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1. Introduetion

1. From the classical theorems of Weierstrass and Picard, the theory
of the distribution of values and of the singularities of analytic functions
~ has been enormously developed and generalized in various directions. In
 this survey lecture, I must, therefore, make very strong restrictions in order
to include more detailed considerations. I shall treat exclusively meromor-
 phic functions f(z) which are single-valued in a domain of the complex plane.
- Even with this limitation, it is, of course, impossible to achieve completeness.
n the following, I shall attempt to describe certain main features of the
heory, emphasizing points which are either wholly open or only partially
olved. Moreover, I shall deal with certain recent results and open questions
which T personally have found interesting.

2. Nevanlinna Theory

2. Let us start with the classical assumption that f(z)is non-constant and
meromorphic for |z|<R= oo.

Value distribution theory can conveniently be built up by starting from
he classical argument principle

/d arg % =2n(n(r, a)—n(r, ),

5| =r
here n(r,a) denotes the number of a-points, counted according to their
Wltiplicity, in the disc of radius r.

Multiplication of both sides by du({), where u is a set function completely
dditive with respect to the Borel subsets of an arbitrary closed set E, and
bsequent. integrations with respect to u(Z) and r, yield (This technique is |
¢ to Frostman [8], of. also [19].)

27

u(f(re’))dp —u(f(0)) 4 N(r, a)u(B) = / N(r, Odu(l).
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u(’w)=/10g lw—¢|du(l)—u(H) log lw—al,
i
and

/ n(r, a)
N(r,a)= , dr

0

denotes, as usual, the counting function.

The relation (1), which is simply an integrated form of the argument
principle, provides an easy and unified approach to several important
questions in the value distribution theory.

3. If the above set function u is non-negative, i.e., if 4 is a mass distribu-
tion, and if this distribution is not too irregular, the relation (1) is practically
Nevanlinna’s first Main Theorem. In particular, if ¥ is the whole plane
and du=dS the spherical element of area, with the normalization S(&)=
(1) is the first Main Theorem in the spherically invariant form of Shimizu
and Ahlfors ([27]),

(2) m(r,a)+N(r,a)=T(r).
Here the »Schmiegungsfunktion» m(r, a) measures the approximation to the
value a, and T'(r), the mean value of N(r,a) with respect to the spherical
metric, is the characteristic function of f(2).

If T(r) is unbounded, (2) expresses the invariance of the total »affinity

of f(z) with respect to an arbitrary value a.

i e

4. The fundamental relation (2) opens up an extensive complex of new
problems. The immediate question is that of the relative magnitude of the
components m(r,a) and N(r,a). This question is answered by Nevanlinna’s
second Main Theorem, which, in almost amazingly exact terms, states that
in general m(r,a) is asymptotically small compared to N(r,a).

There exist to-day numerous proofs to this Theorem, but none offers
an easy approach to the final result. I regard it appropriate to give here a
brief account of the nature of the difficulties involved, as it is by no means
impossible that certain improvements or modifications of the proof could
still throw new light upon these highly investigated problems.

5. Making use of the representation

/N £)as(z

we wish to show that, in general, N(r, @) and the mean value 7/(r) are of the &
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Ot LegrTo, Distribution of values and singularities of analytic functions 5

Having Picard’s Theorem in mind, one starts by taking g(=3) different
complex numbers a;, a,,...,a, and tries to compare the asymptotic
behaviour of ZN (r,a,) with-that of 7'(r). In order to get a common link
between this sum and 7'(r), it is natural to integrate N (r,a) with respect to
a suitably chosen auxiliary mass distribution. This mass must, on the one
hand, be singular at the ¢ points a,, while, on the other hand, it has to be
sufficiently uniform so as to yield a mean value not much different from
T(r). F. Nevanlinna [26] was the first to point out that the hyperbolic
metric of the complement of the points w=a, provides a mass distribution
appropriate for this purpose.

Since N(r,a) is subharmonic in @ ([18]), its mean values with respect to
~ fairly regular unit masses do not differ very much from each other. Especi-
ally, if dH denotes the element of area in the hyperbolic metric of the
.complement of the points a,, and if we write

TH(T)'=/N(7.~ 0aH (),

then, considering that the total mass is now equal to m(q—2)/2), it is not
difficult to show (Virtanen [34]) that '

n |
) Tulr)~ (—2)T(r).

6. The difficult part of the problem is to establish a relation between
m(r) and ZN (r,@,). In [34], Virtanen has indicated that this can be
made in three steps.
First, one gets an upper estimate of 7' u(r) by returning from the function
plane to the z-plane and by applying at this stage the principle of hyperbolic
easure. This yields

Tulr) < / log 17 dH¥(:),
<
‘.}’hEre H* refers to the hyperbolic metric of |z|<R, punctured at all points
8t which f@)=a,,»=1,2,...,q.
~ After this, the majorant in (4) is transformed with the help of Green’s
tmula. With respect to the singularities of the H*-metric, this step gives

tere I is the counting function counting all a-points only once, irrespective
f Possible multiplicity, and 4 (r) admits a simple representation in terms of
"¢ density of the H*-metric.

’ r T 1 _
W log Tl dH*(z)= O ,§1N(rf a,)+A(r).
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The third and remaining step, in order to obtain the second Maiy
Theorem, is the purely technical problem (See [27]) of showing that in (5)

A(r) in general has the character of a remainder term, i.e., that A(r) is smal]
compared to the sum Z N(r,a,). Considering (3), (4), and (5), we then obtain E

the desired result.

7. Provided that f(z) takes at least one value a, in | 2| <R, an inaccuracy
in the above estimates is committed in step (4): on applying the principle of _

hyperbolic measure, equality holds if and only if w=f(z) gives a one-one
mapping of the universal covering surface of the punctured disc |z|<R
onto the universal covering surface of wa, , dy, . . . , ag. Hence, the extremal
function possesses logarithmic singularities in [z[<R, while the considered
f(z) is meromorphic there. i

If the characteristic function of f(z) is of sufficiently rapid growth, the |

inaccuracy in (4) is of no essential significance, i.e., A(r) in (5) is of a lower

order of magnitude than 7'(r). As is well known, this is always the case for

R= oo, while for R< co, this is no longer true if
(6) T(r)=0(—log (R—r)).

8. Tt is certainly an interesting problem to try to establish relations,

corresponding to the second Main Theorem, for meromorphic functions

satisfying the condition (6). The starting point, of course, must be different,
and the hyperbolic metric will no longer do as an auxiliary mass distribution.
With the help of various extremal problems one can, however, readily find

mass distributions which, like the hyperbolic measure, are conformally -

invariant, monotonic with respect to the domain, and satisfy a similar
majorant principle (Cf. [2]). One can ask whether, after suitable modifica-

tions, appropriate mass distributions could provide a solution along the

above lines. ' _
Let it be remarked that a modification of the second Main Theorem which

yields a more beautiful final form is not entirely improbable either.

9. One of the most striking consequences of the second Main Theorem

is the so-called deficiency relation of Nevanlinna. In the customary notation &

. — N(r,a)
(7) d(a)=1—lim ()

r—- R

for the deficiency, it follows, excluding the exceptional case (6), that

> (@) =2;

a far-reaching refinement of Picard’s Theorem.
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The deficiency relation gives immediately rise to the following Inversion
Problem: Let there be given a sequence a,, a,, ... of complex numbers and
a sequence 0y, 0,,... of positive numbers <1 with Z 0,= 2. Does there
exist a function f(z), meromorphic for zs 0?), such that §,(a)=4, and
§@)=0 for aa,? An affirmative answer would complement the value
distribution theory in quite a beautiful manner.

The solution of the problem, which has been attacked by numerous
mathematicians, has been sought by geometric methods, i.e., one has
attempted to find the solution f(z) by preassigning suitable ramification
properties to the Riemann surface of its inverse function. Progress has
gradually been made towards the affirmative solution of the problem, but to
my knowledge, the general case is still open.

As for bibliography, early development is described in [27], and Wittich’s
monography [35] gives an account of the results attained up to 1955. In

~addition to the references in [35], attention must also be called to some

remarkable recent results of Goldberg [9].

10. One sees almost immediately that there is a certain connection
between the deficient values (i.e., values a for which d(a)>0), the asymptotic
behaviour with respect to these values near the boundary, and the structure
of the Riemann surface of the inverse function. The problems concerning
these mutual relations have given rise to most extensive studies.

If f(z) omits a value, in the parabolic case R= oo this value is always
asymptotic (Iversen [15]). One can ask about the situation if, instead of
assuming that f(z) omits the value, the value is only supposed to be deficient.
Conversely, is an asymptotic value always deficient?

Both these questions can be answered in the negative. The latter case
can easily be solved, and in the former case, counterexamples have been
given by Teichmiiller and Mme Schwartz for meromorphic functions
and by Hayman for entire functions ([35]). Hence, some of the most striking
results in this field are constituted by interesting counterexamples?).

As regards the results concerning the relations between d(a) and the
structure of the Riemann surface onto which w= f(z) maps |z| <R, a some-
What similar situation is prevailing: In spite of much important work and
Iteresting results obtained (For bibliography, see [27], [35], and Colling-
Wood [4]), really general results in the positive direction scarcely exist.

This somewhat unfortunate situation derives from the fact that, in spite
Ofits great naturalness, the very concept of deficiency also contains serious
_fdr&Wbacks, which are due to the special exhaustion process in the definition
\

:) In the hyperbolic case, the Inversion Problem has hitherto not been treated.
) In the hyperbolic case, a function of unbounded characteristic may even omit a

Value, without this being asymptotic (Bagemihl and Seidel [3]).
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(7). In addition to the above negative results, Dugué [6] has pointed out
that d(a) is not necessarily invariant with respect to so simple transfop.
mations as translations of the z-plane, i.e., that f(z) and f(z4c) do not
necessarily possess the same deficiencies.

There is reason to ask whether a modification of the definition of
deficiency could be introduced so as to avoid at least some of the above
handicaps. In particular, is it possible to define it without any exhaustion
process and yet essentially preserve its original meaning?

3. Funections of Bounded Characteristic
11. The basis of all the above considerations, Nevanlinna’s first Main

Theorem (2), loses its meaning if 7'(r)=0(1). In order to develop a theory
of value distribution in this case also, we return to the generalized argument

principle (1) and apply it in the following manner: Let & be a domain in the

function plane with a boundary of positive capacity (and hence possessing
Green’s functions g), and take u in (1) as the harmonic measure at w=aq
(2 €G) of the boundary of G. The relation (1) then becomes

(8) (D(T: a, G)+N(T, a,)=P_(7', a, G) )

where

1 [+ r
@(7‘, a, G): _2—;/;([(7‘6”’): a, G)d‘l’ <;= ig’, ’{!(E g) E

and P(r,a,d) is the least harmonic majorant of N(r,a) in @. The relation

(8) is an identity, holding for all meromorphic f(z), whether of bounded

characteristic or not.

12. We shall now specialize the situation by assuming that for f(z),
T(r)=0(1). Requiring f(z) to be non-constant implies that only the case
R< o comes into question.

On studying the value distribution of functions of bounded characteristic,
it seems essential to take account of the boundary values. It is well known
that the radial (or even angular) limits exist almost everywhere on |z|=R

and that in the function plane they constitute a set of positive capacity.
In the following, I" denotes the closure of the radial limits of f(z) which

correspond to a set on |2|=R of measure 2nR.

Provided that a I" with a non-void complement exists, we now choose

G in (8) to be an arbitrary domain in the exterior of I". Moreover, we proceed
to the limit, »—R; the condition 7'(r)=0(1) guarantees that @, N, and P
then tend separately to finite limits.
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Orwr LemTo, Distribution of values and singularities of analytic functions 9

Under these hypotheses, we can prove, again with the help of the general
relation (1) by choosing w as the difference of two suitably chosen harmonic
3 | measures, that the »Schmiegungsfunktiony O(R,a,) vanishes, except per-
£ haps for a set of values a of capacity zero ([19]). Hence, up to such a set,
jefinition of N(R,a) coincides with its least harmonic majorant in @. In particular, f(z)
»f the above ~ cither takes no value in @, or it takes all values there with t
y exhaustio - exception of the above null-set?).
~ The result N(R,a)=P(R, a) »almost everywhere», which generalizes
 previous results on bounded functions with radial limits equal to 1 a.e.,
~ obtained by Seidel [32] and Frostman [8] (See also Noshiro [28], Ohtsuka
~ [29], Tsuji [33], Lohwater [23]), can be regarded as a counterpart of the
A second Main Theorem. A further analogy is obtained if we introduce the
a’s first Ma - natural definition of deficiency 6(a)=1— N(R, a)/P(R, a, ). From
elop a theory £ @, g, @)=m(r,a)+O(1) it follows, by (8), that T(r)=P(r,a, )+ 0Q1).
zed argume: - Hence, this definition is formally equivalent with the classical one.
jomain in ~ Inthe particular case that all values of /(z) lie in @ (and hence, the radial
\ce POsSsessil limits a.e. lie on the boundary of @), P(R,a,G)=g(a,f(0),@). Hence, in this
asure at vase P(R,a,@) is a domain function independent of f(z), and the situation
Indicates a certain analogy with the first Main Theorem. It follows especially
that for any two f(z), satisfying these conditions, the counting functions
coincide, except perhaps for a set of values of capacity zero.
~ The above results can be extended to far more general cases

he possible

, Whereby

Iso new interesting phenomena are encountered. (Heins [12], Parreau
31]). :
¥. The relati 13. Exactly as in the Nevanlinna theory, the above results lead to
er of bou blems concerning the relations between the value distribution, the

fmndary behaviour, and the structure of the Riemann surface of the inverse
ction,

ays deficient. In contrast to the classical theory,

the converse, however,
Ue: a deficient value is always asymptotic (

l characte F

bis well k

here on | Ct critical singularities always correspond to deficient values, whereas -
sitive cap ®ed not be the case for indirect critical singularities ([19]). Huckemann

s of f(2) Who recently studied these questions, has shown, however, that also
: ect critical singularities may give rise to deficient values.

IfI'is the closure of all radial limits,

L : 0 G ([20]). Ina special case, Lohwat
it @, N, o 2lso if I

/(2) either omits all values or at most one

er [24] has recently proved that this result
contains all radial limits except for those corresponding to a set of
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4. Normal Functions

14. Except for the Nevanlinna theory, the behaviour of a mep,.
morphic f(z) near singular points admits other important characterizationg
I mention in passing Ahlfors’ elegant theory of covering surfaces with i
applications and relations with Nevanlinna’s theory. (See e.g. Ahlfoy
(1], Nevanlinna [27], Dinghas [5]). Instead, I shall deal rather with certaip
ideas based on Montel’s concept of normal families.

As is well known, a family of analytic functions, uniformly bounded in 5
domain, is normal. By means of the modular function, this result can
immediately be generalized: a family of meromorphic functions, omitting
three fixed values, is also normal!). Roughly speaking, this is the
fundamental result which is used on applying the theory of normal families
to problems related to Picard’s Theorem. :

It is well known that many interesting results have been obtained in this
direction, particularly by Julia [16], Ostrowski [30], and Montel [25]

These applications, however, seem not to have exhausted the power of
the theory of normal families. I shall now illustrate briefly a new approach
to the study of the singularities with the help of normal families.

15. Let us consider, for a moment, a function f(z), meromorphic in an
arbitrary simply-connected domain G. Denoting by 2'=8S(z) a one-one
conformal mapping of @ onto itself, we consider, for fixed f(z), all functions
of the form £(8(2)).2) If this family is normal, f(z) itself is said to be a normal
function ([21]). N

The definition is extended to multiply connected domains by calling f(z)
normal if f(z) is normal on the corresponding universal covering surface,
In multiply connected domains @, another form of normality can be defined
as follows: f(z) is said to be weakly normal in @, if it is normal in every simply
connected subdomain of @. Normality always implies weak normality (cf.
condition (9) below).

"16. Because convergence is defined in the spherical metric, it is not very
surprising that normal functions admit a simple characterization in terms
of the spherical derivative

1]
o(f(2))= FENrETE

As a matter of fact, a non-constant f(z) is normal in @ if and only if

1) Convergence is defined with respect to the spherical metric.
%) For |¢|<1, Hayman [11] has also considered normal families of the form F(S(z
calling them uniformly normal. ’ '
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o(f(2)
of a mero. : : . s : :
—— iz)|dz| del.lotmg the elemfant of length in the hyperbolic metric Qf G, which
- itx;" is necessgrﬂy of hyperbolic type ([21]).
;ihégf;?% 17. Normal functions are involved in a natural manner in several
m-','f considerations concerning the boundary behaviour of meromorphic func-
unded 5 a tions ([21]). Here I shall restrict. myself to tw.o :a,pplica,joions.
Yesdlt il n Let us first assume that f(z) is meromorphic in a neighbourhood of the
A essential singularity z=0. By Picard’s Theorem, f(z) takes all values in this
h,is i thi neighbourhood, except at most tvyo.. B.ut can f(2) be normal there?
1ol fa. mlhesv . In [21], it was proved that this is impossible. Hence, it follows from the
~ | condition (9) by a simple computation that
ned in this 1
otel ol o(j(z) %0 |-
|z| log
€ power o ]
7 approach One is thus led to the following question ([22]): How rapidly at least does
b u(f(z)) grow in the mneighbourhood of the singularity z=0?1)

‘This question admits a precise answer. In fact, for all meromorphic f(z)
- with 2=0 as an isolated essential singularity,

(10) h_m; 2lo(f(z)) = %

- The bound } is sharp, i.e., there exist meromorphic functions for which (10)
holds as an equality.

The inequality (10) can be quite briefly established by using the following
device. Remembering that two points w; and w, are diametrically opposite
0 the Riemann sphere if w, w,——1, we construct the meromorphic func-
tion F'(2)=f(2)f(z) (or j(ze")f(z), #>0, if 2=0 does not happen to be a singular
Doint for F(z)), and consider the behaviour of F(z) with respect to the value
=—1. If F(z) takes the value —1 infinitely often in the neighbourhood of
33:0, it follows from the above that there exist in every neighbourhood of
0 circles |z|—const. with points z such that w=f(z) and w— f(2)

diametrica.]ly opposite on the Riemann sphere. Hence, the length L of
€ images of such circles on the Riemann sphere satisfies the inequality
=7 On the other hand,

if L= /e(]‘(z)) |dz| =27 2| max o(f(2)).

|z|=const.

1) If f(z) is meromorphic at z=0, then of course g(f(z))=0(1).

|
Mbining these two inequalities, we obtain (10). ‘ ;
!"
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If F(z) does not take the value —1 infinitely often around z=0, it ap.

proximates it, by Weierstrass’ Theorem, and (10) follows as above.
To prove that (10) is sharp, one has to construct an example for which
the equality holds. For instance,

f( )= I ‘ _—z eWI A>1
Z —, A>1,
’ z—j—e"'A

»=0

provides such an example. ‘Because f(—2)=1/f(z) and o(f)=0o(1/f), this

function must only be considered in the right half-plane, where |f(z)| <]
Points near the real axis are handled with the help of Schwarz’s Lem_mg,
while some computations cannot be avoided in dealing with the remaining
part of the half-plane.

18. An interesting class of meromorphic functions with slow growth is
distinguished by the property
(11) lim |z|o(f(2)) < oo.

z—>0
In [22], we proved that this is exactly the class of functions weakly normal
in a neighbourhood of z=0. For the study of these functions, this is often
quite a useful characterization. It follows almost immediately, e.g., that
these functions cannot possess any asymptotic values.

This function class has already been thoroughly studied. Applying a
criterion of Ostrowski [30], we see that (11) is nothing but a necessary and
sufficient condition for a function f(z) to be exceptional in the sense of Julia.

Several questions treated by Julia and Ostrowski can thus be viewed
from a new angle. For example, if f(z) is hot exceptional, f(z) cannot be
normal in all »angles» with vertex at z=0, and the result concerning Julia

directions follows. If more than lim |z o(f(2)) = 0 is known about the

z—>0

growth of o(f(z)), this result can be sharpened in an obvious manner.

19. As another example of the applicability of the theory of normal
functions, I present here a theorem for meromorphic functions which can be
said to correspond the Phragmén-Lindelsf theorem for regular functions.

Let us consider a function f(z), meromorphic in a simply-connected
domain & bounded by a Jordan curve. Furthermore, let us suppose that on
the boundary, |f(z)] <4, with the possible exception of one point P.

The classical Phragmén-Lindelsf Theorem states that if f(z) is regular,
then either |f(z)] <4 holds throughout in @, or the maximum modulus of
f(z) in the neighbourhood of P tends to infinity with a certain minimal
rapidity determined by the geometric configuration.
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Orur LemTo, Distribution of values and singularities of analytic functions 13

If f(z) is meromorphic in @, the following somewhat analogous situation
is prevailing?): Either |f(z)] <A holds in the whole domain, in which case

o(f(2)) =
AMz) =77

or

o(f(z))
sup W) =P

The constant B, is obtained as the unique solution of the equation
(14 V1 +a?)e” V42 _ gy ,

and is thus independent of the configuration. The bounds are sharp.
Let us remark that for 4—0, B,—>oc0. In particular, if 4 is smaller than
the universal constant 49=0.796 . . . , determined as the root of the equation

(14+V 1+a2)e VHo =2,
then B,>A4. '

5. General Domains of Existence

20. Hitherto, we have considered f(z) either in a simply-connected domain
or in the neighbourhood of an isolated essential singularity. In the case that
[(z) is meromorphic in the whole plane, except for 7 points z, z,, . . . , 2.,
Dugué [7] has established an interesting extension of Picard’s Theorem.
Ulearly, f(z) can omit two values in the vicinity of each singularity. These
values, however, are not independent: at most #-+1 of them can be different.
l?llgué also poses the question whether deficient values belonging to different
“ingularities are dependent on each other in some manner.

21. In the general case that the essential singularities of f(z) constitute
in arbitrary closed set E, relatively little is known about the value distribu-
ton of f(z). In spite of important work by af Héllstrom [10], many
Japanege mathematicians (for bibliography, see Kuroda [17]), Hervé [13],
“nd others, several fundamental questions are still quite open. A

.One does not know, for instance, whether closed sets £ without isolated
Points exist in whose complement Picard’s Theorem is valid, i.e., every

i(j) Omit.s at most two values. A problem which is presumably closely
ated g g characterize sets B whose complements tolerate normal

- Mnetjopg,

\

1 .
the LIIIfl a slightly different formulation, this result was proved in [21] for @ being

all-plane. The general case follows by conformal mapping.
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If‘E is of capacity zero, it is known that f(z) cannot omit a set of valyeg
of positive capacity. It is not known, however, whether this result is sharp :
Conjectures have been expressed that the set omitted is at most countahje
or even that Picard’s Theorem is valid.

It is not until F is positive in the sense of Painlevé’s problem that thebi
existence of functions omitting large sets of values is known.

I have expressly chosen these examples as closing remarks to thig
lecture, in order to point out that there are still several unsolved, interesting,
concrete problems in the theory of value distribution and singularities in the
complex plane. :
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