Ergod. Th. & Dynam. Sys. (1981), 1, 103-106 Printed in Great Britain

On iterates of e^z

MICHAŁ MISIUREWICZ†

Department of Mathematics, University of Maryland, USA; and Mathematics Institute, Warsaw University, Poland

(Received 8 November 1980)

Abstract. It is proved that for the map $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = e^z$, the family $\{f^n\}_{n=0}^{\infty}$ is not normal at any point. In particular, f is topologically transitive.

Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function. In the theory of iterates of f an important role is played by the set F(f) of points at which $\{f^n\}_{n=0}^{\infty}$ is not a normal family.

The aim of this paper is to prove that, for the map $f(z) = e^z$, the set F(f) is the whole plane. This was conjectured in 1926 by Fatou [2]. Some progress has been

made by Töpfer [3] who proved that $F(f) \supset \bigcup_{n=0}^{\infty} f^{-n}\mathbb{R}$, and by Baker [1] who proved that any limit function of a subsequence of $(f^n)_{n=0}^{\infty}$ on any component of $\mathbb{C}\backslash F(f)$ has to be one of the constants $f^n(0)$, $n=0,1,\ldots,+\infty$. In my proof I do not use the above results.

More information concerning this and similar problems, together with historical references, can be found in [1].

In the sequel we assume that $f(z) = e^{z}$.

LEMMA 1. Let $z \in \mathbb{C}$. Then $|\operatorname{Im} (f^n(z))| \leq |(f^n)'(z)|$.

Proof. We have $f(x+iy) = e^x \cos y + ie^x \sin y$. Since $|\sin y| \le |y|$, we obtain $|\operatorname{Im}(f(w))| \le |\operatorname{Im} w| \cdot |f(w)|$ for every $w \in \mathbb{C}$. But f'(w) = f(w), and hence if $w \ne \mathbb{R}$ then $|\operatorname{Im}(f(w))|/|\operatorname{Im} w| \le |f'(w)|$. If $f''(z) \ne \mathbb{R}$ then, using this inequality for $w = f(z), \ldots, f^{n-1}(z)$, we obtain

$$\frac{\left|\text{Im}\,(f^n(z))\right|}{\left|\text{Im}\,(f(z))\right|} = \prod_{k=1}^{n-1} \frac{\left|\text{Im}\,(f(f^k(z)))\right|}{\left|\text{Im}\,(f^k(z))\right|} \le \prod_{k=1}^{n-1} |f'(f^k(z))|.$$

But $|\operatorname{Im}(f(z))| \le |f(z)| = |f'(z)|$, and hence

$$|\operatorname{Im} (f^{n}(z))| \le \prod_{k=0}^{n-1} |f'(f^{k}(z))| = |(f^{n})'(z)|.$$

If $f^n(z) \in \mathbb{R}$ then the inequality is obvious.

(18)

 $\Lambda_n(y)$) is a

1 > 0. Then,

ınd

 $\dot{\bar{m}}(\Lambda_m(y)) =$

. Therefore,

here vol(·)

(19)

.(17) that

 $(n - \# S_n)$

 $(n-\#S_n)$

 $(n-\#S_n)$

ın Math. Surveys

i. Mat. 9 (1978),

[†]Address for correspondence: Dr Michal Misiurewicz, Mathematics Institute, Warsaw University, PKiNIXp, 00-901 Warszawa, Poland.

Let $S = \{z \in \mathbb{C} : |\operatorname{Im} z| \leq \frac{1}{3}\pi\}.$

LEMMA 2. (a) If $z \in S$ then $\operatorname{Re}(f(z)) \ge \operatorname{Re} z + (1 - \ln 2)$.

(b) If $z \in \mathbb{C} \setminus \mathbb{R}$ then there exists $n \ge 0$ such that $f^n(z) \not\in S$.

Proof. For $y \in [-\frac{1}{3}\pi, \frac{1}{3}\pi]$ we have $\cos y \ge \frac{1}{2}$ and hence if $x + iy \in S$ then $\operatorname{Re}(f(x+iy)) = e^x \cos y \ge \frac{1}{2}e^x$. Let $\phi(x) = \frac{1}{2}e^x - x$. Then $\phi'(x) = \frac{1}{2}e^x - 1$ and hence $\inf \phi = \phi(\ln 2) = 1 - \ln 2$. Therefore, if $z \in S$ then $\operatorname{Re}(f(z)) \ge \operatorname{Re}z + (1 - \ln 2)$.

Suppose now that $z \in \mathbb{C} \setminus \mathbb{R}$ and $f^k(z) \in S$ for all $k \ge 0$. Since $1 - \ln 2 > 0$, by induction we obtain $\text{Re } (f^k(z)) \to \infty$ as $k \to \infty$. For all $y \in [-\frac{1}{2}\pi, \frac{1}{2}\pi]$ we have $|\sin y| \ge (2/\pi)|y|$. Thus

 $|\text{Im}(f^{k+1}(z))| \ge e^{\text{Re}(f^k(z))} \cdot (2/\pi) |\text{Im}(f^k(z))|$ for all $k \ge 0$.

But for k sufficiently large, $e^{\operatorname{Re}(f^k(z))} \cdot 2/\pi > 2$, and hence $|\operatorname{Im}(f^k(z))| \to \infty$ as $k \to \infty$ – a contradiction.

LEMMA 3. Let $B \subset \mathbb{C}$ be a disk with a centre b and a radius r. Let $n \geq 0$ be such that $f^n|_B$ is a homeomorphism. Then $f^n(B)$ contains a disk with a centre $f^n(b)$ and a radius $r \cdot \inf |(f^n)'|$.

Proof. Let γ be the shortest curve joining $f^n(b)$ with the boundary of $f^n(B)$. Then the curve $(f^n|_B)^{-1}(\gamma)$ joins b with the boundary of B. Thus its length is at least r. Since f^n is holomorphic, it is conformal, i.e. stretching in all directions is equal to the absolute value of the derivative. Hence, the length of γ is at least $r \cdot \inf_B |(f^n)'|$.

LEMMA 4. Let V be a non-empty open connected set. Then only finitely many of its images can be disjoint from S.

Proof. Suppose that there exists an increasing sequence $(n_j)_{j=1}^{\infty}$ such that $f^{n_j}(V)$ is disjoint from S for every j. Then, by lemma 1, $\inf_{V} |(f^{n_j})'| \ge (\frac{1}{3}\pi)^j$ for all j. If all maps

 $f^{n_i}|_V$ are homeomorphisms then, by lemma 3, there exists k such that $f^k(V)$ contains a disk of radius π . Then there exists an integer m such that $f^k(V)$ intersects the line $\mathbb{R}+2\pi im$. If some $f^{n_i}|_V$ is not a homeomorphism then, since V is connected, there exist integers $k \in [0, n_i - 1]$ and m such that $f^k(V)$ intersects the line $\mathbb{R}+2\pi im$. In both cases, $f^{k+1}(V)$ intersects the real axis. Therefore all sets $f^{n_i}(V)$ for $n_i \ge k+1$ intersect the real axis – a contradiction.

LEMMA 5. Let V be a non-empty open connected set such that infinitely many of its images are contained in the half-plane $H = \{z : \text{Re } z > 4\}$. Then some image of V intersects the real axis.

Proof. Suppose that no image of V intersects the real axis. Then no image of V intersects the boundary of the set $W = \{z : |\text{Im } z| \le 2\pi \text{ and } |\text{Im } (f(z))| \le 2\pi \}$. If a connected set A is disjoint from W then either A or f(A) is disjoint from S. Therefore, in view of lemma 4, only a finite number of images of V can be disjoint from W. Hence, almost all images of V are contained in W. If

 $|\operatorname{Im} z| = \frac{1}{3}\pi$ and $\operatorname{Re} z \ge 4$

then

Ther $W \cap$ Inf
that fconta

LEMI
the re
Proof
{f" | v
inters
the se
Ta
that j
There

 f_1 and

open

infini

axis -

Proof
conne
6, the
image
conve $f^n(U$ (b), ir
from
conta

strip { $\mathbb{R} \pm \pi$ contr

In vie

This | Scien IHES

indeb

then

$$|\operatorname{Im}(f(z))| = e^{\operatorname{Re} z} \sin |\operatorname{Im} z| \ge e^4 \sin \frac{1}{3} \pi > 2^4 \cdot \frac{1}{2} = 2 \cdot 4 > 2 \pi.$$

Therefore the boundary of S is disjoint from $W \cap H$. Thus every connected subset of $W \cap H$ is either contained in S or is disjoint from S.

Infinitely many images of V are contained in $W \cap H$. From lemma 2 (a) it follows that $f(S \cap H) \subset H$. Therefore, in view of lemma 2 (b), infinitely many images of V are contained in $H \setminus S$. This contradicts lemma 4.

LEMMA 6. Let V be a non-empty open connected set. Then some image of V intersects the real axis.

Proof. Suppose that no image of V intersects the real axis. By Montel's theorem, $\{f^n|_V\}_{n=0}^{\infty}$ is a normal family of functions. By lemma 5, almost all images of V intersect the disk $D = f(\mathbb{C}\backslash H) = \{z : |z| \le e^4\}$. Let f_0 be a limit of some subsequence of the sequence $(f^n|_V)_{n=0}^{\infty}$. Then $f_0(V)$ intersects D.

Take a point z belonging to this intersection. If $z \in \mathbb{R}$ then there exists $k \ge 0$ such that $f^k(z) \in H$. If $z \notin \mathbb{R}$ then, by lemma 2(b), there exists $k \ge 0$ such that $f^k(z) \notin S$. Therefore there exists a subsequence of the sequence $(f^n|_V)_{n=0}^\infty$ convergent to a map f_1 and a point $w \in V$ such that $f_1(w) \in H$ or $f_1(w) \notin S$. Then there exists a connected open neighbourhood U of w such that $U \subset V$ and $f^n(U) \subset H$ or $f^n(U) \cap S = \emptyset$ for infinitely many ns. Thus, by lemmas 4 and 5, some image of U intersects the real axis – a contradiction.

THEOREM. The set F(f) is the whole plane.

Proof. Suppose that F(f) is not the whole plane. Then there exists a non-empty connected open set U such that $\{f^n|_U\}_{n=0}^\infty$ is a normal family of functions. By lemma 6, the set of points which are mapped eventually into $\mathbb R$ is dense in U. By lemma 2 (a), images of all these points converge to infinity. Hence, the sequence $(f^n|_U)_{n=0}^\infty$ converges uniformly to infinity. Since the set $f(\mathbb C\setminus H)$ is bounded, almost all sets $f^n(U)$ are contained in H. Also, almost all of them intersect the real axis. By lemma 2 (b), infinitely many of them are not contained in S. Since the boundary of S is disjoint from $W\cap H$ (see the proof of lemma 5), infinitely many of the images of U are not contained in W. Hence, infinitely many of the images of U are not contained in the strip $\{z: |\text{Im } z| \le 2\pi\}$. Consequently, infinitely many of them intersect one of the lines $\mathbb{R}^{\pm}\pi i$. But the second image of these lines is contained in the unit disk -a contradiction.

In view of Montel's theorem we obtain immediately:

Corollary. The map f is topologically transitive.

This paper was written essentially during my visit to the Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France). I gratefully acknowledge the hospitality of IHES and the financial support of Stiftung Volkswagenwerk for the visit. I am also indebted to M. Keane who told me about the problem.

 ∞ as $k \to \infty$

12 > 0, by $|\sin y| \ge 1$

 $\equiv S$ then

nd hence

ln 2).

3). Then the st r. Since f^n : the absolute

many of its

tat $f^{n_i}(V)$ is . If all maps

V) contains ects the line ected, there $2+2\pi i m$. In or $n_i \ge k+1$

 γ many of its image of V

image of V $|\leq 2\pi$. If a oint from S in be disjoint

M. Misiurewicz

REFERENCES

- [1] I. N. Baker. Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fennicae, Ser. A.I. Math. 467 (1970).
- [2] P. Fatou. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337-370.
- [3] H. Töpfer. Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin and cos. Math. Ann. 117 (1940), 65-84.