

a− p

)2(a−p)n/p

(2a)n

≤ (e22a)n,

since (1+ 1
x
)x ≤ e.

To finish the proof of (1.6.2), apply Lemma 1.6.2 with a = βk/p ≥C1βm3/2

P(Wm)≤ P(
k

∑
j=1

w( j)< βm3/2)

≤ P(
k

∑
j=1

X j <C1βk/p)

≤ (2e2C1β )k = (C2β )k,

as desired. This completes the proof of (1.6.2) and hence of Theorem 1.6.1.
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1.7 Notes

Diffusion limited aggregation was introduced by Witten and Sander in 1981.

See [? ], [? ]. There have been numerous numerical simulations of DLA and

heuristic arguments for estimating its growth and geometry, but after thirty

years, Kesten’s bound is the only rigorously provable thing we know about

DLA.

Many variants of DLA have also been proposed and studied. See, for exam-

ple, [? ], [? ], [? ], [? ],

Our discussion of DLA assumed disks were added by moving them contin-

uously by Brownian motion until they made contact with the existing cluster.

An alternative model is to use a random walk on a lattice. In this case, the DLA

cluster is a connected collection of lattice sites. This is a common formulation

of the problem and was the version used in Kesten’s papers [? ], [? ], [? ]. The

bound and proof are essentially the same as we have given (indeed, our proof is

modeled on the discrete proof given by Lawler in []), but one needs a discrete

version of Beurling’s harmonic measure estimate, Lemma 1.5.4. We choose

to give the continuous version of DLA in order to make use of the classical

version of Beurling’s estimate, which we will also need for other applications

in this book.

We have only considered DLA in two dimensions. It is known that in 3

dimensions, the diameter is almost surely O(n1/2(logn)1/4) and in dimensions

d ≥ 4 it is O(n2/(d+1)). See [? ]. It seems unbelievable that there is no non-

trivial lower bound for the diameter. The trivial bound in the plane is of order

n1/2, since no more than O(n) disjoint unit disks can be packed into a disk of

radius
√

n region. However, so far as the authors know, there is no proof that

lim
n→∞

diam(DLA(n))√
n

= ∞.

It also seems very likely that the bound 2/3 in Kesten’s theorem can be im-

proved; the numerics indicate this and looking at the pictures quickly convinces

one that we should be able to improve the square root estimate in Beurling’s

theorem, which is only sharp for line segments (and DLA does not look like

a line segment!). Even more difficult questions include whether DLA has a

continuous scaling limit, and what the dimension of such a limit might be.

Stas Smirnov has warned that graduate students and postdocs not be allowed

to work on DLA. Apparently they are particularly susceptible to a debilitating

condition known as “diffusion limited aggravation”.
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1.8 Exercises

Exercise 1.1 If Ω is a Jordan domain and E,F ⊂ ∂Ω are disjoint closed

subarcs, then there is a conformal map of Ω to some rectangle so that E and F

map to opposite sides.

Exercise 1.2 If Ω is a topological annulus bounded by two Jordan curves,

show that it can be conformally mapped to a round annulus.

Exercise 1.3 Let E ⊂ C be a closed set and z a point not in E. Compute the

modulus of the path family connecting E to {z}.

Exercise 1.4 Let En ⊂T be defined by {z : Re(zn)> 0}. Show that Caplog(En)→
Caplog(T) as n → ∞. Since T\En clearly has the same capacity as En, this im-

plies capacity is not additive.

Exercise 1.5 Show that the linear fractional transformations that map D 1-to-

1, onto itself are exactly those of the form z → λ (z−a)/(1−az) where |a|< 1

and |λ |= 1.

Exercise 1.6 Show a hyperbolic ball in the disk is also a Euclidean ball, but

the hyperbolic and Euclidean centers are different (unless they are both the

origin). Compute the Euclidean center and radius of a hyperbolic ball of radius

r centered at z in D.

Exercise 1.7 Show that the only isometries of the hyperbolic disk are Möbius

transformations and their reflections across R.

Exercise 1.8 Show that the domain U constructed in the proof of Theorem

1.3.6 is equal to Hu.

Exercise 1.9 If { fn} are holomorphic functions on a domain Ω that converge

uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→ f (z).

Exercise 1.10 Suppose E is compact and supports a positive measure µ so

that µ(D(x,r))≤ ϕ(r), where

∞

∑
n=0

nϕ(2−n)< ∞,

Then E has positive capacity.

Exercise 1.11 If E ⊂ T is compact and has positive Hausdorff dimension,

then it has positive capacity.

Exercise 1.12 Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is Borel.

Prove that ω(z,E,Ω) is a harmonic function of z.
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Exercise 1.13 Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is Borel.

Show that if ω(z,E,Ω) = 0 for some z ∈ Ω, then it is zero on all of Ω.

Exercise 1.14 If {pk}n
k=1 are non-negative numbers and ∑n

k=1 pk = 1, show

that h =−∑n
k=1 pk log pk is maximized uniquely when pk = 1/n for all k.

Exercise 1.15 Suppose g(z) = 1
z
+ b0 + b1z + . . . is univalent in D. Then

∑∞
n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1. This is the area theorem.

Exercise 1.16 Use the area theorem to prove that if ϕ(z) = z+∑∞
n=2 anzn is

univalent on the unit disk with ϕ ′(0) = 1, then |a2| ≤ 2. This is the case n = 2

of the Bieberbach conjecture (later to become deBrange’s theorem [], []).

Exercise 1.17 Use the previous exercise to give a second proof of the Koebe
1
4
-theorem.

Exercise 1.18 If f is conformal on the disk, and ϕ = log f ′, then |ϕ ′(z)| ≤
6/(1−|z|2) for all z ∈ D.

Exercise 1.19 If ϕ is conformal on D then

1−|z|
(1+ |z|)3

≤ |ϕ ′(z)| 1+ |z|
(1−|z|)3

.

This is the distortion theorem. See e.g., Theorem I.4.5 of [? ].

Exercise 1.20 If ϕ is conformal on D then

|z|
(1+ |z|)2

≤ |ϕ(z)| |z|
(1−|z|)2

.

This is the growth theorem. See e.g., Theorem I.4.5 of [? ].

Exercise 1.21

Exercise 1.22

Exercise 1.23

Solutions (eventually move to end of book)

Solution 1.1 First map Ω to the disk by the Riemann mapping theorem. Then

use a Möbius transformation to arrange for the images of E and F to be arcs

centered at ±1 and symmetric with respect to the real line. Then the Schwarz-

Christoffel formula gives a map to the desired rectangle.

Solution 1.2 Use uniformization theorem to get covering by disk. Then use

Riemann map to get covering by vertical strip with deck transformations being

vertical translations. Then use exponential map to send strip to annulus and

collapsing orbits to single points.



1.8 Exercises 49

Solution 1.3 Take an annulus around the point that is disjoint from E, but

has modulus close to zero, and use monotonicity.

Solution 1.4 The logarithmic capacity of the circle is 1/ log2. Compute the

potential of Lebesgue measure restricted to En and show that it is bounded by

1/2log2+o(1) Therefore approximately twice this measure is still admissible,

which means the capacity of En is close to the capacity of the circle, if n is

large..

Solution 1.8

Solution 1.9 We may assume {zn} are contained in some disk D ⊂ Ω around

z. Let E = {zn}∪{z}. This is a compact set so it has a positive distance d from

∂Ω. The points within distance d/2 of E form a compact set F on which the

functions { fn} are uniformly bounded on E, say by M. By the Cauchy estimate

the derivatives are bounded by a constant M′ on E. Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z− zn|,

and both terms on the right tend to zero by hypothesis.

Solution 1.10 The condition easily implies Uµ is bounded, hence supp(µ)

has positive capacity.

Solution 1.11 This follows from Frostman’s theorem (Theorem ??) since if

dim(E) > 0 then E supports a measure that satisfies µ(D(x,r)) = O(rε) for

some ε > 0 and ∑n 2−εn < ∞.

Solution 1.12 Show that ω(z,E,D) must agree with the Poisson integral of

the indicator function of E (the function that is 1 on E and 0 off E). This

holds because the derivative of a Möbius transformation of the disk to itself has

absolute value equal to the Poisson kernel when restricted to the unit circle.

Solution 1.13 By the maximum principle, a harmonic function that attains a

minimum or maximum is constant.

Solution 1.15 For 0 < r < 1 let Dr =C\g(D(0,r)). If z = g(w) and w = eiθ

then dw = iwdθ , so by (??),

area(Dr) =
∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)
ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+b0 +b1z+ . . . ,

g′(z) =
1

z2
+0+b1 +2b2z+ . . . ,
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so that
∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(

1

w̄
+ b̄0 + b̄1w̄+ . . .)(− 1

w
+b1w+2b2w+ . . .)dθ

= 2πi(− 1

r2
+ |b1|2r2 +2|b2|r4 + . . .)

Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞

∑
n=1

n|bn|2r2n).

Taking r → 1 gives the result.

Solution 1.16 Let F(z) = z
√

f (z2)/z2. Then the quantity inside the square

root is even and doesn’t vanish in D, so F is odd, univalent and

F(z) = z+
a2

2
z+ . . . .

Thus

g(z) =
1

F(z)
=

1

z
− a2

2
z+ . . . ,

is univalent and satisfies Theorem ??, so |a2| ≤ 2.

Solution 1.17 By pre-composing with a Möbius transformation and post-

composing by a linear map, we may assume z = 0, f (0) = 0 and f ′(0) = 1.

Then the right hand inequality is just Schwarz’s lemma applied to f−1. To

prove the left hand inequality, suppose f never equals w in D. Then

g(z) =
w f (z)

w− f (z)

= w(z+a2z2 + . . .)
1

w
[(1+

1

w
(z+a2z2 + . . .)+

1

w2
(z+a2z2 + . . .)2 + . . .)]

= z+(a2 +
1

w
)z2 + . . . ,

is univalent with f (0) = 0 and f ′(0) = 1. Applying Corollary 1.16 to f and g

gives

1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2+2 = 4.

Thus the omitted point w lies outside D(0,1/4), as desired.
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Solution 1.18 Define

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.

Then F is conformal, F(0)= 0 and F ′(0)= 1, so Lemma ?? says that |F ′′(0)| ≤
4. A computation shows

F ′′(0) =
f ′′(z)
f ′(z)

(1−|z|2)+(−2z),

and ϕ ′ = (log f ′)′ = f ′′/ f ′, so

|ϕ ′|(1−|z|2)≤ |F ′′(0)|+ |2z| ≤ 4+2 = 6.

Solution 1.19 Fix a point w ∈ D and write the Koebe transform of f ,

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.

This is univalent, so by Corollary 1.16, |a2(w)| ≤ 2. Differentiation and setting

z = 0 shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1−|w|2) f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1−|w|2) f ′(w)
,

τ ′(0) = 1−|w|2,τ ′′(0) =−2(1−|w|2),

F ′′(0) =
f ′′(w)
f (w)

(1−|w|2)−2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series

of F is

a2(w) =
1

2
((1−|w|2) f ′′(w)

f ′(w)
−2w̄).

Using |a2| ≤ 2 and multiplying by w/(1−|w|2), we get

|w f ′′(w)
f ′(w)

− 2|w|2
1−|w|2 | ≤

4|w|
1−|w|2 .
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Thus

2|w|2 −4|w|
1−|w|2 ≤ w f ′′(w)

f ′(w)
≤ 4|w|+2|w|2

1−|w|2 .

Now divide by |w| and use partial fractions,

−1

1−|w| +
−3

1+ |w| ≤
1

|w|
w f ′′(w)

f ′(w)
≤ 3

1−|w| +
1

1+ |w|

∂

∂ r
log | f ′(reiθ )|= ∂

∂ r
Relog f ′(z)

= Re
z

|z|
∂

∂ z
log f ′(z)

=
1

|z|Re(
z f ′′(z)
f ′(z)

)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)−3log(1+ r)≤ log | f ′(reiθ )| ≤ −3log(1− r)+ log(1+ r).

Exponentiating gives the result.


