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SMOOTHNESS OF A QUASICONFORMAL MAPPING AT A POINT

E. DYN'KIN

Dedicated to the memory of G. M. Goluzin

ABSTRACT. Let f be a K-quasiconformal mapping on the plane with complex dilation
u. Let p > 2K, and let w(r) be the mean value of |u| of degree p over the disk
{lz| <r}. If

m

1w
f ﬂ dr < o0
0 it
for a natural number m, then there exists a polynomial P of degree m such that
|f(2) = P(2)| £ C1l=[™F! + CoQ(l2]), 2] < 1,

where

Pm pmtl T

Q(6) = &™ '[0 Pwlr) g | g fa Fale)

This is an intermediate result between the classical Teichmiiller-Wittich—Belinskii
theorem and a recent result of Nikolaev and Shefel’.

In this paper we study the smoothness of plane quasiconformal mappings that are
asymptotically conformal at one point. This is a natural supplement to the paper [3],
where quasiconformal mappings asymptotically conformal on a circle were treated.

A plane quasiconformal mapping f (see [4]) is a homeomorphic solution of the Beltrami
equation

i

fE =#fzs

where the complex dilation y is of class L*°(C) and ||| = = 2 < 1. If g vanishes (in
some sense) at a point, then f must be more or less “smooth” there.
In what follows we use also the “big” quasiconformality coefficient

Beitx

11—

As usual, weput z =z +iy, ( =&+1in; C and ¢ (with or without indices) will denote
various constants; A(r) will stands for the disk {2 : |z| < r}.
For any p > 0, the mean value of u of degree p over A(r) is defined by the formula

w(r) = wnlr) = (37 |, s ay) .

1991 Mathematics Subject Classification. Primary 30C35, 30C45, 30C62.
Key words and phrases. QQuasiconformal mappings, conformality at a point.
This research was supported by the Fund for Promotion of Research at the Technion.

©1998 American Mathematical Soclety

601




602 E. DYN'KIN
Theorem. Ifp > 2K and

r

1

T
/ u_‘—(m-)- dr < 4oc
Jo

for some natural number m, then there exists an analytic polynomial P, of degree m
such that

(1) 1£(2) = Pu(2)| < Cil2)™ + CoQ(J2]), 2] <1,

where

5 i SE
Qo) = 6™ / ) dr 4 6™+ ] olr) dr
Jo s

pn il i

Remarks. 1. The right-hand side of (1) is always o (|z]™) as |z| — 0.
2. If lim|—¢ p£(z) = O, then the theorem is true under the only assumption that p > 2.
3. The constants €, and C5 depend on K only provided that [ is normalized in a
standard way (for instance, f(0) =0, f(oc) = oo, and f(1) = 1).

Comment. The famous Teichmiiller—Wittich-Belinskii theorem [4] asserts that f has
complex derivative at 0 if
"t wi(r)
/ dr < +oo.
(

Jo 7

Unfortunately, nobody has yet succeeded in deducing a finer estimate like (1) from this
result. On the other hand, Nikolaev and Shefel’ [5] proved that

F(2) = Pu(2) + O(|2|™*), |2l =0,

if j1(z) = O(|z|™"~'*%), 0 < @ < 1. The proof in [5] is based on the Belinskil stability
theorem (see [2]) and does not work if ;¢ is small only in the mean.

Our theorem is an intermediate result; it relates the problem under consideration to
the general approach suggested in [3].

In [5]. Nikolaev and Shefel’ also proved an analog of their result for spatial quasicon-
formal mappings. It is unknown whether a spatial analog of our theorem is true.

Proof of the theorem. We may assume that f(0) = 0.

Step 1. The boundedness of distortion. The image f(A(r)) of the disk A(r) is a
quasidisk. We define the radius -R(r) of this quasidisk by the formula

1/2
R = ( / |f|? da d'_{_;) .
JA(r)

It is well known (see [4]) that

coR < min | f(z)] €< max|f(z)| < CyR,
i"'i='I :I-_I“
where ¢y > 0 and Cy < +o0c depend on K only. If ry < ry satisfy CyR(ri) < cgR(rs), then
the quasiannulus Q = f(A(rs) \ A(ry)) contains the annulus A(egR(r2)) A(CyR(ry))
and is contained in the annulus A(CyR(r2)) \ A(eoR(ry)). Therefore, the modulus M ()
of the quasiannulus @ (see [4]) differs from
Rirs)

[0}

" R(ry)

4



'w of degree m

ion that p > 2.
ormalized in a

wrts that f has

e (1) from this

linskil stability
onsideration to
atial quasicon-

is true.

disk A(r) is a

< egR(rz), then
)\ A(CoR(r1))
modulus M (Q)
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at most by a constant. On the other hand, inequality (6.9) in [4, Chapter 5, Subsec-
tion 6.3] implies that

\M@W%w?kcf W2 g gy,
1 7

ry <z < ] |‘_
This yields

R(T‘g)
R(r1)

‘log — log’;‘ <Ci+ C/ L,u(zlz)| dz dy.
1

ri< |zl <re l |

In particular, for any r < 1 we have

z

U%Mﬂ—@ﬂ£a+0/ “@”1@<c+c/59ﬁ.

<|z|<1

Under the assumptions of the theorem, the integral

fﬂgﬁ

unded. Therefore,

converges, and |log R(r) —
Blrdser 0wl

with a constant depending on K only.

Step 2. The construction of P,,. By the Cauchy-Green formula,

1 f(<) 1 fe(€)
z) = — = dl — — 522 dEdn,
1) /| 1 ¢ W./|¢i<1 C‘zdﬁ i

2mi Cz]L—Z

zl < 1.

Since the first term is analytic in the unit disk, it can be represented in the form P, (z)+
O(|z|™*1). where P,, is the corresponding Taylor polynomial of degree m. As for the
second term, we have

v T . JF(C)
3 f - d f m+l[ 5 > f I
= Jr S g T —7)

l=0 sG]S

=Rﬂhﬂ%

where P, is another polynomial of degree rm. Now we must check the convergence of the
coefficient integrals

(2) / Ifele )| dédn, k=1,2,...,m,

|&] =1 | ”‘

and estimate the remainder term S.
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Step 3. The convergence of the coefficient integrals. The integrals (2) do con-
verge, because

EPRE »
d i
[, ., T deen 1< gy 5 [

e 1 " 2)152( rlz)lfz
> ([ 0f) ([ o

A

Step 4. The remainder estimate. We put § = |z|. Clearly,

| fel | fel | fel
S(z 505“’*] : +cam+1/ |—<—+c/ £
52| icl<s/2 €™+ ic|>6/2 |¢]™+2 lc—z|<s/2 |€ — 2|

The first two terms do not exceed CQ(8). Indeed, for instance,

| fé] = 1
6m-.~1/ C . Sém-‘rl : : f f;
c1>6/2 €™ +2 ;0 (29-18)m+2 q|<2:5| 3

o . 1/2 1/2
comn ot () ([ %)
% (29-16)m+2 \ Ji¢|<ais Icl<246

< ey (E—j_l—lémR(Qjéjw(zjé}
7=0

1 :
Scé'm—}-l\[ W(}”) d?‘
8

?-m—e—1

In order to estimate the third term, we need a more powerful tool. In (1], Astala
proved the following inverse Holder inequality for quasiconformal mappings:

(= L, Haady) <O [ IPamaysO Ll

r

for all g satisfying
K

£ :
K-1
By the assumptions of our theorem, we have p > 2K. So, choosing g < R #—7 and fixing
o < 2 such that

p 29 o
we can apply the Hélder inequality with the above three exponents to obtain

L= )

)2 1
(\}B 6

by the Astala inequality. O

;<0a w(8) < COYB),

I — ST ]

~

[ S W W S S

Fa




als (2) do con-

1/2

| f¢|

2 ¢ =2

1/2

In [1], Astala
1gs:
2

P —

=S

-
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Remark. The standard localization procedure (see, e.g., [3]) shows that it suffices to
assume that |u| < s only in a small neighborhood of the origin. The theorem remains
true for these local values of 3 and K.

In particular, if limj;|—o p(2) = 0, then we can take any K > 1 and, therefore, any
p > 2. In this case, the inverse Hélder inequality we need follows from an old result of
Bojarski (see [4])- and does not require referring to Astala’s work.

Acknowledgement. I am deeply grateful to J. M. Anderson for pointing out the paper
[5] to me and for many discussions of the subject.
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