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Introduection

1. The classical theorem of Picard states that in the neighbourhood
of an isolated essential singularity a meromorphic function takes all values
except at most two. This result has given rise to a very extensive further
study. In Nevanlinna’s value distribution theory, far-reaching results have
been obtained on the number of a-points near the singularity and on the
magnitude of certain mean values associated with these numbers ([3]).
Further, the generalizations of Picard’s Theorem, due to Julia [1] and
Ostrowski [4], yield information on the location of a-points in the vicinity
of the singularity. , '

In this paper we once more return to the question of the behaviour
of a meromorphic f(z) in the neighbourhood of an isolated essential
singularity. Our previous investigations concerning normal meromorphic
functions ([2], especially Theorem 9) have led us to the idea of character-
1zing the growth of /(z) near the singular point with the help of the spherical
derivative
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1+1fz) P~

Theorem 1 below shows that the behaviour of f(z) near an isolated singularity

e(f(z)=

. can, in fact, be accurately described in terms of o(f(z)). The slowest possible

growth of o(f(2)) can be expressed by means of a universal constant.
o eorem 1 distinguishes a particular class of meromorphic functions
for which 0(f(z)) is of slow growth in the vicinity of the singular point.
These functions are proved to be equivalent with functions which are normal
M every simply connected subdomain of & neighbourhood of the
gularity (Theorem 2). This characterization provides a convenient tool
% the study of these functions. : '
B Contact with previous results is afforded by Theorem 3 which states
hat the above slowly growing functions are equivalent with functions
*ptional in the sense of Julia.
he Paper concludes with certain remarks concerning the characteristic
otion of these functions.
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§ 1. Growth of the spherical derivative

9. Let us suppose that f(z) is meromorphic in a neighbourhood °ij
2 — co. In the following, this particular choice of the possible singulay

point does not offer any formal advantages, but in the literature the isolated |

singularity is usually placed at infinity.
It follows readily by simple computation that if f(z) is meromorphic

still at 2 = oo, then
1
o(f2)=0 (lz—,) .

If, instead, z = oo ‘is a singular point, the approach of o(f(z)) towards
zero is essentially slower. To this effect, we can prove

Theorem. 1. Let f(z) be single-valued and “meromorphic in a neighbour-
hood of the essential singularity z = co. Then a universal positive constant
ke exists such that

(1) Em [zlo(/(2)) 2
for all f(z), while there exist, for any positive ¢, functions for which
2) Iim |z|(f(2)<k+e.

Proof: Let f(z) be meromorphic for |z,] = [z] < eo, and let f(a) =u,
la| = |2o|- If s(x, ) denotes the distance of the points « and § on the Rle,

mann sphere, we have for every z lying on the circle |z| = |al,
(3) s(f(2), )< [ o(f())ldal,

the integral being extended along |z| = |a|. i

Let us now make the antithesis that (1) is not true. Given an arbitrary
n >0, a neighbourhood |z| > M of z = oo then exists in which |z|o(f(2))<I.
for some f(z). Hence, by (3), as soon as |z| = |a| > I, we have

(4) 8(/(z),w) <.

We shall show that for small # this leads to a contradiction. ;

Considering Picard’s Theorem, there is of course no loss of generalitf
to suppose that f(z) takes the value zero in every neighbourhood of z = @
Let us now choose < %, and let [z| =7 > M be a circle containing &
zero of f(z). By (4), a circular ring » < |z| = R then exists in which q

() 5(/(2),0) = 27,

i.e. f(z) % oo, with equality in (5) at some point on |z| = E.

OLL:

Der
and |?]
mutual
cannot
for a v

The
set of
a point
point -
from w
2] < 1
the rin,
the mi
existen

In «
that t1

(6)

Such «
fz) =

with o
for 2 #

(7)

Becaus
validit

finite |

point 2
If
Ifz =

Where

arounc
holds 1




SRR 0

AT 240

ighbourhood  of
ossible singular

, in a meighbour-
positive constat.

1 which [z]e(f(2))
we have

dists in which

= R.

) o) = Ty eF @)

aro

Oxr1 LerTOo and K. I. VRTANEN, On the behaviour of meromorphic functions 5

Denoting by S, and Sy the sets of values w taken by f(z) on |z| = r
and |2| = R, respectively, we conclude that these sets are bounded and
mutually disjoint in the w-plane. Boundedness is clear, and that the sets
cannot have any points in common follows from (4), if we apply it on |z| = R
for a value w for which s(w,0) = 2m.

The desired contradiction is now obtained as follows: Since the value
set of f(z) in r =< |z|] < R contains a curve joining S, to Sy, it contains
a point w, lying in the same part of the complement of S. and Sk as the
point w = oco. In this part of the complement, let L be a Jordan curve
from wy o infinity, and w="> the first point on L such that f(z) b in r<
|z| < B. Then |f(z)—b| has a positive lower bound on the boundary of
the ring, while it is arbitrarily small in the interior. This, however, violates
the minimum principle. Hence, the antithesis is false, and we infer the
existence of a positive constant k(= 1) such that (1) is valid. :

In order to prove the latter part of the Theorem, we have only to show
that there exist functions f(z) for which

(6) lim |zlo(f(z)) < co.

zZ— O

Such examples can readily be given. For instance, consider a function
/() = F (log z), where F (w) is meromorphic and double-periodic for w # o,
with one period equal to 2mi. This f(z) is single-valued and meromorphie
for 2 #0, oo, and

1
(w=1log 2).

Because F(w) is double-periodic, o(F(w)) is obviously bounded, and the
validity of (6) follows. The Theorem is thus completely established.
We note that there also exist functions f(2), meromorphic in the whole

| fite plane z oo, which satisfy the condition (6). (Cf. Theorem 3 below).

3. In the case that f(z) is meromorphic in a neighbourhood of a finite
Pomt 2 = g, the situation is as follows:

If f(z) is meromorphic at z=a, then o(f(z)) is bounded in a vicinity of a.

fz=gqisa singular point, then

inf {H Iz-ale(f(Z))} —

zZ—>a

Where [ is, of course, the same constant as above.

§ 2. Normal meromorphic funections

4 In this section we study meromorphic functions f(z) whose growth

Wd the isolated singularity z = co is minimal in the sense that (2)
lds for some finite positive &.
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To this end, we introduce normal meromorphic functions. By definition
([2]), a meromorphic f(z) is normal in a simply connected domain G if
and only if the famﬂy{ f(S(z))}, where 2z’ = S(z) denotes a one-one mapping
of @ onto itself, is normal in the sense of Montel. In multiply connected
domains, f(z) is said to be normal if it is normal on the universal covering -

surface. _
Tt is well known that a family & of meromorphic functions is normal

in a domain if and only if
(8) sup o(f(z)) <eo

Fe ‘
in every compact part of the domain. Applying this condition to the family
{ f(S (z))}, we proved in [2] that f(z) is normal in a (simply or multiply connect- |
ed) domain if and only if

(9) o(f(2))ldz| = O(do(2)),

where do(z) denotes the element of length in the hyperbolic metric of
the domain. 3

In multiply connected domains @, another form of normality can be
introduced as follows: a meromorphic f(z) is said to be weakly normal

et

in @, if f(z) is normal in every simply connected subdomain of G. By the
principle of hyperbolic measure, it follows from the condition (9) that |
normality implies weak normality. The converse is generally not true. .

We remark that weak normality can also be defined with respect to |

sets @ which are not necessarily open domains themselves.

E

5. We proved in [2] (Theorem 9) that a meromorphic f(z) cannot be |
normal in any neighbourhood of an isolated essential singularity. This%
follows immediately also from Theorem 1. For if f(z) is normal in a vicinity -
of z = oo, ie. if (9) is fulfilled, it follows by an easy computation that“.ig

olfe) =0 [——\-
ol log

1 :
), implying that f(z) is meromorphic still at z ="

Hence, o(f(z)) =0 (—

|2

6. Contrary to the above, the slightly wider class consisting of function §
weally normal around the singularity z = co, is not void. As a matter 2
fact, this is exactly the class for whose functions the minimal conditi®

[elo(/(z) = O (1) is valid.
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Theorem 2. Let f(z) be meromorphic in the neighbourhood U :
ain G i1 0< |zl = |2 < oo of the essential singularity z = co. Then

) . lim [zlo(f(2)) < oo

z—=> 00

if and only if f(z) is weakly normal in U.

Proof: The proof becomes somewhat simpler, if we perform the
inversion and study the following situation: f(z) is meromorphic for
0<|z| = RB(< o0), z=0 being an essential singularity.

i ¢ The sufficiency part of the Theorem is clear. For if f(2) is weakly normal
the fa.milf% in 0<|2! =R, it is normal in every semicircle (< RB)N(¥ < arg z
yconnec’a <V+mxn), 0Z9<x An elementary computation then shows that
' L Jzlo(f(z)) = O(1), and (10) follows by inversion.

In order to establish the necessity of the condition, we consider an
arbitrary simply connected subdomain G of 0 < [z2| < R. Let ¢ be a point
of @, and let w = @(2) give a one-one mapping of @ onto |w|<1 such that
p(¢) = 0. Then dog (¢) = |¢'()]|dC].

: me’oriciii
In order to estimate l9"(£)], we apply Koebe’s distortion theorem.

Jity can

% If d, denotes the shortest distance from the point { to the boundary,
kly MOME K oehe’s” theorem yields d,|¢'({)|=+. Hence,
fG Byts
on (9) t, dog(z) o 1 '
y not tm: dz| —4d, |
h reSpeCt-é: By hypothesis, z=0 lies outside @. Consequently, d,< |z|, and it : |
 follows that 7 “
z) ca,nnOt . dUG(z) 55 1 .
ularity. ldz] = 4]z|
Lin a'vw : ; From this we conclude that if (10) holds, then a fortiori o(f(2))|dzi
_autatlon »'

1 = 0 (dog(z)). Consequently, f(z) is normal in @, and the Theorem is com-
| Dletely proved.

7. From Theorem 2 we can immediately infer certain properties of

| functiong satisfying the minimal condition (10).
st 2 =t Let us assume that a function having an isolated singularity at z = oo
Bt - and satisfying (10) possesses an asymptotic value & at infinity along a
Jt?rdan curve. By Theorem 2, f(z) is normal in a neighbourhood of z = oo
ng of func'] :Shﬁ along the asymptotic path. By Theorem 2 in [2], f(z) then converges
As a ma,tﬁfun.lformy towards the asymptotic value ®, no matter how z—>co, This

Sl con; ®Ig impossible, we conclude that if (10) holds, f(z) cannot possess any
A8ymptotic values,
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If {(z) omits a value, this is asymptotic by Iversen’s Theorem. Hence, It is
e —_1 if (10) holds, f(z) takes all complex values. Especially, for analytic functions 3 ‘(12)
= | : o(f(z)) is always of more rapid growth than O(1/|z|)-
b Stcxtﬁ & if and or
; 8. The functions possessing the minimal growth (10) or, which is the &  to non-
g same, being weakly normal in a neighbourhood of z = o, admit a further | rational
i characterization whereby an interesting contact is obtained with certain % T() dift
well-known previous investigations. | gtructed
Utilizing Montel’s theory of normal families, Julia (see e.g. [1]) estab- Asr
lished the following version of Picard’s Theorem: Let f(z) be meromorphic & different
in the vicinity of the singular point z = oo, let I': 2 = o(f) be an arbitrary continuc
Jordan curve with endpoint at infinity, and U,: [z—o(t)|< elo(f)|, >0, 4 @ the
a neighbourhood of I'. If f(z) possesses an asymptotic value at infinity, One
then I' can be rotated in such a position that in every corresponding 0(1/12)).
neighbourhood U,, >0, f(z) takes all values except at most two. :
Julia also considered the problem when a family { f(o-,z)}, o, —>o0, I8
‘; normal. Ostrowski [4] proved that Julia’s above-mentioned result holds - This bc
i for f(z) if and only if { ]‘(avz)} is not normal for at least one sequence g,
In the opposite case, i.e. if { f(avz)}is normal for all sequences o,, Ostrowski -
! calls f(z) exceptional in the sense of Julia and gives necessary and
sufficient conditions of a fairly explicit kind under which f(z) is exceptional. : ; )
These results are in close connection with our above considerations. 4 i Julic
For by the criterion (8), it follows from o(f({z)) = I—i_l lwlo(f(w)), w= and he
| tz, that {f(£z)}, {— oo, is a normal family if and only if |zle(f(2)) = o). =«
Hence, the following equivalence prevails between Julia exceptional func- “1
i tions and our slowly growing (or weakly normal) functions. 3
Theorem 8. Let f(z) be single-valued and meromorphic in a meighbour- ! GP
hood of the essential singularity z = co. Then [21 0.1
i fr
lim [z]o(f(2)) < oo B3] R
z—> 0O [4] A
if and only if f(2) is exceptional in the sense of Julia. d
| 9. We conclude the paper by comparing the growth of the spherical &
| derivative o(f(z)) to that of the characteristic function T'(r) of f(z). For
simplicity, we suppose that f(z) is meromorphic for z 7 o, and recall tha
T(r) can then be represented as the mean value
1 dt
(11) 1) == [ ([ [ etreranay) S
o |{=

ST
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It is well known that
(12) T'(r) = Oflog )

if and only if f(z)is a rational function. However, the transition from rational
to non-rational functions is continuous in the sense that there exist non-
rational meromorphic (or entire) functions f(z) for which the growth of
T(r) differs arbitrarily little from (12). Such examples can easily be con-
structed by means of Weierstrassian products.

As regards the growth of o(f(z)), we saw above that the situation is
different. The transition from rational to non-rational functions is not
continuous: for rational functions o(f(z)) = O(1/|z[?), while for non-rational
f(z) the minimal growth is e(f(2)) = O(1/|z|).

One can ask how rapidly T'(r) can grow if o(f(z)) is of the minimal growth
0(1/|z]). From (11) we immediately get the upper estimate

T(r) = O(log?r).
This bound can in fact be attained. For

(o)

on_
o | =

o

is Julia’s exceptional function ([4]), for which n(r,0) > Alog r (4 >0),

~ and hence, T(r) = N(r,0) + O(1) = % log? + O(1).
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