nsky coefficients for reducing the oblem. Actually, oters 2, 3] to the oach turned out ee [5]).

ci 37 (1985), no. 2,

ecture, Proceedings est Lafayette, Ind.,

13 (1936), 449-451.

17-152.

: SSSR 106 (1956), i. Soc., Providence,

-284. (Russian) ow, 1952; 2nd ed., ol. 26, Amer. Math.

ner. Math. Soc. 63

(1951), 349–357. dex Variables The-

a", Moscow, 1975.

th. Soc. Ser. 2 23

inctions, Complex

it functions, Proc.

71; English transl.,

20 1079

-633.

20

ived 3/JAN/97

blished in English

SMOOTHNESS OF A QUASICONFORMAL MAPPING AT A POINT

E. DYN'KIN

Dedicated to the memory of G. M. Goluzin

ABSTRACT. Let f be a K-quasiconformal mapping on the plane with complex dilation μ . Let p>2K, and let $\omega(r)$ be the mean value of $|\mu|$ of degree p over the disk $\{|z|< r\}$. If

 $\int_{0}^{1} \frac{\omega(r)}{r^{m}} dr < +\infty$

for a natural number m, then there exists a polynomial P of degree m such that

$$|f(z) - P(z)| \le C_1 |z|^{m+1} + C_2 \Omega(|z|), \quad |z| < 1,$$

where

$$\Omega(\delta) = \delta^m \int_0^{\delta} \frac{\omega(r)}{r^m} dr + \delta^{m+1} \int_{\delta}^1 \frac{\omega(r)}{r^{m+1}} dr.$$

This is an intermediate result between the classical Teichmüller-Wittich-Belinskiĭ theorem and a recent result of Nikolaev and Shefel'.

In this paper we study the smoothness of plane quasiconformal mappings that are asymptotically conformal at one point. This is a natural supplement to the paper [3], where quasiconformal mappings asymptotically conformal on a circle were treated.

A plane quasiconformal mapping f (see [4]) is a homeomorphic solution of the Beltrami equation

$$f_{\bar{z}} = \mu f_z$$

where the complex dilation μ is of class $L^{\infty}(\mathbb{C})$ and $\|\mu\|_{L^{\infty}} = \varkappa < 1$. If μ vanishes (in some sense) at a point, then f must be more or less "smooth" there.

In what follows we use also the "big" quasiconformality coefficient

$$K = \frac{1 + \varkappa}{1 - \varkappa}.$$

As usual, we put z = x + iy, $\zeta = \xi + i\eta$; C and c (with or without indices) will denote various constants; $\Delta(r)$ will stands for the disk $\{z : |z| < r\}$.

For any p > 0, the mean value of μ of degree p over $\Delta(r)$ is defined by the formula

$$\omega(r) = \omega_p(r) = \left(\frac{1}{\pi r^2} \int_{\Delta(r)} |\mu(z)|^p dx dy\right)^{1/p}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C35, 30C45, 30C62.

Key words and phrases. Quasiconformal mappings, conformality at a point.

This research was supported by the Fund for Promotion of Research at the Technion.

Theorem. If p > 2K and

$$\int_0^1 \frac{\omega(r)}{r^m} \, dr < +\infty$$

for some natural number m, then there exists an analytic polynomial P_m of degree m such that

(1)
$$|f(z) - P_m(z)| \le C_1 |z|^{m+1} + C_2 \Omega(|z|), \quad |z| < 1,$$

where

$$\Omega(\delta) = \delta^m \int_0^\delta \frac{\omega(r)}{r^m} dr + \delta^{m+1} \int_\delta^1 \frac{\omega(r)}{r^{m+1}} dr.$$

Remarks. 1. The right-hand side of (1) is always $o(|z|^m)$ as $|z| \to 0$.

2. If $\lim_{|z|\to 0} \mu(z) = 0$, then the theorem is true under the only assumption that p > 2.

3. The constants C_1 and C_2 depend on K only provided that f is normalized in a standard way (for instance, f(0) = 0, $f(\infty) = \infty$, and f(1) = 1).

Comment. The famous Teichmüller-Wittich-Belinskii theorem [4] asserts that f has complex derivative at 0 if

$$\int_0^1 \frac{\omega_1(r)}{r} \, dr < +\infty.$$

Unfortunately, nobody has yet succeeded in deducing a finer estimate like (1) from this result. On the other hand, Nikolaev and Shefel' [5] proved that

$$f(z) = P_m(z) + O(|z|^{m+\alpha}), \quad |z| \to 0,$$

if $\mu(z) = O(|z|^{m-1+\alpha})$, $0 < \alpha < 1$. The proof in [5] is based on the Belinskii stability theorem (see [2]) and does not work if μ is small only in the mean.

Our theorem is an intermediate result; it relates the problem under consideration to the general approach suggested in [3].

In [5], Nikolaev and Shefel' also proved an analog of their result for spatial quasiconformal mappings. It is unknown whether a spatial analog of our theorem is true.

Proof of the theorem. We may assume that f(0) = 0.

Step 1. The boundedness of distortion. The image $f(\Delta(r))$ of the disk $\Delta(r)$ is a quasidisk. We define the radius R(r) of this quasidisk by the formula

$$R = \left(\int_{\Delta(x)} |f_z|^2 \, dx \, dy \right)^{1/2}.$$

It is well known (see [4]) that

$$c_0 R < \min_{|z|=r} |f(z)| \le \max_{|z|=r} |f(z)| < C_0 R,$$

where $c_0 > 0$ and $C_0 < +\infty$ depend on K only. If $r_1 < r_2$ satisfy $C_0R(r_1) < c_0R(r_2)$, then the quasiannulus $Q = f(\Delta(r_2) \setminus \Delta(r_1))$ contains the annulus $\Delta(c_0R(r_2)) \setminus \Delta(C_0R(r_1))$ and is contained in the annulus $\Delta(C_0R(r_2)) \setminus \Delta(c_0R(r_1))$. Therefore, the modulus M(Q) of the quasiannulus Q (see [4]) differs from

$$\log \frac{R(r_2)}{R(r_1)}$$

'm of degree m

ion that p > 2. ormalized in a

erts that f has

e (1) from this

linskiĭ stability

onsideration to

atial quasiconis true.

disk $\Delta(r)$ is a

 $\langle c_0 R(r_2), \text{ then } \rangle \setminus \Delta(C_0 R(r_1))$ modulus M(Q) at most by a constant. On the other hand, inequality (6.9) in [4, Chapter 5, Subsection 6.3] implies that

$$\left| M(Q') - \log \frac{r_2}{r_1} \right| \leq C \int_{r_1 < |z| < r_2} \frac{|\mu(z)|}{|z|^2} \, dx \, dy.$$

This yields

$$\left| \log \frac{R(r_2)}{R(r_1)} - \log \frac{r_2}{r_1} \right| \le C_1 + C \int_{r_1 < |z| < r_2} \frac{|\mu(z)|}{|z|^2} \, dx \, dy.$$

In particular, for any r < 1 we have

$$|\log R(r) - \log r| \le C_1 + C \int_{r < |z| < 1} \frac{|\mu(z)|}{|z|^2} dx dy \le C_1 + C \int_r^1 \frac{\omega(t)}{t} dt.$$

Under the assumptions of the theorem, the integral

$$\int_0^1 \frac{\omega(t)}{t} dt$$

converges, and $|\log R(r) - \log r|$ is uniformly bounded. Therefore,

$$R(r) \approx r, \quad 0 < r < 1,$$

with a constant depending on K only.

Step 2. The construction of P_m . By the Cauchy-Green formula,

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{\pi} \int_{|\zeta|<1} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta - z} d\xi d\eta, \quad |z| < 1.$$

Since the first term is analytic in the unit disk, it can be represented in the form $P_m(z) + O(|z|^{m+1})$, where P_m is the corresponding Taylor polynomial of degree m. As for the second term, we have

$$\begin{split} \int_{|\zeta|<1} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta - z} \, d\xi d\eta &= \sum_{k=0}^{m} z^{k} \int_{|\zeta|<1} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta^{k+1}} \, d\xi d\eta + z^{m+1} \int_{|\zeta|<1} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta^{m+1}(\zeta - z)} \, d\xi d\eta \\ &= \widetilde{P}_{m}(z) + S(z), \end{split}$$

where \widetilde{P}_m is another polynomial of degree m. Now we must check the convergence of the coefficient integrals

(2)
$$\int_{|\zeta|<1} \frac{|f_{\overline{\zeta}}(\zeta)|}{|\zeta|^{k+1}} d\xi d\eta, \quad k=1,2,\ldots,m,$$

and estimate the remainder term S.

Step 3. The convergence of the coefficient integrals. The integrals (2) do converge, because

$$\begin{split} \int_{|\zeta|<1} \frac{|f_{\bar{\zeta}}(\zeta)|}{|\zeta|^{k+1}} \, d\xi d\eta &\leq \sum_{j=0}^{\infty} \frac{1}{(2^{-j})^{k+1}} \int_{|\zeta|<2^{-j+1}} |f_{\bar{\zeta}}| \\ &\leq \sum_{j=0}^{\infty} \frac{1}{(2^{-j})^{k+1}} \bigg(\int_{|\zeta|<2^{-j+1}} |\mu(\zeta)|^2 \bigg)^{1/2} \bigg(\int_{|\zeta|<2^{-j+1}} |f_{\zeta}|^2 \bigg)^{1/2} \\ &\leq C \sum_{j=0}^{\infty} \frac{1}{(2^{-j})^k} R(2^{-j+1}) \omega(2^{-j+1}) \\ &\leq C \int_0^1 \frac{\omega(r)}{r^k} \, dr < +\infty, \quad k=1,2,\ldots,m. \end{split}$$

Step 4. The remainder estimate. We put $\delta = |z|$. Clearly,

$$|S(z)| \leq C\delta^m \, \int_{|\zeta| < \delta/2} \frac{|f_{\bar{\zeta}}|}{|\zeta|^{m+1}} + C\delta^{m+1} \int_{|\zeta| > \delta/2} \frac{|f_{\bar{\zeta}}|}{|\zeta|^{m+2}} + C \int_{|\zeta - z| < \delta/2} \frac{|f_{\bar{\zeta}}|}{|\zeta - z|}.$$

The first two terms do not exceed $C\Omega(\delta)$. Indeed, for instance,

$$\begin{split} \delta^{m+1} \int_{|\zeta| > \delta/2} \frac{|f_{\bar{\zeta}}|}{|\zeta|^{m+2}} &\leq \delta^{m+1} \sum_{j=0}^{\infty} \frac{1}{(2^{j-1}\delta)^{m+2}} \int_{|\zeta| < 2^{j}\delta} |f_{\bar{\zeta}}| \\ &\leq \delta^{m+1} \sum_{j=0}^{\infty} \frac{1}{(2^{j-1}\delta)^{m+2}} \bigg(\int_{|\zeta| < 2^{j}\delta} |\mu|^2 \bigg)^{1/2} \bigg(\int_{|\zeta| < 2^{j}\delta} |f_{\zeta}|^2 \bigg)^{1/2} \\ &\leq C \delta^{m+1} \sum_{j=0}^{\infty} \frac{1}{(2^{j-1}\delta)^{m+1}} R(2^{j}\delta) \omega(2^{j}\delta) \\ &\leq C \delta^{m+1} \int_{\delta}^{1} \frac{\omega(r)}{r^{m+1}} \, dr. \end{split}$$

In order to estimate the third term, we need a more powerful tool. In [1], Astala proved the following inverse Hölder inequality for quasiconformal mappings:

$$\left(\frac{1}{r^2} \int_{\Delta(r)} |f_z|^{2q} \, dx \, dy\right)^{\frac{1}{2q}} \le C \frac{1}{r^2} \int_{\Delta(r)} |f_z|^2 \, dx \, dy \le C \frac{R(r)^2}{r^2}$$

for all q satisfying

$$q < \frac{K}{K-1}$$
.

By the assumptions of our theorem, we have p > 2K. So, choosing $q < \frac{K}{K-1}$ and fixing $\sigma < 2$ such that

$$\frac{1}{p} + \frac{1}{2q} + \frac{1}{\sigma} = 1,$$

we can apply the Hölder inequality with the above three exponents to obtain

$$\int_{|\zeta-z|<\delta/2} \frac{|\mu| |f_{\zeta}|}{|\zeta-z|} \le \left(\int |\mu|^{p}\right)^{1/p} \left(\int |f_{\zeta}|^{2q}\right)^{\frac{1}{2q}} \left(\int \frac{1}{|\zeta-z|^{\sigma}}\right)^{1/\sigma} \\
\le C\delta^{2} \omega(\delta) \frac{R(\delta)^{2}}{\delta^{2}} \frac{1}{\delta} \le C\delta \omega(\delta) \le C\Omega(\delta),$$

by the Astala inequality.

als (2) do con-

) 1/2

$$_{/2}\,\frac{|f_{\bar{\zeta}}|}{|\zeta-z|}$$

 $)^{1/2}$

In [1], Astala 1gs:

 $\frac{K}{K-1}$ and fixing

tain 1/σ Remark. The standard localization procedure (see, e.g., [3]) shows that it suffices to assume that $|\mu| \leq \varkappa$ only in a small neighborhood of the origin. The theorem remains true for these local values of \varkappa and K.

In particular, if $\lim_{|z|\to 0} \mu(z) = 0$, then we can take any K > 1 and, therefore, any p > 2. In this case, the inverse Hölder inequality we need follows from an old result of Bojarski (see [4]) and does not require referring to Astala's work.

Acknowledgement. I am deeply grateful to J. M. Anderson for pointing out the paper [5] to me and for many discussions of the subject.

REFERENCES

- 1. K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37–60.
- P. P. Belinskii, General properties of quasiconformal mappings, "Nauka", Sibirsk. Otdel., Novosibirsk, 1974. (Russian)
- E. Dyn'kin, Estimates for asymptotically conformal mappings, Ann. Acad. Sci. Fenn. Ser. A1 Math. (to appear).
- O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Grundlehren Math. Wiss., Bd. 126, Springer-Verlag, New York-Heidelberg, 1973.
- I. G. Nikolaev and S. Z. Shefel', Differential properties of mappings that are conformal at a point, Sibirsk. Mat. Zh. 27 (1986), no. 1, 132–142; English transl., Siberian Math. J. 27 (1986), no. 1, 106–114.

DEPARTMENT OF MATHEMATICS, TECHNION, HAIFA 32000, ISRAEL E-mail address: dynkin@technix.technion.ac.il

Received 24/DEC/96

Translated by THE AUTHOR