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Abstract Let f be an entire transcendental map of finite order, such that all the
singularities of f~! are contained in a compact subset of the immediate basin B of an
attracting fixed point. It is proved that there exist geometric coding trees of preimages
of points from B with all branches convergent to points from C. This implies that
the Riemann map onto B has radial limits everywhere. Moreover. the Julia set of
/ consists of disjoint curves (hairs) tending to infinity. homeomorphic to a half-line,
composed of points with a given symbolic itinerary and attached to the unique point
accessible from B (endpoint of the hair). These facts generalize the corresponding
results for exponential maps.

Mathematics Subject Classification (2000) 37F10-30D40 - 30D05

1 Introduction

For an entire transcendental (i.e. not polynomial) map f : C — C let Sing(f~!) denote
the set of finite singularities of f~!, which consists of critical and asymptotic values of
/ and their finite accumulation points. In this paper we consider the maps f satisfying
the following conditions:

~ Sing(f~!) is contained in a compact subset of an immediate attracting basin B.
- f has finite order.
Recall that an immediate attracting basin B is a domain containing an attracting fixed

point 2y € C. composed of points tending to z under iteration of f. In particular. the
assumptions imply f € B for

B ={f:Sing(f~!) is bounded).
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Hence. B is simply connected (see [13]). Let

x
P(f)y = fSing(f~1).

n=I(

Note that f is hyperbolic in the sense that J(f) N P(f) = ¢ and P(f) is compact. It
follows that f has no wandering domains (see [5]) and Baker domains (see [13]). which
implies that B is the only Fatou component of f and the Julia set J(f) is equal to the
boundary of B. Thus. the considered maps can be characterized as hyperbolic entire
transcendental maps of finite order with one Fatou component.

Example I A classical example of maps fulfilling these assumptions is the family

Ei(z)=%et. e (0.1/e)

and, more generally, & = zpe™ for z € C. lzol < 1. Then zq is an attracting fixed

point. the set Sing(E;l ) consists only of the asymptotic value 0 and is contained in the
immediate basin B of attraction to zy. Another example is the sine family

S;(2) = asin(z).  x e (0.1).

In fact. it is easy to check that every map of the form

flz) =2g(z). A eC\{0}.

where ¢ € B and g has finite order, satisfies the above assumptions for sufficiently
small |x

In this paper we study the topological and combinatorial properties of J(f) and the
boundary behaviour of a Riemann mapping ¢ from the open unit disc D onto B. We
prove:

Theorem B A Riemann map onto B has radial limirs at all points of the unit circle.

(The proof is contained in Sect. 5.) This generalizes the result of Devaney and
Goldberg [8]. who proved the same for the exponential family from Example 1.

Note that despite having radial limits at all points, the Riemann map ¢ is highly
discontinuous, e.g. every cluster of ¢ contains ~o (see [2]). In fact. the clusters of ¢
are either singletons {oc} or the sets of points in the Julia set J(f) sharing the same
symbolic itinerary (together with ~0). Both cases happen on dense sets in the unit
circle (see [4]).

To show Theorem B, we use the technique of geometric coding trees of preimages
of points from B. A coding tree in B is the union of curves in B connecting a point
¢ € Btoallits first preimages and the pull-backs of these curves by the branches of
J7" n > 0. Choosing particular branches for each 1. we define the branches of the
coding tree, which are curves parameterized by 1 € [0.20). starting at ¢. with limit
points for ¢ — oo contained in the boundary of B. See Sect. 4 for precise definitions.
Theorem B is a consequence of the following:

Theorem A There exist coding trees of preimages of points from B with all branches
convergent to points from C.
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(A precise formulation and proof are contained in Sect. 5.) The same was proved
in [8] for the exponential family from Example 1. In [16], Karpifiska showed the result
for hyperbolic entire transcendental maps with one Fatou component, whose tracts
are “asymptotically straight” (the examples include e.g. maps considered by Stallard
in [26]).

The dynamical plane for f can be decomposed into countably many parts — so-
called tracts and fundamental domains (see Sect. 3 and 4). This enables to define
symbolic itineraries for points from J(f). In [10] (see also [6]), Devaney and Krych
showed that for the exponential family from Example 1, the Julia set consists of dis-
joint curves (hairs) /1 : [0,00) — C tending to co, composed of points sharing the
same itinerary under f (see Sect. 6 for a precise definition). The point /(0) is called
the endpoint of the hair. Devaney and Goldberg showed in 8] that for the exponential
tamily, the endpoint of the hair is the unique point in /, which is accessible from B.
In [11]. the existence of so-called Cantor bouquets in the Julia set was proved for a
number of families of entire maps from B, including the exponential and sine families
from Example 1. In [1], Aarts and Oversteegen showed that for these two families the
Julia set is homeomorphic to so-called straight brush in the plane. In particular, each
hair is homeomorphic to the half-line [0, c0). Moreover, Viana proved in [27] that the
hairs for the exponential family are C*-smooth.

Note that the above results were done for concrete families of periodic entire maps.
In this paper we prove the existence of hairs for hyperbolic entire maps of finite order
with one Fatou component without any assumptions on the form of the map. More
precisely, we show:

Theorem C The Julia set of f consists of disjoint hairs homeomorphic to the half-line
[0, 00). The endpoints of the hairs are the unique points accessible from B.

(A precise formulation and proof are contained in Sect. 6.)

Let us note that the hairs exist also for non-hyperbolic entire maps. For instance,
the existence of hairs for so-called regular itineraries was proved in [6] for the general
exponential family E;(z) = Ae®, . € C\ {0}. This includes also the case, when the
Julia set is the whole plane. However, in this case the sets of points with non-regular
itineraries can form indecomposable Knaster-type continua (see [7.9]).

Note that the hairs without endpoints are contained in the escaping set

I(f)y ={z€C:f"z) > ocoasn — oo}.

A symbolic classification of points from /(f) and the existence of the curves in I(f)
(called dynamical rays) for the general exponential family was showed in [25]. The
same was done for the family ae® + be™*, a,b € C, which contains the sine and cosine
families under the change of coordinates (see [24]).

The problem of the existence of the hairs is related to the Eremenko conjecture,
saying that I(f) consists only of unbounded components (see [12]). The question was
answered in some particular cases (see [17,22]). Recently, it was showed that for every
map f € B of finite order, the set I(f) U {oo} is path-connected (see [21,23]). Note that
Theorem C from this paper implies the Eremenko conjecture in our case, which also
follows from the mentioned result.

The plan of the paper is as follows. After preliminaries, in Sect. 3 we define loga-
rithmic coordinates and prove several technical lemmas describing properties of the
map F, which is the lift of f in the logarithmic coordinates. In Sect. 4 we describe the
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combinatorics of the Julia set and define the trees of preimages. Theorems A and B
are formulated and proved in Sect. 5, while Theorem Cis showed in Sect. 6.

This paper is the second part of the series of three papers concerning the properties
of the Julia set of hyperbolic entire maps with one Fatou component. In the first part
[4] we show (without the finite order assumption) that for given symbolic itinerary,
if codes of the tracts of f are bounded and codes of the fundamental domains grow
not faster than the iterates of an exponential function, then the itinerary is allowable,
i.e. there exists a point in the Julia set with this itinerary. Moreover, we determine
the cluster sets for ¢ and show that ¢ has unrestricted limit equal to oo at points of a
dense uncountable set in the unit circle. In the third part [3] we prove (generalizing
[15]) that under the finite order assumption the Hausdorff dimension of the set of

endpoints of the hairs is equal to 2, while the union of the hairs without endpoints has
Hausdorff dimension 1.

2 Preliminaries

Notation

For aset A C C the symbols 4, 94 denote, respectively, the closure and boundary in
C.Forz e Cand A,B C C let

dist(z, A) = inf{|z —a| : a € A}, dist(A,B) = inf{la—b|:ac A,b B}.

The open unit disc in C is denoted by D and the open disc of radius r centred at z € C
— by D,(2). By an open simple arc we mean a set homeomorphic to (0,1), by a simple

arc — a set homeomorphic to [0,1] and by a Jordan curve — a set homeomorphic to a
circle. Let

H ={z € C:Re(z) > 0}

and for z1,z>, € H denote by 0r(z1,22) the hyperbolic distance between z1 and 27 in
H for the hyperbolic metric oy/(z) dz = dz/Re(z). Recall that

[z1 — 22|

) 1
2 J/Re(z1) Re(z2) i

0H(Z1,22) = 2asinh

Boundary behaviour

We recall some basic facts concerning the boundary behaviour of a Riemann map.
For a general exposition on the subject, refer e.g. to [20].

Let U be a simply connected domain in the Riemann sphere C, whose boundary
contains more than two points and let z € C be a point from this boundary. We say
that a curve y : [0,00) — U lands at Z,if z = lim/— o y(¢). In this case we say that z is
accessible from U.

Let ¢ be a Riemann mapping from D onto U. The cluster set C(0,¢), where
0 € [0,27],is a set of points z € C, for which there exists a sequence w,, € I such that
w, — ¢ and ©(wy) — z. We say that ¢ has unrestricted limit equal to z at the point
e if C0,p) = {z},ie if o(w) = 7z as w — e, w € D. The map ¢ has radial limit
equal to z € C at the point e, if z = lim,_ - p(re'”).

Recall a version of the classical Lindel6f theorem.
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Lindelof Theorem Let y : [0,00) — U be a curve landing at z. Then the curve <p_1 (y)
in D lands at some point v of 9D. Moreover, ¢ has the radial limit at v equal to z. Hence,
a point z is accessible from U if and only if z is the radial limit of ¢ at some point of the
unit circle.

Topology
The following theorems are classical results in the theory of continua (see e.g. [18]).

Mazurkiewicz-Moore Theorem Let X be a complete, locally connected metric space.
Then for every open connected set V C X and every x,y € V there exists a homeomor-
phism h from [0,1] onto a subset of V, such that h(0) = x and h(1) = y.

Sierpinski Theorem A metric compact space X is locally connected if and only if for
every € > 0 the space X is a union of a finite number of continua of diameters less
than e.

3 Properties of logarithmic tracts

Consider a map f satisfying the assumptions stated in the beginning of the paper.
Since B is simply connected, it is easy to find a simply connected domain D C C, such
that D C B, 3D is an analytic Jordan curve, Sing(f~1) ¢ D and f(D) C D.Let T be a
connected component of f~1(C \ D). Then (see [11,13]) T is simply connected, 37 is
an analytic open simple arc, 37 U {oo} is a Jordan curve and T C f(T) = C\ D. The
sets T are called (exponential) tracts of f. Note that by the Ahlfors Spiral Theorem
(see [14]), entire maps of finite order have only a finite number of tracts. Enumerate
the tracts of f by 7", r € R, where R = {1, ..., R}.

We use (slightly modified) logarithmic coordinates introduced by Eremenko and
Lyubich (see [13,4]). Let ‘

®:C\D—>C\D
be a Riemann mapping such that @(co) = co. Since the closures of the tracts are
simply connected, there exists an open simple arc

a:(0,00) > C\D (2)

disjoint from the closures of all tracts, such that «(7) tends to a point of 3D (resp. to
o) as ¢ tends to 07 (resp. to c0). Then @~ 1(C\ (DUw))isa simply connected domain,
which does not contain 0, so the branches of logarithm can be defined on it. Denote
these branches by log, s € Z, such that log, = logy +27is and let

H; = log, (¢~ (C\ (DU w))).

By definition, H, are pairwise disjoint domains in H, such that Hy = Hy + 2mis.
Moreover,

HNoHy = AgU A, ()
for open simple arcs

A (0,00) = H,

@ Springer
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which are the lifts of « by suitable branches of logo®~!, such that A; = Ag + 2ris,
As(t) tends to a point of 9H as r — 0+ and Re(As) — coast — oo. Let

L} = log, (@1 (T"))
forr e R.s € Z. We call L] a logarithmic tract. Then f can be lifted to the map

F: U L'>H

reRseZ
such that
b oexpoF =fo® oexp, (4)

F'is periodic with period 2mi, univalent on each logarithmic tract and maps its closure
homeomorphically onto H. Note that, by definition, logarithmic tracts contain no
vertical segments of length 2. Moreover, there exists co > 0 such that

L C {z :Re(2) > cp) ®)

for every r,s.

Now we present technical lemmas, which will be used in the proofs of the main
results. Note that only Lemmas 2 and 4 use the finite order assumption.

Lemmal Letd > 0. Then forevery ¢ > 0 there exists M = M(c), such that M(c) — co
as ¢ — oo and for every z1,z2 € H, if opr(z1.22) > ¢ and [z1 — z2] < dmax(Re(zy),

Re(z2)), then
Re(z1) > MRe(z2) or Re(z2) > MRe(z)).

Proof Assume Re(z)) > Re(z2) (the other case is symmetric). Then, by assumptions
and (1),

. C . QH(Z1,22) [z1 — 23]
sinh — < sinh =
2 2 2 V/Re(z1)Re(z2)
dRe(z;) d [Re(zy)
< — = _ :
2 VRe(z))Re(z2) 2 | Re(z2)
soRe(z;) > MRe(zy) for M = % (sinh %)2 m]

The following lemma describes the geometry of logarithmic tracts.

Lemma 2 There exists dy > 0, such that for every logarithmic tract L{ and every
21,20 € LL

|21 — 22| < dp max(Re(z}),Re(z2)).
Proof By (3), for every z € 1_1 there exist 7y, > 0, such that

Re(Ap(f;)) = Re(Ap(t2)) = Re(z)
and

Im(Ag(11)) + 27s = Im(Ay(11)) < Im(z) < Im(Agp;(12)) = Im(Ag(12)) + 27 (s + 1).
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Moreover, since f has finite order, the Ahlfors Spiral Theorem (see [14]) implies that

| Im(Ag(t))]

su =a < cQ.
Ie[q)gc) Re(Ap(1))

This together with (5) gives

[Im(z) — 27s| < max (] Im(Ag(11))], | Im(Ag(t2))| + 27)

IA

2
aRe(z) + 27 < ((1 -+ _ﬂ) Re(z)
€0

for every z € L}. Hence, for every z;,z2 € LT we get

|21 — 22| = |Re(z)) —Re(z2)| + | Im(z)) — 27s| + | Im(z2) — 27s]

2
<f{l4+2(la+= max(Re(z1),Re(z2)).
€0

]

Note that, geometrically, Lemma 2 means that each tract L/ is contained in a cone
in A of a fixed angle, with vertex at 2 is.

The next fact follows easily from (1), the univalency of f on logarithmic tracts and
the fact that L does not contain vertical segments of length 27 (see [4] for details). It
shows that F'is uniformly expanding (note that, unlike the rational case, hyperbolicity
does not imply expanding for a general entire map).

y

Lemma 3 For every logarithmic tract L} and every zy,z> € L

1

eH(F(z1), F(z2)) 2 5=|21 - 22l (6)
7T

orn(F(z1),F(z2)) = Oon(z).22), (7)

where Q > 1 is a constant independent on r,s, z;, 2.

The following lemma will be one of the main tools used in proving the results of
the paper.

Lemmad Let d, 8 > 0. Then there exists C > 0, such that for every logarithmic tract
L§ and every z1, 22 € LY, if the following conditions are satisfied:

- 0oH(z1,72) > C,
|F(z1) — F(z2)| < dmax(Re(F(z1)),Re(F(z22))),
- Re(F(z1)),Re(F(z2)) > 6,

then Re(z)) # Re(z2), Re(F(z})) # Re(F(z2)) and
Re(z)) > Re(z2) <= Re(F(z1)) > Re(F(z2)).

Proof Consider zj, z; satisfying the assumptions for a large constant C. By symmetry,
we can assume Re(z)) > Re(z2). By Lemma 2, we can use Lemma 1 for Z1.22, which
implies Re(z]) # Re(z2) and, moreover,

Re(z;) > M Re(z»2)
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for M = M(C). This together with (6) and (1) gives

(M —1)Re(z2) < Re(z]) —Re(z2) < |21 — 22| < 2wop(F(z1), F(22))
|F(z1) — F(z2)| = 2|F(z1) — F(z2

= 45 asinh <d4mln 2)|
2 J/Re(F(z1)) Re(F(z2)) VRe(F(z1)) Re(F(z2)
(8)
(the latter estimation is due to oy (F(z1), F(z2)) > C, which holds by (7)).
Suppose Re(F(z1)) < Re(F(z2)). Then, by (8) and the assumptions,
2d R Z 2 Z
(M — 1)Re(z3) < 47 In e(F(“)) < 4y 1y 22RE @) 9)
VRe(F(z1))Re(F(z2)) S

The finite order assumption implies easily that
Re(F(z]) < 5@
for every z € L{ for some constant A > 0 independent of r,s, z. This together with (5)

and (9) implies

2d 4 2d
(M —1)Re(z2) < 4 In = +4rARe(z2) < (l In 5 + 47[A> Re(z2),
(&)]

which gives
47 2d
M<l+—=mnZlf4na.
(o) )

By Lemma 1, M = M(C) is arbitrarily large for sufficiently large C. so we get a
contradiction. This shows Re(F(z})) > Re(F(z2)), which ends the proof. O

4 Symbolic dynamics and coding trees

Since for each r the map f|7+ is a cover of C \ D of infinite degree, the set 7"\ f~!(«

is the union of infinitely many disjoint simply connected domains 7§, s € Z, such that
f maps T} univalently onto C \ (D U ). The domains 77 are called the fzmdamenml
domains of f. Enumerate 77 such that

F(logs( (Tgl“)) HS()
for every r € R, 5,50 € Z. (Then T} are situated according to the order of s € Z.) Let
g=Fflm™:c\Dua) > T}

and for r = (rp,71,...) € R, s = (50,81....) € Z°, n > 1 define

To - Fn — S0 Ty— I 0y Ty I
TSn"'.?;; i gSn - Th,: ﬂ Téu Sn "
n=0
T . . . g . .
By definition, T(“,’ 3’,’,’ T s,',' I' which implies that T3'_7 U {c0} is a continuum. More-
over,
K Tl

T t=(zeC f¥2) e Ty, foreveryk=0,..., n}. (10)
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2|F(z1) — F(z2)|
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We say that a point z € C has itinerary (r,s) under f, if f*(z) T(,’,‘ for every n > 0.
By (10),

Ti = {z € C: z has itinerary (r,5)}. (11)
In particular, f(T§) = T2.5, where o is the left-side shift on R® or Z°°, ie

ol(tosty,...) = (f1,12,...). Moreover, since B is the only Fatou component of f, we
have

= U T%
(r$)eR X Z™
Let
Gy=(Flp) :H— L]
and for n > 0 define

U 1y — T(--T
L, =G o---0G'_ (Hy,) = log (1T,

L o ¢} I() T oy | I
LS§ == mn:o 55()"'3!/1 = 10g8(¢ (Ti))

{here and in the sequel s_; = s and ss = (s,50,5],...)).

Trees of preimages
Take a point
¢ € B\D.

Since all its first preimages w € f~!(¢) are contained in B \ D, one can connect { to
w by a curve y,» C B\ D, such that all branches of f".n > 0 are defined on y,. A
(Oeonwtnc) Codmo tree G of preimages of ¢ in B\ D is the family of the images of
vw, w € £~1(¢) under all branches of f~", n = 0. To define the codes of the branches,
assume that

(g

(if ¢ € a, we can perturb alittle o near ¢ to avoid it, which does not change the codes
of the tracts). Then f~1(¢) = {¢/ : r € R,s € Z}, where

&5 = &(%)

is the unique point of f~!(¢) in T7. Denote by ¥, the unique curve from G connecting
¢ to¢g]. See Fig. 1.
Similarly, for n > 1, f7(¢) = {&05" 2 o, .. 1w € RS0, sp € Z}, where

0Tt — o0 gy Tr— l I'n
g\'uu-.&',, — 38 o 08s n-1 gs/ )

is the unique point of f~(¢) in Ty, ;" Let y,{" be the unique curve from G con-
T T, oy
necting gy,..s'~ to ¢5) 5" . By definition,

Snt

Fo==ry—|

Tl () = Vogrogymy ()
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Fig. 1 The curves y!/

Doexp

forn > 1,1 € [0, 1]. In particular, f( f“’_'_‘.'{"’) = gl Moreover, since 7" are com-
p S0---Sp SO Sy~
ponents ot’f‘1 (C\ D), we have

101y % 7
Vayos & TR ¢ 1

.\”
S)EZ
for n > 1, which implies
"oty ol0 . Tn=2 Tu—=17n U T Ty —
Vsoosy = 85y © "7 085,25 (Vs, 15, ) C Ts-(,....s-”_:‘yl/‘il (12)

forn > 2.
A (geometric) branch of the tree G is a curve
¥ 1 [0,00) > B,
where

rgeeer,

yi(t) = Vipostt =), “t € In,m 13, m =012

forr=(ro.r,...) e R® s = (0,51,...) € Z°*°. Each branch yé- is a curve starting at ¢
for ¢ = 0, with limit points in Ti— U {oo} ast — co. We say that yé" converges to a point
2 € 9B U (oo}, if yy lands at z. Note that

S = Yagosy (D = yi(n + 1),
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wver, since 7" are com-

n—1
-’:1~3Y,, 1 (12)

is a curve starting at ¢
E .
s converges to a point
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and
fls@) =y5 5t =1)

fort € [1,00).

5 Convergence of the branches

In this section, we prove

Theorem A For every ¢ € B\ D there exists a codlno tree G of preimages of ¢ in

B\ D with all branches convergent to points from C. More pleClselv for every r =
(r0sF1s - oa)HE R , § = (80,81,...) € Z%, there exists a point Q € T; {oo} such that
rlze bmnch vs of G converges to f. [n particular, ¢ ;’,‘ — ¢y as n — oo. We have

= oo if and only IfT“ = [fg 7é o0, then {5 = g“, if and only if (r,s) = (/,s').

Mo;eovez Ifg“3 # oo, then it is the um(/ue point from T;, which is accessible from B.

Remark In [4] it is proved that if |s,,| < EY(x) for sufficiently large n and any A, x > 0
(where E;(x) = Aexp(x)), then {, # 00. Moreover, there exists a sequence /,, such
that if |s,| > [, for sufficiently large n, then g“_i = 00.

Remark There exist coding trees of preimages of ¢ in B\ D, for which not all branches
are convergent. Indeed, it is easy to see that if the curves y! are chosen such that
they contain pomts Zs, such that z; tends to oo sutﬁc1entlv fast for s — oo, then

1 g
gyogo---o gY (zs) = oo for s — oo, so the branch V(n? cannot converge to a finite

point. On the other hand, gy (s + 1) = ¢};5! | converges to a point from C by the
previous remark.

Theorem A implies the following result on the boundary behaviour of a Riemann
map onto B.

Theorem B A Riemann map from D onto B has radial limits at all points of 9D.

Proof Let ¢ be the Riemann map. In [4] it was showed that there exists a countable set
O~ C [0,27], such that ¢ has unrestricted limit equal to oo at all points .0 e O,
and for every 6 € [0,27] \ @, the point e is the landing point of the curve <p_1 (y;'—'
for some (r.5) € R™ x Z*. By Theorem A, the curve )/A_ converges to Cs so the
Lindelsf Theorem implies that the radial limit of ¢ at e exists for 0 € [0,27] \ Osc
and is equal to the suitable {5 ]

The proof of Theorem A consists of several steps. First we construct a suitable
coding tree G and its lifts in the logarithmic coordinates. Then we prove two technical
lemmas and show the convergence of the branches of the tree. Finally, we prove the
additional facts stated in the theorem.

Definition of the curves y,".

Let

D=C\®({z:]z| = L +¢})
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for a small ¢ > 0. Then D is a bounded simply connected domain, D ¢ D c D C B
and 8D is an analytic Jordan curve. Moreover, if ¢ is small enough, then D is disjoint
from the closures of all tracts of f. Each tract 7", r € R contains the closure of a unique

component 7" o‘ff‘l (C\ B), such that 77 is simply connected, 977 is an analytic open
simple arc and 97" U {co} is a Jordan curve. Let

H = {z:Re(z) > 6y} (13)

and

L; = Gi(H) = log, (¢~ (T"))
for s € Z. Choose a point ¢ € B\ D such that
¢ e aD \ «.

Note that in this case ¢/ € 97" for s € Z.

Let G} for r € R,s € Z be the class of all rectifiable simple arcs y : [0,1] — B \ D,
such that:

yO=¢, y=g, y((O,l))CB\(BUUF).

"eR

It is clear that G is non-empty. Choose curves

Ys €0,
forr € R,s € Z, such that
length(y/) < 1+ inf length(y). (14)
regi

See Fig. 1.
Define the tree G of preimages of ¢ as in Sect. 4. Note that the definition of Yy
implies that for any n < m and 1,7 € [0, 1), if 3" (1) = y'*"""(¢), then m = n + 1,

5075 ‘Y:)""y/,u

/ . ] -
ro =1y,50 =Sy, ..., I'n =1, =S, t =1,/ = 0. This shows that the branches Ys are
homeomorphic to [0, co).

To make use of the properties of the lifted map F, we will study the lifts of tree G
in the logarithmic coordinates. Define

vy = log (@ ~1(0))

fors € Z and

Vityoty = 108(@T () = Gl o+ 0 G} (vs,)
forn>0andry,...,r, € R,s0,...,5, € Z. Since 9D is close to dD, we have
Re(vs) =8y < ¢ (15)

for ¢cp from (5). By (12), we can define

0T —Tac =il 0T
o5 () = logg (@™ (y (1))

0Sn
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main, D c D c D c B
10ugh, then D is disjoint
1s the closure of a unique
1,87 is an analytic open

(13)

sarcsy 1 [0,1] — B\ D,

(14)

that the definition of y,
)s’m (t),thenm =n +1,

m

that the branches y; are

1 study the lifts of tree G

2] (VSH)

to 0D, we have

(15)
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forn > 1,1 € [0,1]. Let I35, be the image of y;’ under the inverse branch of @ o exp,
such that Iy (0) = vs. Then

F(F'(' I'n (f)) 2y \’s:), ,sl,,, II ([)

38505

for n > 1. Moreover, by (12),

i = G o Gl e L IR (16)
s_ €L
Let
L5 = Lo e —n)s i Fe [, il YO T2 05
for t € [0,00). By (5), (15) and (16),
e(I5(0) > & (17)

for every ¢ > 0. The limit points of I}5(¢) for t — co are contained in L§ U {oo}.
Moreover,

V;‘S'“ ];‘u = -\]5(1)) I-Y,/’l(l “(n + 1)
and
Frsiny =17 5

for t € [1,00). Note that

(1, 00)) = logg (@~ (1 ([1,00))) C LI (18)

and @ o exp is a homeomorphism on Ly’. Hence, yf converges to a point from
TE (resp. to oo) if and only if I converges to a point from Lg; (resp. to 00).

" The following lemma shows that the cone condition from Lemma 2 is fulfilled also
for the branches I3.

Lemma 5 There exists di > 0, such that for every s € Z, r = (r9,11,-..) € R™,
s = (50,51,...) € Z* and every z),z2 € [;3 U Ly,

|z1 — 22| < dy max(Re(z),Re(z2)).

Proof Choose a point
wp € U ai”/,
r'eR
such that
Re(wp) = inf{Re(z

yiz e UL)

Let
Wg = wq + 2is

fors € Z. By (5) and (15), we have

Re(ws) > Re(vy).
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Since |z) — 25| < (21— ws| + |zp — Wsl, to prove the lemm

d
12— wy| < 71 Re(z)

forevery z ¢ R'g UE By (18) and Lemma 2, we have (
Lg". Hence, we can assume

Zue LU IO 3,
Since 3V

ssy ([0, 1)) is disjoint from Ehentits E)[:;ff, there exists a curve

Ag:[0,00) — Hy,
lgomeomorphic to [0, 00), such thglt AO(O) =w

Ao(D) — coast — oo and Uyez Ay is disjoint from I3 ([0, 1)) for

Asf = A[) + 2 is’,
By definition, Ay C Hy

and A, Separates the half-plane {z
two components. Let

Z ! Re(z) > Re(wp)} into

fo = sup{r € [0,1] : Re(r3{) (1)) < Re(wy)).
Then

T35, ((f0, 1)) C {z : Re(z) > Re(wo)}\ U Ay

S'€Z
and 130 (1) = Ve e I This easily implies th

at for every z e
f1,t > 0, such that

Iy ([f0, 1)) there exist

Re(Ay(11)) = Re(A, (1)) — Re(z)
and

Im(/:ls(ll)) -2 = Im(As_l(rl)) <Im(z) < Im(A‘YH(rg)) = hn(A_y(f_])) + 27,

Hence, using Lemma 2 and (5), we get
|2 —wg| < Re(z) — Re(wy) + | Im(z) — Im(wy)|
< Re(z) + max(]lm(;ls(fl)) —Im

27
< (l +dy + —T) Re(z).
1))

(ws)l, | Im(;ls(fz)) = Im(wy)|) + 27

(20)
This proves (19) for z ¢ T ([t9,1)).

It suffices to consider the remaining case

2 € I (10, 1p)).
Modify the curve Ijctosdiy, replacing Iy ([
necting vy to Iy (15) and let T
(0, 1)) ¢ f\ Upy L2 and 3,
By (20) for z = T (tg) we have

0,1]) by the straight line segment con-
= P (exp(I3))). By the definition of wy, we have
is a rectifiable simple arc, which implies y;! € G,

S 5 27
length(7 3 ([0, £9])) = [T (t0) — vy < (1 +do + 6‘1) Re(wo) + [wy — vy,
0
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tis sufficient to show that
(19)
the case z € Fé([l, oc))U

acurve

- Re(wy) for every t > 0,
) for

" Re(z) > Re(wp)} into

Ay

= I (o, 1)) there exist

= Im(z:i‘y(tz)) + 27.

) = Im(wy)|) + 27

(20)

ight line segment con-
nition of w;, we have

hich implies y; € G;V.

Vo) + [wy — v,
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so length(7 ([0, 0])) is bounded by some constant independent of the choice of y,".
On the other hand, if (19) does not hold for a sufficiently large dy, then by (17),

I

length(I, ([0, 70])) and length(y{(",’([O; fo])) are arbitrarily large, which contradicts (14).
Hence, (19) holds in the case z € I3 ([0, 1)), which ends the proof. o

The following lemma forms the main step in the proof of Theorem A.

Lemma 6 There exists ¢; > 0, such that for every:s. € Lyir =h{rotriic.s) e iR
s = (S().Sl, e Z'}C“

1o, Tty
- Re(Vsyo§,) < ciRe(z) foreveryn > 0and every z € Ly !

SO Syl
Y Re(}}ﬁ(rl ) < ¢ Re(ﬂ%(lz)) foreverv0 <t <. %
In particular, Re(vgg, '4,) < ¢ Re(Viy™"s ) for every n < m.
Proof The proof is split into several cases. First, take
2 € Lggy w4 U ME((n +1,00))
for some n > 0 and suppose that
Re(vg ™ ) = ¢y Re(z) (21)

for a large constant ¢; > 0. Let

0 j o FOER, ) i
7 = Pyl 23 =Fi)

S80S
forj € {0,...,n+1}. Note that by definition and (16), z{", 2}’ e Ly | forj < n. More-
over, z‘l”H’ =Ws == T(0)’and z.(z”“L“ € 17,.’,‘;37; U Lifj:f.ILI. Therefore, by Lemma 5,
|z‘1’) - z‘zj’l < d; max(Re(z‘l‘”),Re(z(z”)). (22)

for j < n + 1. Moreover, by (5), (15) and (17),

Re(z{"),Re(z) > &. (23)
Let C be the constant from Lemma 4 for d = dy and § = §y. By (1) and (21), taking
sufficiently large ¢; we can assume

() _(0) bl e
QI‘[(CI IR ) = Q[-I(‘;y“..,f{”sc) > C~

so by (7),

sz(z(i/’,zéi’) >:C
for j < n. This together with (22) and (23) implies that the assumptions of Lemma 4
are fulfilled for § = 8y and z; =z}, 25 = 2",/ = 0,...,n. Since by (21),

Re(z{") = Re(vjt""s ) > Re(z) = Re(z}"),

8S8()+Sn
Lemma 4 gives
(n+1) _(n+1)
80 = Re(vs,) =Re(z;"" ') > Re(z; ') = 8o,
which is a contradiction. Hence.

Re(vi’n y < ¢| Re(z) (24)

5808
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forevery n > 0 and ; L;{'{,}f’.}ﬂ, UrE
assertion of the lemma.

Take now 0 < 1 < 12 and suppose that
Re(I55(11) > & Re(rE(r))
for a large ¢;. Let m be the smallest integer not smaller than ¢,.
implies t; = 0, which is impossib
H=inf{r e (t;,1) : Re(I5(1) = Re(I5(t1)) /7).
Ifm <1, then by (25),

Re(vgg ol ) = Re(I350m) > Re(I(11)) )/ > Vé Re(I (1)),

so for sufficiently large ¢; we h

ave a contradiction with (24). Therefore, we can assume
m > t;, which gives

[t o) Clim=1, m).
Let
2’ = Py, 20 = FIF@))
forje{0,....m— 1}. Then

Re(Z;O)) = \/ZTRE(Z(ZOJ) > Re(zéo)),
Repeating the proof of (24), by Lemma 4 we get Re(z;'”*l’
(1). (7) and (25) imply that er(zy" ™1 21 i arbitrarily |
so by Lemmas 1 and 5 we conclude

Re(z(l'”—“) Y MRC(Z‘:’”_I))

(26)
for an arbitrarily large M = 0. Note that
Z;m_b o SZI,”::{&‘,,,_I (I —mh), zé’”‘“ = 5:-,',”_”:&,”_[ (t —m+ 1),
wheret) —m+1 < ty—m+1. For simplicity, write I = Gi:fi}&,,,_,.Take 70 € [0,55—m+1]
such that

Re(I (1)) = sup{Re(I"(1)) : t € [0, t—m+1])
and let

T = sup{t € (0,70) : Re(I"(r)) = Re(I"(zg))/ M},
T = inf{r e (10,00) : Re(I"(1)) = Re(I'(9)) /M)
By (26), I' ((1}, 7)), I"((9,77))

are disjoint open simple arcs intersecting the line

€ ={z:Re(z) = Re(F(To))/\/M}-

el (T, m)Ne) < sup{Im(z) :
case can be treated Symmetrically) and

@ Springer
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Note that m =
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) > Re(zg’”—“). Moreover,

arge, if ¢ is large enough,

Trees and

Fig.2 Th

L), I'(

Im(r-
Im(I"
Im(r-
Im(I"
See Fig. 2
By (26,
Re(I'(t

Let Ij- for
(). Not

Since I'is;
LU ([n,
the bounde
possibilitie
and the fac
and the fir
hNnt, =4

See Fig. 2.
Conside

for some 7,
V5| < . By
¢ > 0 (inde
VMRe(I'(1

Moreover,
C([7,71]).




K. Baranski

particular, this gives the first

) (25)

ler than #;. Note that m = 0
Hence, we have m > 0. Let

(1)) /V/e1).

> V& Re(I5 (1)),

4). Therefore, we can assume

L -
) > Re(zfz'” by, Moreover,

y large, if ¢, is large enough

9

(26)

ZIS/II—| ([;_ — i 1)7

5.1 Take g € [0, ty—m+1]

m+ 1]}

r0))/ M},
79))/M}.

‘cs intersecting the line

: (w0, 71)) N €} (the other
), 2,73 € (19, 7}), such that
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Fig. 2 The domains Uy, U, ) Tk

I'(t2), ' (13), ['(12), ' (#3) € £ and
Im(I"(12)) = sup{Im(z) : z € I ((t1,79)) N ¢,
Im(I"(72)) = inf{Im(z) : z € I'((t9,71)) N ¢, Im(z) > Im(I"(12))},
Im(I7(z3)) = sup{Im(z) : z € I'((0, 79)) N ¢, Im(2) € [Im(I"(12)), Im(I"(%2))]}

Im(I7(%3)) = inf{Im(z) : z € I'((z9,00)) N ¢, Im(z) € [Im(I"(t3)), Im(I"(£2))]}.
See Fig. 2.
By (26), 12,13, 72, 75 are well defined and

Re(I'(71)) = Re(I'(71)), Re(I'(r2)) = Re(I'(13)) = Re(I'(%2)) = Re(I'(%3)),
Re(I'(19)) = MRe(I' (1)) = VM Re(I'(12)).
Let J; for j = 1,2,3 be the vertical segment without endpoints connecting (7)) to
I"(7;). Note that
IsCch and IzNTI =4¢. (28)
Since I" is a simple arc, by the definition of 7j, 7, the sets [ U ([1y, nNDULUT ([12, T1]),
LU ([r2,72]), I} U T ([11,7,]) are three Jordan curves. Let Uy, Uz, U be, respectively,
the bounded domain‘scut out blthese curves.EVe have dU;Nd U, = I>,so one the three
possibilities holds: U, c U, U7, 71 & U&J LorU NU, =0. By the definition of
and the fact that Uj is bounded, we have U, c {zi%e(z) < Re(I'(1p))}, 50 I'(7p) ¢ U,
and the first possibility cannot hold. Similarly, U> C {z : Re(z) > Re(I'(11))}, so
Iy N Uz = §, which excludes the second possibility. Hence, we have U nNnU, =0,so0
U=U,UubuUU,. (29)
See Fig. 2.
Consider first the case, when there exists a point
welin BZ?’
for some 7y € R, § € Z. Since Re(F(w)) = 8o, there exists § € Z, such that |F(w) —
vi,| < 7. By (1) and (7), oy (w, vg‘sf“) < 2asinh(1 /28p), so Re(v%'“) > ¢Re(w) for some
¢ > 0 (independent of M). Since by (27), Re(w) = Re(I'(13)) = Re(I(70))/vVM >
\/A—fRe(F(rl ), this implies

Re(v! ) > &/MRe(I'(1))). (30)

)

Moreover, li:‘” € U, because w € U by (28) and (29), and BZ;" is disjoint from
[z, 11]).
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It is easy to check that there exist 7|, 7,

,'._....eZ,suchthatl’é
converges to co for .

(5 1]

= (7o, 7q,...), Si= (50,51,...)

(it is enough to take Sn growing sufficiently f;

this paper and Theorem B from [4]

that l"é(to) € dU. On the other h
which together with (30) implies

ast, see the remark after Theorem A ip
)- Since Iz(1) = Li“’” € U, there exists 1y > 1, such

and, 1}%((1,00)) is disjoint from I", so Fjg(m) e/,

Re(vg’”) > E\/MRe(Fé(to)).

This contradicts (24

) for sufficiently large M.
It remains to con

sider the remaining case

Lo ) afnZg
r'eRs'eZ

(31)

Modify the curve I to i replacing I"((r3, 73)) by 75 and let j = ®(exp(I)). Note
that by (28), the growth of argument on the curve exp(I'((t3, 73))) is less than 27, so
length(/3) < 277, and ¥ is arectifiable simple arc. Hence, by (31),7 ¢ g_".;”,’j,' . Moreover,
length(y (13, 3))) < ceRe(M(x)) forsomec > 0 (independentof/\/[). On the other hand,
since 7y € (13, 73), by (27) we havelengrh(yy',':l"_‘l'((r;. 73))) > c’(eng‘r”-"’—eR""r”F”)
for some ¢’ > () (ind

ependent of M), which contradicts (14) for sufficiently large M.
This shows that (25) cannot hold, which ends the proof. o

Convergence of the curves y;

Suppose y_f does not converge to any point from C. Then [}g does not converge to
any point from C , so there exist two distinct limit points x,y € H of Ik (¢) for ¢ — 0.

S,
By (16), x,y ¢ Lf;'{. Note that for every k > 0 the map F* is defined and univalent
O an open set containing v, y,

Moreover, F¥(x) and F¥(y) are contained in the same
logarithmic tract. Hence. by Lemmas 1 and 2 and (7), for sufficiently large k& we have

Re(FF(x)) > 2¢y Re(Fl"(_\')) or Re(F/"(y)) > 2c; Re(FK(x))
for the constant ¢ from Lemm

ki,
2ci Re(F¥(y)). Since Pk(x), F¥(y) are two distinct limit points of the curve F:,\({é)'.
there exist 1,12 € [0, 00) such that f) <t and

a 6. By Symmetry, we can assume Re(FF(x)) >

Kow ki,
ar(r) at(r)
Re(rrr/‘(.vgl (1)) > Cl Re(ra"'m‘g) (12)),
. . I .
which contradicts Lemma 6, Hence, I'ss converges to a point v
converges to a point ¢} e T3 U {oo}. In particular, viy
n— 0.

i_g € L.%j U {oo}, so )’f

i ro-ry i
— Vg and Cspesy —> {5 as

Note that we have proved the convergence assuming
for other points, consider ¢ e B\D. Perturbing a little (
(2), we can assume ¢,¢ ¢ a. Connect ¢ to ¢ by

¢ €dD. To prove the same
if necessary) the curve « from
acurve y C B\ (D Ua) and let

v =v Uy ugiy)

@_ Springer
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(]
—

2,... € Z, such that 1';’;

nark after Theorem A in
', there exists #y > 1, such

t from I, so 1}%(1()) e I,

(1)

= @(exp(I)). Note
.T3))) is less than 27, so
1),7 € Gi"~'. Moreover,

m-=1"

£ M). On the other hand,
emRe(F(r;>) —eRell ()
for sufficiently large M.

m]

;5 does not converge to
: Hof ﬂé(r) fort — co.
5 defined and univalent

: contained in the same
iciently large k we have

Re(F¥(x))

L assume Re(F"'(\)) >
(f (IJ

ts of the curve I sy

L 5 1L

Vss € L\x U {o0}, so Vs
T

VTA and 55[(,' \,:I s §3 as

)D. To prove the same
ssary) the curve o from
\(DUw) and let

forr € R,s € Z.Then p/ isacurve in B\ (DUa) connectmog toy/(Z).LetG = (Pt
be the tree of preimages of ¢ defined by the curves 7 and let I3 be the lifts of

~ 10T

Vsys, under log;o®~1. Then by (7), for every z € """ we have

80 Jn

sup{op(z,w) :w e [0y < cQ™"

ENTREA

for some constants ¢ > 0,0 > 1. This easily implies the convergence of the branches
of G

Additional facts

Now we show {5 = co Tf = §. (This was proved in [4] without the finite order
assumption, but under this assumption the argument is much simpler.) If 75 = ¢, then
obviously {b = o0. Suppose T— # {f and g“j = 00. Then L“ # (f and Re(v;g’” ) = o0,

so we can find z € Lj; such that Re(vi,"s) > ¢y Re(z) for the constant ¢; from
Lemma 6 which is a contrad1ct10n

Ifg ;éoo'lnd(/ S (s

Iy =T, ool
sergfid <l T}'A ‘/‘

SO Sk

), then {s # {, because they are in two disjoint
, where k = min{n : (r,,,s,) # (rrs s

To end the proof of Theorem A, note that {A is accessible from B since it is the

landing point of y;. On the other hand, in [4] it is proved that in 7§ there is at most
one accessible point.

Theorem A and Lemma 6 give immediately

Corollary 1 For every (r,5) € R™® x Z, s € Z and every z € L;{i.

1 .
Re(z) > — Re(vyy).
o 5

6 Hairs and endpoints

Definition Adapting the definition from [6], we say that a curve /1 : [0,00) — Cisa
hair of the code (r,5) € R™® x Z> attached to a point z € C if:

- h0)=z

lim;— ~ h1(1) = o0,

- Every point from £ has itinerary (. s) under f,

- Foreveryt > 0 we have lim,— o "' (h(1)) = c0

The point z is called the endpoint of the hair.
In this section we prove:

Theorem C For every (r,s) € R™® x 7, if the set T— is non-empty, then it is a hair
of the code (r.s) attached to 4“ Moreover, T~ is lzonwommpluc to the half line [0, o),

with Q corresponding to 0. By Theorem A, {, is the unique point from T;, which is
accessible from B.

Remark The set of endpoints
£ lts H(r5)ie REEXEDY
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has interesting properties. Note that & U {oo} is the set of radial limits of the Riemann
map ¢. The set € is totally disconnected (which follows e.g. from the fact that the
radial limit of ¢ is equal to oo on a dense set in the unit circle — see [4]), but £ U {co}
is connected by the result from [19]. Therefore, the point co is a topological explosion

point for this set. Moreover, the topological dimension of £ is equal to 1 (see [19]),
while its Hausdorff dimension is equal to 2 (see [3])

The proof of Theorem C is split into several lemmas. Let
7o YAl T 2
Lé‘[S)()“'é!,,_| T GS“ SRR GS,,_I (H)

for H from (13), n > 0 and 105 el TR S S

--»Sp—1 € Z (recall that we set
s_1 = s5). Note that by definition, we have

rory J roery
Vssosy € Ly 5,

for every s, € Z and, by (5) and (15),

70Ty 7 gy o
U 550 S+ - Lssn«--s,,_] - LSSU“-SH‘
'i+1€R, SneZ
SiusSp41 €4

SO

o0

LC — LI-““-I.II
S8 ﬂ S80Sy~ °
n=0

Lemma7 There exist c; > 0,0 > 1, such that for every n > 0, every

8,50,--.+Sn—1 € Zand every z € Lg% there exists s, € Z such that

7050y m € R,

0T

P . =1
e = e @

) & TG FoeeT, ! - T
Moreover, if 7 € 8L§._‘J“4,"§f”_], then z can be connected to Vsgys, by a curve in 0 Lggyns,_,
of diameter less than ¢; Q™.

Proof Denote the diameter in the Euclidean metric (resp. in gg) by diam (resp.

diamg,, ). Since F"(z) € L§" | < L{"_ and logarithmic tracts contain no vertical seg-
ments of length 27, there exists a point w € 3]:;::,’4 , which can be connected to F"(z)

by a vertical segment £ in Liﬂ’,’q of length less than . Moreover, since Re(F(w)) = §,
we can take s, € Z, such that |[F(w) —vs,| < m. Let B2 be the vertical segment con-

necting F(w) and vy,. Then g = g, U ng_[ (B2) connects F"(z) to Vg:;’—lsu
by (1) and (5),

in Zg:_] and
di ) < 2asinh —
)<2a
lam,,, (B sin 25
forj=1,2, so by (7),

o
diam,,, (8) < 4asinh —.
2680

y s I R P
Then G o - o G~} (B) connects z to AT Lss,.s,_, and by (6) and (7),

: : s =
diam(G o --- o Gi.j::l (B)) < 8 asinh T oLz
¢ 250
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*h that

A S PR
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in oy) by diam (resp.
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by (6) and (7),
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wn
[U5)

for @ > 1. In particular, |z — vy "% | < 8 asinh(7r/28)) O!~". Moreover, if 7 ¢
L5, then F"(z) € OL{" |, so we can take w = F”(z). Then 8 = Gi'_ (Ba) con-
7 g T Fy— 19y 022 1", % [}
nects F"(z) tovgy s, indL5"_ 50 G- --0G'~\(B) connects 7 to Vst gL O L i
which ends the proof. o

Lemma8 Let Z,, n > 1 be a sequence of continua in C. Assume that there exist points
Zn € Zn, such that z, — z as n — oo for some z € C. Then the set

Z=1weC:w= /\lfzc Wi for some wy, Zpyy N — 00

is a continuum.

Proof The proof is standard, we present it for completeness. Let w™ e Z for m o
P p p

such that w™ — w € Casm — co. Then w'™ = lim,_, w(" for some wi e Z i,
Y k

so choosing ky, sufficiently large, we have [w}™ — w™| < 1/m and n'"” — oo as
mn

ki
m — 00, SO w;\,’”) — wand w € Z. This shows that Z is closed in C, so in fact it is
m

compact.

Suppose Z is not connected. Then Z = Z' U Z”, where Z', 7" are non-empty and
disjoint compact sets. We can assume z € Z’. There exist open sets U', U” c C, such
that Z' C U', Z" C U” and the closures in C of U’ and U” are disjoint. Choose a point
w e Z".Since w = limy_, o wy, for some Wi € Zy, and z = lim, .~ z,, for z,, € Z,, the
sets Z,, intersect U’ and U” for large k. By the connectivity of Z,, , they must intersect
the boundary of U at some points uy, and by compactness 1y, — u for a subsequence

kj. This means u € Z, so Z intersects the boundary of U, which is a contradiction,
Hence, Z is connected, so it is a continuum. O

The following lemma will be the main tool in the proof of Theorem C.

Lemma 9 There exists c3 > 0, such that for every s € Z, (r,s) € R™ x Z* and every
Ri,R; > 0 with Ry/R| > c3, if X; ¥ C Lf;_v are two continua intersecting the lines
ti={z:Im(z) =Ry} and 3 = {z : Im(z) = Ry}, then X NY # 0.

Proof The proofis (roughly) similar to the one of Lemma 6. Suppose X, Y are disjoint
for a large constant c3. Let

br={z:Im(z) =Ry}, & ={z:Imx)=Rz}, S= {z :Re(z) € [R],R>]}.

First, we will show that X N S contains a continuum X' intersecting ¢1, ¢>. Note that
every component of X' N S intersects 95 = £, U ¢, (this follows easily from the fact
that components of a compact space are minimal intersections of open-closed subsets
of the space, see e.g. [18]). Hence, defining

X = U{Z:ZisacomponentofXﬂSandZﬂ l; # W}
UX N{z:Re(z) < R},

X> = U{Z : Z is a component of X N Sand Z N ¢, # (/)
U(X N {z:Re(z) > Ry}),

we have X = Xj U X; and X}, X> are compact and non-empty, so X; N X> # ¢ by
the connectivity of X. Take z X1 N X>. Then 7 = lim,— o Z,(zh = 1im,— o Z,I,Z) for
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b 0y 2 L 1
some z;, )€ ZiV, 72V ¢ Z? where z'V

meemﬁmzbna¢wmmzeZ“mZ%TmnX’
mxns intersecting ¢, ¢5. Similarly, ¥ NS cont
Replacing X, Y respectively by X’, Y, we can assume

X;¥.CS: (32

Note that since X, Y are connected, they intersect the line

¢ ={z:Im(z) = \/R(R;).

By symmetry, we can assume sup{Im(z): z € XN ¢} < sup{Im(z) : z € Y N ¢} and take

ZxeXNe zyeYvYne,

such that

Im(zy) = sup{lm(z) : z € X N e},
Im(zy) = inf{Im(z): ze Y e, Im(z) > Im(zy)}.

Denote by 7 the vertical segment without endpoints connecting zy and zy. By defini-

tion.
INXUY)=4. i
BT (ot s g (50,51, ...). We define a point
r(yeeery
V= VS‘IS?U =150

for some n > 1 and5, € Zin the following way. If 7 Li‘é then take zq to be the

centre of / and @ > 0 so small that the disc D, (zg) is disjoint from X U Y U ¢ Ul By

Lemma 7, there exists 7 > 1 and Sy € Z, such that vy — v;f'y’(')”";f 5, 18 contained in this
o e n— n

disc. If I ¢ Lg,, then, since Zx € Ly, there exists zoelnaLl

ssy--s,_; LOT some n. Take
a > 0 such that D4 (z0) is disjoint from X U Y U ¢ U, Again by Lemma 7, there exists
n>1ands$, € Z, such that y = /0"

ss0-s,_,5, 1S connected to zg by a curve in GLY oy,
of diameter less than 4. By construction, in both cases
[ and v are in the same component of H \ (X UY U ¢; U £,). (34)

Moreover, if a is small enough, then

1
3\/R1R3 <Re(v) < 2/R|R>. (35)

It is easy to check that there EXISt Py 1) Frdin il e R St S s

€ Z, such that
the branch F;; defined in the proof of Theorem

A converges to infinity for

I~

= (Fo5. &5 /'n~’~‘u+1-;:n+2~,---)v

(=13

=80y s Sy S S )

(see the proof of Theorem A). For simplicity, write I" for FS’: Note thatv = "(n 4 1).

Moreover, I is disjoint from L_:-f_i. sodist(/, X U Y) > 0. This together with (32), (33)

and the connectivity of X and ¥ implies that there exist simple arcs

wy,wy :[0,1] - S,
such that:
@ Springer
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Now we show t]

To prove this, su
U, ) is bounded .
containing aU. (
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2 = sup{r
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See Fig. 3.

Note that by T
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there exists a simp:
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ments of X N S, such that

L Z 2 = X Sistich that
ZM U Z? is a continuum
wum Y’ intersecting ¢4, £5.

(32)

ne

[m(z) : z € YN ¢} and take

Im(zx)}.

>ting zx and zy. By defini-

(33)

_5s. then take z to be the
tfromXUYU¢ Ul By

4 5, is contained in this
- "
Lg% | for some n. Take
1by Lemma 7, there exists

0 I'n

zo by a curve in 9Ly, 5 |

JYUE U E). (34)

(35)

+1,8142, ... € Z, such that
>s to infinity for
_.5”.}”,:_1. .. )

': Note thatv = I"'(n+1).

is together with (32), (33
aple arcs
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wn
n

—  SUP.g, dist(z, X),sup. . dist(z,Y) < ¢ for asmall ¢ > 0,
- wx(0),0y(0) € t1, wx(l),wy(l) e t,

— Re(wx(f),Re(wy(t)) € (R],Ry) fort € (0,1),
INLTNE WX LY € WY,

- wxyNwy =¥,

- (wxVowy)N(IUT) =0

Let [} C €1,12 C ¢; be the straight line segments connecting, respectively, wx (0)
to wy(0) and wx (1) to wy(1). Then I, Uwy UL U wy is a Jordan curve. Let U be the
domain cut out by this curve, such that I ¢ U. Then U\ ] has two components Uy, Us,
such that Iy C dUy, I € dUs. See Fig. 3. By (34), if we take ¢ sufficiently small, then

vel.

Now we show that
U is bounded. (36)

To prove this, suppose that U is unbounded. Then one of the domains Uy, U; (sayitis
U,) is bounded and the other is unbounded. Hence, C \ U is a bounded compact set
containing dU. On the other hand, 3(C \ U>) = dU,, which is a compact setin S\ ¢;.
Hence, dist(C \ Uy, £;) > 0,s0 C\ U, cannot contain points from 7y, which is a subset
of 3U — a contradiction. This shows (36).

Hence, U is a bounded domain in S. Note that R} > & (because ¢; contains points
from L§),so U C H and I'(0) = vs ¢ U. Moreover, I'(t) ¢ U for large t, since I’
converges to oo. On the other hand, v = I'(n+1) € U and I is disjoint from wy Uwy.
Hence, I'([0,n 4+ 1)) and I'((n + 1, 00)) must intersect I; U . By (35),

Re(v) R» c3
s >
R, "Re(v) 2

so if c3 is sufficiently large, then by Lemma 6,

F(0,n+1)NL, IT'((n+1,00)) NIl =y
and I'([0,n 4+ 1)) (resp. I'((n + 1,00))) must intersect I (resp. I»). Hence, for

ty =inf{t >0: I'(t) € U},
L =sup{t>0:7I(t)edlU),

fi=sup{t <n+1:I@) el},
h=inf{t>n+1:I@) ebh)

we have

rep,repeli, rm),ryeh

and

F((t.8) C U, T'((0,11)) U ((t2,00)) C H\ T.
See Fig. 3.

Note that by Theorem A, we have L"-S = {), because I" converges to L'; =100"
Hence, (7.5) # (r,5). This together with (16) implies that I is disjoint from LQJ;,'.TJ;N for
some . Since Lgj,."! is an open connected subset of  and zy,zy € Ly CRLSE
there exists a simple arc

E 0TS
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Fig. 3 The curves wy ., wy and
the domains Uy, U;

——E
.
i) s

Wﬁb o X
K )
: :

H : 7
'l ' A

such that £(0) = zx, £&(1) = zy and ¢ is disjoint from I'. Let ny (resp. ny) be
the open simple arc in §U of endpoints I'(t), I'(t2) containing zy (resp. zy). Since
AU\ (nx Uny) C I', there exist 0 < 71 < 2 < 1,such that £(zy) € ny, £&(12) € ny and
&((t1, 1)) is disjoint from 9 U. Hence, (11, 12)) c U or&((t), ) C f]\U

If&((t1,12)) C U, then &((zq, 1)) dissects U into two components V', V>, such that
F(t'l) € dVy\aVa, F(té) € dV7 \ aV;. Since the curve F((t’l,té)) is contained in U, it
must intersect & ((zy, 2)), which is a contradiction.

If £((r1,12)) € H\ U, then £((11,2)) dissects A \ U into two components Wy, W5,
such that I' (1)) € W, \ Wa, I (1) € dW2 \ dW;. One of the components Wi, Ws
is bounded and the other is unbounded. Since Re(r"'(0)) = 69 and Re(I" (1)) — oo
as 1 — oo, both curves I'((0,#;)) and I'((r,0)) are contained in the unbounded
component. On the other hand, one of the points I'(t}), I" (1) is in the boundary of
the bounded component and outside the boundary of the unbounded one. Hence,
I'((0,11)) or I"'((t2,00)) must intersect §((71, 1)), which is a contradiction. m]

Corollary 2 For every (r,s) € R® x Z®, s € Z, the set Lfi U {co} does not contain a
3-star, i.e. a set homeomorphic to {te27#/3 . ¢ ¢ [0,1],6 € {0,1,2}}.
Proof Suppose Lf;'£ U {oo} contains a 3-star S. Let z be “the centre” and l,b,
“the arms” of S, i.e. [}, 5 are simple arcs in S such that LUbUL = S and

hNhbNlz ={z}.Ifz = oo, then [1, > contain, respectively, continua X, Y satisfying the -

conditions of Lemma 9, which gives a contradiction. Suppose z # co. Then, diminish-
ing S we can assume co ¢ S. Let 21,22,23 # z be the endpoints of /1, 15, I3 respectively.
By Lemmas 1 and 2 and (7), there exists k > 0, such that for j = 1,2,3 we have
Re(F/"(z/-))/ Re(Fk(z)) > c3 or Re(F/"(z))/ Re(F"'(zj)) > c3, where c3 is the constant
from Lemma 9. Note that F¥ is defined and univalent on some neighbourhood of L.

Hence, F"'(lj) are simple arcs in Lﬁi with exactly one common point F¥(z). MOI‘GOVEI_',
there exists j1,/> € {1,2,3}, j; # J2, such that

Re(F¥(z;,)) Re(F(z;,))

Re(F¥(2))  Re(F¥(z)) s
Re(F¥(z)) * Re(Fk(z)) 1'

5 >
Re(F*(z,))" Re(Fk(z;,)) 77

This clearly contradicts Lemma 9. n]
Lemma 10 Forevery (r,s) € R® x Z®, s € Z, the set L:ﬁx U {oo} is locally connected.
Proof Suppose Lf{ U {oo} is not locally connected. Since L.';'.X U {o0} is compact, for

every ¢ > 0 it admits a finite cover i/ composed of discs of diameters ¢ in the spherical
@ Springer
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metric. Denote by Dy(z) (resp. D,(z)) the open (resp. closed) disc in the spherical
metric centred at z € C of radius o. Then the family

£ ={Z: Zis a component of (Lg; U {oo}) N Do (z)
such that D¢ (z) € U and Z N D, (z) #= 0}

is a cover of L§§ U {oo} by continua of diameters not greater than 2¢. By the Sierpiriski
Theorem (see Sect. 2), there exists an arbitrarily small ¢ > 0 such that 2 is infinite.
Since U is finite, th¢re exists z € C and an infinite sequence of disjoint components Z,,,
Ae=11:2, 75 of. (L§§U{oo})ﬂﬁz.c(z).such that Z,ND, (z) # . We can assume oo ¢ Z,.
Note that Li—g U {oco} is not contained in D, (z), if ¢ is small enough, so by connectivity,
Z, intersects the boundaries of D, (z) and Dse(z). Hence, taking a subsequence, we
can assume that there exist points u,, € ZyN0De(z) and wy, € Z, N 3dDa.(z), such that
u, — u, w, — w for some u,w e C. Note that Z, are disjoint continua in L;-'S. If one
of the points i, w is equal to co, then we clearly have contradiction with Lemma 9.
Suppose u,w € C. Since u # w, by Lemmas 1 and 2 and (7), there exists k > 0, such
that Re(Fk(11)) > c3 Re(F¥(w)) or Re(F¥(w)) > c3 Re(F"'(u)) for the constant c3 from
Lemma 9. Since F¥ is defined and univalent on some neighbourhood of L, the sets

Fk(Z,) for sufficiently large n are disjoint continua in L§§ fulfilling the conditions from
Lemma 9, which gives a contradiction. O

Now we prove Theorem C. Take r=(ro,ry,...) € R®, s = (50,51,...) € Z° such
that Ty is non-empty and consider L, for s € 7. By Lemma 10, L§; U {oo} is locally
connected, so by the Mazurkiewicz-Moore Theorem (see Sect. 2). we can connect
V5, to oo by a simple arc n C Li; U {o0}. We will show that L§; U {00} = 5. Suppose
otherwise and take z € (Lf§ U {oo}) \ n. Again by the Mazurkiewicz-Moore Theorem.
we can connect z to vi{i by a simple arc

€ :[0,1] = LU fool;
such that £(0) = z, £(1) = v§;. Let
to =inf{r € [0,1] : £(¢) € n}.

If &(rp) # vﬁg.oo, then &£([0,7]) U n is a 3-star, which contradicts Corollary 2. If
&(1p) = oo, then ([0, %]) and 5 contain, respectively, disjoint continua X, Y fulfilling
the conditions from Lemma 9, which again gives a contradiction. Therefore, we can
assume & (f9) = vy;, whichmeans fp = Land & N7y = {v4]. By Lemmas 1 and 2 and (7),
there exists k > O_, such that £

Je Ko ]
Re(Fk(:)) > max(cy,c3) Re (V” o ) or Re (V" ‘0 ) > max(cl,C3)Re(FA(z))

ak(ss) ak(ss)

for the constants ¢y, c3 from Corollary 1 and Lemma 9, respectively. Moreover, FX(&)

3 y 5 K,
and F¥(n \ {co}) U {0} are simple arcs in L:,\.:';;) U {oo}, such that

&N P\ (oo Ufooh = 72 1.

ak(ss)

~ o /\v 5 . , . .
If Re(F¥(2)) > c3 Re(":A:i;))~ then F¥(¢) and Fk@y \ {oo}) U {00} contain, respectively,
continua X, Y fulfilling the conditions of Lemma 9, which gives a contradiction. On

the other hand, Re(F"'(vﬁE)) > ¢y Re(F¥(z)) contradicts Corollary 1.
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In this way we have showed that L;—fﬁ U {oo} = n, which implies that L_’;.; is a curve
homeomorphic to [0, c0), starting from v§£ and tending to co. Analogously, Té is a
curve homeomorphic to [0, co), starting from g_i'-' and tending to oo.

To complete the proof of Theorem C, it remains to use (11), and to show that

f'(z) > coasn — oo

forevery z € Ty \ {¢f). To doit, it is sufficient to prove that for every z € L \ {v5} we
have Re(F"(z)) — oo0. By Lemmas 1 and 2 and (7), there exists a sequence M, > 0
such that M,, — oo and

Re(F'(z)) > M, Re (V””(D ) or Re (I’GH(D ) > M, Re(F"(z))

a’l(ss) all(ss)
S . " a’(r) a’(r)
for every n > 0. Since F(z) € L;u (s the case Re(v?, ©
sible for sufficiently large  due to Corollary 1. Hence,

) > M, Re(F"(z)) is impos-

Re(F"(z)) > M, Re (1’0”15) ) > M, 8

o't(ss)

for sufficiently large 1, so Re(F"(z)) — oo.
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