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THE DOMAINS OF NORMALITY
OF AN ENTIRE FUNCTION

I. N. BAKER

1. Introduction

If f is a rational or entire function of the complex variable z its natural
terates f, are defined by fi(z) = f(2), f,11() = f(f.2), n = 1,9, ...
he theory developed by Fatou [7,8] and Julia [11] deals with the set

= €(f) of points of the complex plane in whose neighbourhood {f,(z) }
s a normal family. It is convenient to express many results in terms of the
omplement F(f) of €, ie. the set of non-normality. We shall assume
hroughout that f isnot a rational function of order 0 or 1. Then

= §(f) has the following properties (see [7] and [8]).

L §(f) is a non-empty perfect set.

IL. F(f) and C(f) are completely invariant under the mapping z — f(z) .

In general a set S is called completely invariant under z— f(z) if

«€8 implies that f(«) €S and that B eS for every solution g of
(B) = .

The components @; of €(f) are maximal domains of normality for
fo} . The theory considers the various ways in which may separate
hese components and the limit functions which arise from those
ubsequences of {f,} which are locally uniformly convergent in G,;.

It may happen for rational f that & is totally disconnected
a “discontinuum’) so that € consists of a single domain. This occurs for

= 2 —p, where p>2 is a constant, in which case {(f) is
bounded, totally disconnected subset of the real axis (Myrberg [12]). At
he end of [8] Fatou raises the question as to whether there areranscen-
dental entire functions f for which (f) is totally disconnected.
- Concerning the set ©(f) H. Tépfer [15] has shown:

II. If f is transcendental and entire and if ©(f) has an unbounded
omponent G, then every other component of G(f) is simply-commected.
[ in addition @ s mulliply connected, then @ is completely invariant
nder the mapping z — f(z) .
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In this note we shall prove the

Theorem 1. If f is transcendenial and entire, then C(f) has no
unbounded multvply-connected component.

Since the total discontinuity of §(f) implies that €(f) is an unbounded
connected domain Fatou’s question is answered by the

Corollary. For transcendental entire f the set F(f) must contain
non-degenerate continua.

Various authors e.g. Brolin [6], Garber [9], Oba and Pitcher [13] have
investigated the metric properties of &(f), giving estimates of Hausdorff
dimensions, capacities, and so on. The only significant lower estimate in the
transcendental entire case was given in [9], where it was shown that the
logarithmic capacity of & is strictly positive. Our corollary strengthens
this result considerably. We remark also that the set & can even fill out
the whole plane in some cases ([4]).

Returning to the components of E(f) in the theorem: it is indeed
possible that multiply-connected components exist for transcendental
entire f, as shown by an example in [1]. In this case the multiply-connected
domains are of course bounded.

If f is a transcendental entire function, any completely invariant com-
ponent of E(f) is unbounded and hence, by our theorem, simply-con-
nected. It was shown in [3] that there can be at most one such completely
invariant component. P. Bhattacharyya [5] deduced from this that the
number of components of E(f) is either 1 or infinite. He also showed that
for g(z) = e+* —e*, a <0, E(g) consists of a single (completely in-
variant) component. It is not clear whether the existence of a completely
invariant component of € precludes the existence of other components or
not. We can prove

Theorem 2. If f is a transcendental entire function such that E(f)
has a completely invariant component G, then in every other component of
C(f) f is univalent. ‘

Corollary. A function f which satisfies the conditions of Theorem 2
can have at most one attractive fixpoint.

An attractive fixpoint « is a point for which f(x) = «, [f(e)| <1.
Two different attractive fixpoints belong to different components of &(f)
and (c.f. [7,8]) f is not univalent in these components. The corollary
follows. The example g(z) = e+ — ¢¢, a < 0, shows that one attractive
fixpoint is possible.
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2. Lemmas needed in the Proofs

Additional results about §(f) are proved in [7] for rational f and in
[8] for entire f, except where mentioned below.

IV. For any integer n >1 we have F(f,) = F(f).

V. For every o eF(f) and for every complex B (excluding at most two
exceptional B-values) there exist a sequence of positive integers. {m,} and
a sequence of complex numbers { o, } such that

Jal) = B, lime, = a.

A fixpoint « of order » of f is a solution of f,(x) = «; « is said to
have exact order n if f,(«) # « for 1 <k < n and in this case the multi-
plier of « is the number f,(«). If |fi(a)] > 1 the fixpoint « is called
repulsive and belongs to {(f). Moreover one has

VI. F(f) s the derivative of the set of fixpoints of all orders or f. Itis
even true that the repulsive fixpoints are dense in § (shown in [2] for entire f).

In addition we need

Lemma 1. (Polya[l4]). Let e, g and h be entire functions satisfying

g ()

(2)
There is a constant ¢ > 0 (in fact ¢ = 1/8) independent of e, g, h such that

3) Me,r) > ]V[(g,cM(h,T/z))’

" where M(e,r) denotes max |e(z)] .

lz]=7

Lemma 2. (Schottky’s theorem, see e.g. [10]). There exists an

absolute constant C such that for every function f(z) which is regular and
. satisfies flz) # 0,1 in |z <1 we have for

i 1
M(f,r) = max |[f(z)] < expl:: (I + r)log max (1, |f(0)]) + 2 07'):] .

|8]|=7

3. Proof of Theorem 1

Suppose that f is a transcendental entire function and that @ is an
unbounded, multiply connected component of €(f). Property VI shows
that there are in $ two repulsive fixpoints z,, 2z, of order say p and ¢
respectively, which may be taken to be different from the exceptional values
In V. Both are repulsive fixpoints of . [y and IV shows we can replace
[,y by f and assume z,, z, are repulsive fixpoints of f. Replacing f(z)
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by (f@ +b2z) —a)/b, a, b constant, merely subjects ¥ and € to
a linear transformation, so we may without loss of generality assume that
2, =0 and z, = 1 are first order repulsive fixpoints of f,ie. 0,1,
and that 0 is not an exceptional point in the sense of V.

Now if any of the locally-convergent subsequences of {f,} in G has
a finite and hence regular limit it follows that the convergence remains
uniform in the interior of any Jordan curve in &, so that G is not multiply-
connected. Thus f,(z) must converge locally uniformly to co in @.

The multiply-connected domain @ must contain a Jordan curve vy
in whose interior lie points of §, and so by V-points of the form f_,(0)
for some arbitrarily large » . Thus for sufficiently large n the set y; = £,(y)
is (by III) a curve in G which winds round 0 at least once and whose
minimum distance r from 0 is as large as we please. We choose n so
large that

(4) (1/8) M(f,t/4) > ¢ for t>r.

We next choose an m such that y, = f,(y) is a curve in G which
winds round 0 and which has a minimum distance s from 0 satisfying

(5) s > M(fy,2R),

where R is the greatest distance of y, from 0. Join y, to v, by a path
ys In G and denote by K the union of y;, y, and y, .

Denote by 46 the distance of the compact set K from ¢ . Then
0 > 0. There is a finite collection C' of say N discs of radius 6 whose
centres lie on K and whose union covers K . Since K is connected, there
is for any pair ¢, ¢, in K a chainof p <N points ¢, = w;, w, ...,
w, = i, in K such that w,, w,;; liein a common disc of C. Thus
w41 — w| < 294.

Suppose that in a (3 d)-neighbourhood L of K the function ¢ is
regular, satisfies |g(z)| > 1 and omits the values 0 and 1. The disc
|lw —w;| < 36 liesin L and contains w,,,. Applying Lemma 2 to the
function g(w; + 3 dz) in the unit disc we see that there is an absolute
constant 4 > 1 such that

lg9(w;+1)] < 4 |g(w,)|5.

Hence for ¢, ¢, as above

(6) lg(ta)l < B lg(ty)|¢.

where the constants € = 5¥, B = A""5+-+5" 46 independent of ¢
or of the choice of ¢, ¢ in K.

Since f,— oo locally uniformly in &, while f,(@) C G so
() # 0,1€F for ze@, we see that for all sufficiently large n the
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“ 4o | functions f, satisfy [fu®]>1, fi(z) #0,1 in L. Thus by (6) if ¢,
/tha,t is any point of y, and if t, is the point of y, at which |f,| is a maximum,
e, we have
h (7) Ifate)l < BIft)IS  n >mn,.
L has
mains However by the choice of s in (5)
wply- = )] > M(f,, s)
S > M(f,, M(f, 2 R)
f—4(0) = M(fo+s,2R)
=i = M(f, (18) M(f,sy, B))
w
n SO by Lemma 1. But on y, we have Ju(2) = 0 and so M(f,+1, R) — o0 as
n—>0c0. Thus the last expression above is, for all sufficiently large = ,
greater than
e B (M(furrs B)° > B(M(f,, (1/8) M(f, R[2)))C
which
'tisfy-ing = B (M(fn ’ R))C
= B If n(tl)lc
path by (4). Thus we have a contradiction with (7). The theorem is proved.
ya
Then
a’ ok oese Proof of Theorem 2
ied, there )
Wy 5eeer Suppose the transcendental entire function / has a completely in-
LO, '}ims variant component @ of @(f). Then @ is necessarily unbounded and

simply connected. All other components of € are simply connected.
jon g i Suppose that there is a component H # G of @(f) in which f is not
The disc § Wivalent. Now by IT f(H) lies in some component K == G of E(f).
5 9 o e Take a value &k = f(p) = flg) where peH, gqeH, p=+#gq,
, absolute | f'(®) = 0, /(@) # 0. Thus there are branches z — P(w) and z = Q(w)
§ ofthe inverse f~1 of w = f(z) which are regular at w = & € K and satisfy

p=Pk), q=Pk).

By Gross’ star theorem we may continue P(w), Qw) regularly to
© along almost any ray starting at %, in particular along some ray L
which meets G . Denote by y the segment of L from % to a certain
point ge@. Then P(y), Q(y) are disjoint curves joining p e H to
wdent of gf P =P(9) €@ and geH to ¢ = Q(g) € G, respectively.
Join p to ¢ by a simple arc B in H, and p' to ¢ by a simple arc
$)C @ sof Fe@. Let p be the last intersection of B with P(y), g the first inter-
arge n the} Section with Q(y). Let f be the subarc of § which joins ? to g. Simi-
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larly define p’ as the last intersection of f’ with P(y), g’ the first inter-
section with @(y) and B’ as the subarc p'q’ of B . Denote by 7 the
subarc pp’ of P(y), by x the subarc qg¢’ of Q(y). Then 7 §'()~1(f')2
is a Jordan curve (' whose interior D maps under z — f(z) into a bounded
region f(D) whose boundary is contained in f(C) C f(8) U f(B') U y .

The f(B) and f(B’) are closed bounded and disjoint curves. The un-
bounded component B/ of their complement contains (f). Thus M
meets y since F(f) does. Now f(n) is a segment of y which joins f(B)
to f(B’) . If t is the last point of interesction of y with f(8) and # the
first intersection with f(8'), then the segment #’ of y is a crosscut of
M whose ends belong to different components of the frontier. Thus ¢’
does not disconnect 3/ . Since #’ belongs to f(n) every point of # is
a boundary value of f(D). Thus f(D) must contain the whole of M — #’,
i.e. an unbounded set. This contradicts the boundedness of D and the
result is proved.
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is a Jordan curve C whose interior D maps under z — f(z) into a bounded
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The f(8) and f(8') are closed bounded and disjoint curves. The un-
bounded component M of their complement contains F( f). Thus M
meets y since F(f) does. Now f(z) is a segment of y which joins f(8)
to f(8") . If ¢ is the last point of interesction of y with f(f) and &' the
first intersection with f(8'), then the segment #’ of y is a crosscut of
M whose ends belong to different components of the frontier. Thus ¢’
does not disconnect M . Since #’ belongs to f(m) every point of &' is
a boundary value of f(D) . Thus f(D) must contain the whole of M — #',
ie. an unbounded set. This contradicts the boundedness of D and the
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