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Abstract. Given a simple n-gon P in the plane, normalized to contain the unit
disk, we define a map from P to the unit circle so that (1) the map extends to be
8-quasiconformal on the interior, (2) it contracts arclength on the boundary and (3)
the images of all n vertices can be computed in time O(n). Thus we obtain a fast
QC-approximation to the Riemann map with constant independent of the domain.
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1. Introduction

The Schwarz-Christoffel formula gives the general form of a conformal map from

the unit disk, D, to a polygonal simply connected region, Ω, as

f(z) = A+ C

∫ z n
∏

k=1

(1 −
w

zk

)αk−1dw,

where απ = {α1π, . . . , αnπ} are the interior angles at the vertices v = {v1, . . . , vn},

and z = {z1, . . . , zn} = f−1(v) are the conformal preimages of the vertices (also

known as the Schwartz-Christoffel parameters). This formula was published by

Christoffel in 1867 and Schwarz in 1969, but even today computing the correct pa-

rameters z for a given polygon can be rather challenging (see [26] for some history and

a survey of current methods). We will show, however, that there is a simple formula

that gives approximations to the parameters with estimates that are independent of

the particular polygon being considered.

We measure the distance between n-tuples, z,w ∈ D, using the metric

dQC(w, z) = inf{logK : ∃ K-quasiconformal h : D → D such that h(z) = w.}

Note that two n-tuples are distance zero apart if they are Möbius images of each

other; this is natural, since we only expect to know the prevertices up to a Möbius

transformation.

Theorem 1. If Ω is simply connected plane domain bounded by a closed polygon P

with n vertices, then we can compute n points w = {w1, . . . , wn} ⊂ T so that

(1) dQC(w, z) < log 8 where z denotes the conformal prevertices of P ,

(2) All n points in w can be computed in O(n) steps.

(3) If D ⊂ Ω, then |wk − wk+1| ≤ |vk − vk+1| for k = 1, . . . n (mod n).

This result lies in the intersection of geometric function theory, computational

geometry and the theory of hyperbolic 3-manifolds. As we shall explain below, the

points w = ι(v) will be the images of the vertices of P under a map ι : ∂Ω → ∂D.

The definition of this map and the fact that property (1) holds is based on a result

of Dennis Sullivan concerning the convex hull of a hyperbolic 3-manifold. The fact w

can be computed in linear time is based on re-interpreting the hyperbolic geometry in

terms of a planar object known as the medial axis, which can be computed in linear
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time by a result of Chin, Snoeyink and Wang. The contracting property follows

from simply properties of Möbius transformations. Note that conformal maps do

not have this property in general, so condition (3) actually prevents our particular

approximation from being too close to a conformal map in some cases.

The medial axis of Ω consists of the centers of all disks in Ω whose boundary hits

∂Ω in two or more points. See Figure 1. It is a one dimensional object that is used in

computer science to encode the shape of 2-dimensional objects and was introduced

by Blum in 1967 [8] (the same set, with a different name, also appears in a 1945 paper

of Erdös [19]). There is a large literature describing its mathematical properties and

numerous applications including [12], [20], [21], [23], [27], [28]. It is a theorem of Chin,

Snoeyink and Wang [10], [11] that the medial axis of polygon with n vertices can be

computed in O(n) steps. This depends on a deep and difficult result of Chazelle [9]

that a polygon can be triangulated in linear time. However, special cases, such as

convex polygons, are easier (see [1]) and O(n log n) methods have been implemented

for general polygons.

Figure 1. Examples of medial axes of polygons

How does the medial axis of ∂Ω give a map from ∂Ω to the boundary of a disk? If

Ω is a finite union of disks, then its medial axis is a finite tree; vertices correspond to

disks that hit the boundary in three or more points. We can rewrite Ω as the union

of disks {Dk} corresponding to vertices of this tree. Choose one of these, D0, as the

root. Then each non-root disk has a parent disk (the one closer to the root) and if we

remove the parent from the disk, we are left with a crescent. Thus Ω may be written

as the union of the root disk and a finite union of crescents. See Figure 2.

Every crescent has two natural foliations by circular arcs: one by arcs passing

through the two vertices (we call this the medial axis foliation) and the other by arcs
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Figure 2. A finite union of disks written a union of a root disk
D0 and several crescents. Each crescent is foliated by circular arcs
orthogonal to the boundary and following the foliation gives a map
from ∂Ω to ∂D0.

perpendicular to the first (the medial axis flow). Following leaves of the medial axis

flow gives an identification between the two boundary arcs of the crescent (this is

the same as applying an elliptic Möbius transformation which fixes each vertex and

rotates one boundary arc to the other). Since Ω is written as a union of a root disk

and a finite union of crescents, we can compose the maps on each crescent and get a

map from ∂Ω to ∂D0. We call this the medial axis flow from ∂Ω to ∂D0. See Figure

If Ω is bounded by an n-gon, then the medial axis is still a finite tree and has O(n)

vertices and edges. The edges correspond to 1 parameter families of disks which meet

∂Ω at exactly two points and come in three types:

(1) a line segment that is equidistant from two vertices

(2) a line segment that is equidistant from two edges

(3) a parabolic arc that is equidistant from a edge and a vertex.

For each edge of the medial axis, consider the union of medial axis disks centered

on that edge, minus the disk corresponding to the endpoint closer to the root. We

call these subdomains “generalized crescents” (in case (1) it is an actual crescent).

Together with the root disk, the generalized crescents decompose Ω into a finite

number of pieces and on each piece there is a foliation by boundary arcs of medial
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axis disks and a corresponding orthogonal flow; the medial axis flow for that piece.

Figure 3 shows this foliation and flow for different types of generalized crescents,

Figure 4 shows the decomposition, foliation and flow for a polygon and Figure 5

shows just the foliation and flow for two more examples.

Figure 3. The medial axis foliation and flow corresponding to dif-
ferent types of medial axis edges. The white disk in each picture cor-
responds to the endpoint closer to the root.

To visualize where the vertices of the polygon are mapped we simply follow the

medial axis flow from ∂Ω to ∂D0. However, to actually compute these images, we

start by defining a map from each medial axis vertex disk to its parent.

Suppose e is an edge of the medial axis, D,D∗ are the disks corresponding to

its endpoints and D∗ is the parent of D (i.e., is closer to the root). Let Ωe be the

corresponding generalized crescent. The medial axis flow in Ωe defines a map from

∂D∩∂Ωe to ∂D∗∩∂Ωe. For type 1 edges this is just an elliptic Möbius transformation

(with fixed points ∂D ∩ ∂D∗), and we shall see that it is a Möbius transformation

τD : D → D∗ in all cases. Moreover, we shall give explicit formulas τD in terms

of D,D∗ and the type of edge. The medial axis flow map from D to the root,

ιD : D → D0 is the composition of the maps τDk
, where {Dk} is a path from D to

D0. This map can easily be computed in linear time by induction and the formula

ιD = ιD∗ ◦ τD,
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Figure 4. This shows the medial axis flow for the polygon illustrated
on the right of Figure 1. The top picture shows the a root disk and
the generalized crescents, labeled by their type. The bottom figure
shows the medial axis flow. The landing points of the vertices are the
parameter guesses.

if the disks are arranged in a list starting with the root (for which ιD0
is the identity

map) and so that every disk comes later that its parent on the list. Since each map

is a Möbius transformation, we only have to record a 2 × 2 matrix for each disk and

the composition above corresponds to matrix multiplication.

For each concave vertex v of the polygon (i.e., those with interior angle ≤ π), we

will choose a medial axis disk D with v ∈ ∂D and define ι(v) = ιD(v). If v is a

convex vertex then it is the endpoint of a medial axis edge whose other endpoint

corresponds to a disk D. We will map v to the closest point v∗ of ∂D and then define

ι(v) = ιD(v∗). This defines ι at every vertex and gives the parameter guesses w used

in Theorem 1.
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Figure 5. More examples of the medial axis foliation and flow.

I was originally motivated to look at this problem by considering the CRDT algo-

rithm (Cross Ratios and Delaunay Triangulations) of Driscoll and Vavasis for com-

puting conformal maps. CRDT is an iterative scheme for computing the Schwarz-

Christoffel parameters which works well in practice, but is not proven to always

converge. In [5], I show that the initial guess of CRDT also satisfies condition (1) of

Theorem 1, although the method is not O(n), as here. In [6], I extend the results

of this paper to give a more complicated algorithm that will compute the Schwarz-

Christoffel parameters to within ε in the dQC metric in time O(n| log ε log log ε|).

The rest of the paper is structured as follows:

Section 2: We give the definition of the ι map and describe its connection to

hyperbolic 3-dimensional geometry. We deduce part (1) of Theorem 1

Section 3: We prove the length decreasing property of ι.

Section 4: We give a formula for ι on each type of generalized crescent.

Section 5: We give explicit bounds for the dQC distance of our guess to the

true parameters in some exmaples and make some concluding remarks.
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2. The Sullivan-Epstein-Marden theorem

The hyperbolic metric on D is given by dρD = 2|dz|/(1 − |z|2). The hyperbolic

metric on the upper half-space R
3
+ is dρR

3
+

= |dz|/dist(z,R2). In both cases, geodesics

are circles orthogonal to the boundary, and orientation preserving isometries are

exactly the Möbius transformations.

Theorem 1 claims that we can quickly produce guesses for the Schwarz-Christoffel

parameters that are only a bounded distortion of the true parameters. What is a

good way to measure the amount of this distortion? There is no canonical way to

choose the parameters; given one n-tuple z ∈ T, any image of z under a Möbius

transformation of the disk (i.e., a linear fractional transformation) is an equally good

set of parameters for the same polygon, since these transformations are exactly the

conformal selfmaps of the disk. Thus we measure the distance between two n-tuples

by seeking the “most conformal” map of the disk to itself whose boundary extension

sends z to w. By our previous remark, this is the same as seeking the “most isometric”

map with respect to the hyperbolic metric.

One possibility is to consider biLipschitz (BL) maps with respect to the hyperbolic

metric, i.e., maps f : D → D that satisfy

1

A
ρ(x, y) ≤ ρ(f(x), f(y)) ≤ Aρ(x, y).

A strictly larger class of maps are the quasi-isometries (QI) which are “biLipschitz

at large scales”, i.e., satisfy

1

B
ρ(x, y) − C ≤ ρ(f(x), f(y)) ≤ Bρ(x, y) + C,

for some constants B,C. A homeomorphism f : D → D is quasiconformal (QC) if

for every x

lim sup
r→0

maxy:|x−y|=r |f(x) − f(y)|

miny:|x−y|=r |f(x) − f(y)|
≤ K.

Clearly, this class contains the biLipschitz maps and (less clearly) is contained in the

quasi-isometries. See [16].

A homeomorphism of the unit circle to itself is called quasisymmetric (QS) if it

maps adjacent arcs of equal length to arcs of comparable length, i.e.,

1

M
≤

|f(x) − f(y)|

|f(y) − f(z)|
≤M,
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whenever x, y, z ∈ T and |x − y| = |y − z|. Each of the three classes (BL, QC, QI)

have well defined boundary extensions which are QS and every QS homeomorphism

of the circle can be extended to a BL mapping of the disk (which is automatically

also QC and QI). Therefore, when we want to measure how close an n-tuple w ∈ T

is to being a conformal image of another n-tuple z ∈ T we can try to minimize the

constant among maps sending z to w in any of these classes. Theorem 1 is stated

in terms of the quasiconformal constant K, since the the best explicit estimates are

available in this case.

If f is C1, then we can define the partial derivatives fz = 1

2
(fx − ify) and fz̄ =

1

2i
)fx + ify) and the Beltrami coeficient µf = fz̄/fz. Then f is K-quasiconformal if

and only if |µf | is bounded above by (K − 1)/(K + 1). See [2]. We will use this in

the last section in order to compute the QC constant for some piecewise affine maps

between polygons.

Given a closed set E ⊂ R
2 we let C(E) ⊂ H

3 be the hyperbolic convex hull of E.

This is the smallest hyperbolically convex set in R
3
+ which contains all the infinite

hyperbolic geodesics (i.e., circles orthogonal to R
2) with both endpoints in E. The

complement of C(E) is the union of all hyperbolic half-spaces in R
3
+ which do not

intersect the set of geodesics; i.e., it is the union of all hemispheres centered on R
2

whose base disks on R
2 miss E. We are most interested in the case when Ω is a simply

connected plane domain and E = Ωc is its complement. Let S = SΩ be the boundary

component of C(Ωc) which separates Ω from C(Ωc). This is called the “dome” of Ω.

S is the boundary of the union of all hemispheres centered on R
2 whose bases are

disks contained in Ω. In fact, we do not have to consider all subdisks of Ω. It is not

hard to show that every point on the dome of Ω is on a unique hemisphere whose

base is a medial axis disk of Ω (e.g., see Lemma 3 of [6]). Thus each point on the

dome corresponds to some point of the medial axis. See Figure 6.

Let ρS denote the intrinsic path metric on S (using hyperbolic arclength). The

most important facts about the dome of Ω are the following two theorems.

Theorem 2 (Thurston). There is an isometry ι from (S, ρS) to (D, ρ).

Theorem 3 (Sullivan-Epstein-Marden). Suppose Ω is a hyperbolic simply connected

domain (other than the complement of a ray) and suppose f : D → Ω is conformal.

Let S denote the dome of Ω. There is a map σ : Ω → S which extends continuously
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Figure 6. On the left is a polygon and its medial axis. The dashed
circles correspond to vertices of the medial axis. On the right is the
dome of the polygon, with sections shaded according to the part of the
medial axis they correspond to.

to the identity on ∂Ω and so that ϕ = ι ◦σ ◦ f : D → Ω → S → D is a K0 biLipschitz

with respect to the hyperbolic metric and K0 is independent of Ω. Consequently, there

is a universal K <∞ so that ϕ is K-quasiconformal.

The map ι restricted to S ∩ R
2 = ∂Ω is the map used in Theorem 1, i.e., we take

w = ι(v) as out guess for the conformal prevertices. The true prevertices are given

by z = f−1(v) and hence ϕ(z) = w. Thus Theorem 3 implies part (1) of Theorem 1

with constant K.

Theorem 2 appears in Thurston’s notes [25], with more detailed proofs in the

papers of Epstein-Marden [13] (updated and reprinted in [14]) and Rourke [22]. The

second was apparently known to Thurston and appeared in Sullivan’s paper [24] in the

case when Ω is invariant under a convex co-compact group of Möbius transformations.

Epstein and Marden [13] proved the more general statement quoted above. Alternate

proofs are given in [3], [7], [15]. The complement of a ray is only exceptional because

in that case S needs to be interpreted as a two-sided “folded” surface. This is carefully

explained in [17]. Epstein and Marden’s proof of Theorem 3 in [13] gives biLipschitz

constant K0 ≈ 88.2 and quasiconformal constant K ≈ 82.6 and they conjectured

K0 = K = 2 is correct. In [7] it is proven that one can take K = 7.82. This gives

the “8” in Theorem 1. More recently Epstein and Markovic [18] have shown that

K > 2.1, by showing the K is at least this large when Ω is the complement of a

certain logarithmic spiral. This bound is for the particular map given by Theorem
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2. Possibly a different definition would lead to a map with a better quasiconformal

estimate. However, it is impossible to take K < 2 and still have (3) of Theorem 1,

as a slit disk shows. It is shown in [4] that K = 2 and (3) together imply the well

known Brennan conjecture.

When Ω is a finite union of disks, the dome S = SΩ and the map ι : S → D have

a particularly simple form. In this case, the surface S is a finite union of geodesic

faces. If two faces meet, they meet along infinite geodesic and so the faces form the

vertices of a tree. Each face lies on the dome of a disk which is a vertex of the medial

axis, and the tree structure of the faces agrees with the tree structure of the medial

axis.

It is easy to visualize the ι map for a finite union of disks. Start with the case of

two overlapping disks, as shown in Figure 7. The dome is the union of two geodesic

faces, each sitting on a hemisphere, and joined along an infinite hyperbolic geodesic.

There is a 1-parameter family of elliptic Möbius transformations which leave this

geodesic fixed and rotate around it. Using these maps, we can leave one face fixed

and rotate the other until it is “flush” with the first one, i.e, we map the dome to

a hemisphere by a map which is the identity on one face and a hyperbolic isometry

on the other. This map is therefore an isometry of the hyperbolic path metric on

the dome to the path metric on the hemisphere (which equals the usual hyperbolic

metric and is isometric to the hyperbolic disk). Note that points on the boundary

are moved by an elliptic transformation of the plane.

If Ω is a finite union of disks, then its dome is finitely bent. Choose a root face and

starting at the leaves of the tree of faces, rotate each face of the dome until it becomes

flush with its parent. This gives an isometry of the dome of Ω to the dome of a disk,

which is isometric to the hyperbolic disk, thus giving ι. The elliptic transformation

which rotates each face also acts on the plane and agrees with the medial axis flow

we described earlier. Thus for finite unions of disks, the medial axis flow gives the

same boundary map as Thurston’s ι map of the dome. This flow was illustrated in

Figure 2. The corresponding dome is shown in Figure 8.

Given a generalized crescent, Ωe, corresponding to an edge e of the medial axis

of a polygon, we can approximate it by a finite union of actual crescents by taking

a union of medial axis disks with centers along the edge e. See Figure 9. For the
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Figure 7. A dome consisting of two geodesic faces joined along an
infinite geodesic. By bending the dome along the geodesic we get a
one-parameter, isometric family of surfaces ending with a hemisphere,
which is obviously isometric to the hyperbolic disk. Underneath we
show the base domains in the plane. The crescent is being collapsed
by an elliptic Möbius transformation.

Figure 8. This is is the dome of a finite union of disks and its isomet-
ric image after all the faces have been rotated along bending geodesics
to become flush with one another. The crescent decomposition and
medial axis flow for this example were shown in Figure 2.

approximation, the flow map from the outer to inner boundary arcs is a composition

of Möbius transformations and hence is Möbius. Since a (non-degenerate) limit of

Möbius transformations is also Möbius, we see that the flow map for a generalized

crescent is also a Möbius transformation between the medial axis disks corresponding

to the endpoints of the medial axis edge e.
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Figure 9. Each generalized crescent can be approximated by a union
of actual crescents and the corresponding flow map is the limit of a
composition of elliptic Möbius transformations, hence is Möbius.

3. ι decreases length

First suppose that Ω is a finite union of disks (the general case will follow from

a limiting argument). We have defined ι as a composition of elliptic Möbius trans-

formations on each circular arc in ∂Ω. Each of these transformations is associated

to a crescent as described earlier. Note that the crescents that we use are always of

the form W = D2 \ D1 and that we are mapping the edge ∂W ∩ ∂D2 to the edge

∂W ∩ ∂D1. Thus we are in the case of the following lemma.

Lemma 4. Suppose Ω is a crescent which lies on one side of the line L passing

through its two vertices. Let γ1, γ2 be the circular arcs in ∂Ω with γ1 between γ2 and

L. If τ is the elliptic Möbius transformation fixing the two vertices and mapping γ2

to γ1 then |τ ′(z)| ≤ 1 on γ2.

Proof. To see this suppose τ(z) = (az + b)/(cz + d) where ad − bc = 1 (which we

can always assume by normalizing). Then a simple calculation shows |τ ′(z)| < 1

iff |1/c| < |z + d/c|. Note that −d/c = τ−1(∞). By normalizing by a Euclidean

similarity, we may assume the vertices are 1 and −1 and the crescent lies in the

upper half-plane. See Figure 10. Then −d/c is on the negative imaginary axis and

|τ ′(z)| < 1 outside a circle C centered at −d/c passing through −1 and 1 (since the

derivative of an elliptic transformation has modulus one at the two fixed points). Let

γ be the arc of this circle between 1 and −1 which lies in the upper half-plane. We

claim that γ2, the upper edge of our crescent, lies above γ.



A FAST MAPPING THEOREM FOR POLYGONS 13

θ ψ
ψ

ψ ψ

π−2ψ

π−θ

θ

>θ

−d/c

π/2

γ2
γ1

1−1
γ

Figure 10. The setup in Lemma 4. We prove that γ2 lies above γ
by showing that γ makes angle θ/2 with [−1, 1], but γ2 makes angle
> θ with the same segment.

Suppose the elliptic transformation is a rotation by θ around the points −1, 1.

Since γ2 and its image are both in the upper half-plane, θ < π. Therefore −d/c

lies on a circle which makes angle π − θ with the segment [−1, 1]. See Figure 10.

Hence the isosceles triangle with base [−1, 1] and vertex −d/c has two base angles of

ψ = (π− θ)/2 and the circle C makes angle π/2−ψ = θ/2 with [−1, 1]. Since γ1 lies

in H, γ2 makes angle of at least θ with [−1, 1] and hence lies above C. �

This implies that for finite unions of disks, the map ι : ∂Ω → ∂D0 can be chosen to

have derivative< 1 on ∂Ω (except possibly at the vertices). By taking approximations

and passing to the limit we obtain:

Lemma 5. If Ω is simply connected polygonal domain and D is a medial axis disk

of Ω, the map ι : ∂Ω → ∂D does not increase the length of any boundary arc.

4. Formulas for ι

As noted in the introduction, to compute ι for a polygon, we only have to compute

the Möbius transformation for each generalized crescent. Let D denote the disks that

correspond to vertices of the medial axis and assume we have chosen a root disk, D0.
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Below, we will describe how to map a disk D1 ∈ D to its parent D2 ∈ D. The map

from D1 to the root disk can then be computed by composing with the corresponding

map for the parent (which we may assume has already been computed). To map the

vertices of ∂Ω to ∂D0, map there are two cases. For concave vertices v (interior angle

≥ π) choose a medial axis vertex disk D so that v ∈ ∂D and apply the map ιD to

v. If v lies on the boundary of more than one such disk, each of the corresponding

maps must agree at v, so it does not matter which disk we choose. Each convex

vertex (interior angle < π) it the endpoint of a type 2 edge of the medial axis. The

other endpoint is a vertex of the medial axis and we map v onto the boundary of

the corresponding disk D by simply mapping it to the closest point of ∂D and then

applying ιD to map the point to ∂D0.

We now consider each type of medial axis edge.

Case 1 (point-point bisector): If the two disks are D1 = D(z1, r1) and D2 =

D(z2, r2) with D2 being the parent, then the desired map is just the unique elliptic

Möbius transformation which fixes the two points, a, b of ∂D1∩∂D2 and maps ∂D1\D2

onto ∂D2 ∩D1 by an elliptic rotation τ of angle α, the interior angle of the crescent.

If r = |z1 − z2|, law of cosines implies

cosα = β =
r2 − r2

1 − r2
2

−2r1r2
,

and hence eiα = β + i
√

1 − β2. Similarly,

a = z2 +
r2
r
eiθ(z1 − z2),(1)

b = z2 +
r2
r
e−iθ(z1 − z2),(2)

where cos θ = (r2
1−r

2−r2
2)/(−2rr2). Thus τ is given by the formula τ(z) = σ−1◦Rα◦σ,

where Rα(z) = eiαz and σ(z) = (z − b)/(z − a) sends a to ∞ and b to zero.

Case 2a (edge-edge bisector, parallel case): Consider Figure 11. Suppose

the two endpoint disks have centers z1, z2 and common radius r1 = r2. We normalize

so that these disks become D1 = D(0, 1) and D2 = D(A, 1) using the map

η(z) = (z − z1) ·
|z2 − z1|

(z2 − z1)r1
.

Note that on the dome of Ω, the points above the centers of the disks D1, D2 are

exactly distance A apart (the straight line between them is a geodesic on the dome
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with this length). Since ι is an isometry from the dome to the disk, it will map these

points to points which are exactly hyperbolic distance A apart in the disk.

i

−i

2

A

A0
a

b

c

Figure 11. Case 2a: between parallel lines

With the points labeled as shown, i and −i will map to a and b respectively and 0

will map to a point c which is hyperbolic distance A from the center of D2. Thus the

desired map is τ(z) = σ(z) + A where σ is the unique Möbius transformation which

fixes 1 and −1 and maps 0 to the point −x on the negative real axis at hyperbolic

distance A from 0. Since the hyperbolic metric on the disk is given by

dρ =
2|dz|

1 − |z|2
,

the point w is the solution of

A =

∫ w

0

2

1 − r2
dr = log

1 + w

1 − w
,

which is

w =
1 − e−A

1 + e−A
.(3)

Thus

σ(z) =
z − w

1 − wz
,

and this determines τ . Thus η−1 ◦ τ ◦ η is the desired map.

If we consider the case when Ω = {x+ iy : −1 < y < 1} is an infinite strip, we can

compute the hyperbolic metric exactly by mapping the strip to the right half-plane

by the exponential map z → exp(πz/2). In the half-plane the hyperbolic distance

between two points x < y on the real axis is log(y/x), so we see that the distance

between 0 and A in the strip is (π/2)A. However, the points on the dome which

project to 0 and A are hyperbolic distance A apart. Thus we should get an even
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better approximation to the Riemann map map by replacing A by (π/2)A in the

definition above. We will refer to the corresponding map as the “modified ι map”.

Case 2b (edge-edge bisector, non-parallel case): The situation is shown

in Figure 12. We will assume D1 is smaller than D2; the opposite case is handled

similarly. Suppose the endpoint disks are D(z1, r1) and D(z2, r2) with r1 < r2 and

normalize by a linear map η so that they become D1 = D(1, B) and D2 = D(y, yB)

for some B > 0, y > 1. This can be done with the map

s = r1|z1 − z2|/(r2 − r1)

z3 = z1 + s(z1 − z2)/|z2 − z1|

η(z) = (z − z3)/(z1 − z3).

Thus B = r1/|z1 − z3|, y = |(z2 − z3)/(z1 − z3)|. The points labeled a, b in Figure 12

are mapped to c, d respectively. The points on the dome above 1 and y are joined

by a geodesic which projects to the straight line between 1 and y. Above a point

t ∈ [1, y] the dome has height tr so the length of this geodesic on the dome is

A =

∫ y

1

dt

tB
=

log y

B
.

1

B

y Ba

b
d y2α0
c

Figure 12. Case 2b: between non-parallel lines

Hence the image of 1 in D2 is hyperbolic distance A from y and must be on the

segment [1, y]. Thus by (3) if w = (1 − e−A)/(1 + e−A) and σ(z) = z−w
1−wz

, the desired

map τ : D1 → D2 is

τ(z) = yBσ(
1

B
(z − 1)) + y.

If r1 > r2 then the mapping is almost same, except that now 0 < y < 1, so A = log y/r

is negative. Thus we define w = −(1 − eA)/(1 + eA) and proceed as before.
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As in the case of parallel edges, we can compute the hyperbolic metric exactly for

an infinite cone. Doing so leads shows that we should replace A by A = π
2α

log y to

get the correct map for a cone. If we make this change we will call the resulting map

the modified ι map, as before.

Case 3 (point-line bisector): This case is pictured in Figure 13. Here we have

a parabolic edge of the medial axis which is the bisector of a line segment and a point

(a vertex of the polygon). There are actually two cases depending on the orientation

of the picture: as we traverse the medial axis edge towards the root, the vertex can

either be on our left or on our right. We will assume it is one the right, as illustrated

in Figure 13, and the other case is handled similarly.

Suppose a is the vertex in question (computed from D1 and D2 as in (1)) and L is

the line. Then L is tangent to D1 and D2 at points c, d given by

c = z1 + r1e
iθ z2 − z1

r
, d = z2 + r2e

iθ z2 − z1

r
,

where cos θ = (r1 − r2)/r and r = |z2 − z1|, as before. Let a∗ be the reflection of a

across L. This is given by

a∗ = c+ (ā− c̄) · (d− c)/(d̄− c̄).

Then D1 can be mapped to D2 by an elliptic Möbius transformation which fixes a

and a∗ and sends L to itself. This elliptic element rotates around a by some angle

θ. We will think of this as a composition of n separate rotations, each by angle

θ/n. Applying each of these rotations in turn produces a sequence of disks {Bk}

intermediate between D1 and D2. Let τk : Bk → Bk+1 be the elliptic map that fixes

the two points of intersection {a, bk} = ∂Bk ∩ ∂Bk+1. The generalized crescent being

considered is the limit of the union of these disks and so τn ◦ · · · ◦ τ1 converges to the

desired τ : D1 → D2 as n→ ∞.

To understand this composition better, we will conjugate by a Möbius transforma-

tion that converts the maps τk into linear maps. To do this, we have to map one of

the fixed points to ∞. Consider the map

η(z) = (−i)(
z − a∗

z − a
)(
c− a

c− a∗
).

This sends a → ∞, a∗ → 0 and c → −i. Moreover, the line L maps to the unit

circle and each of the disks Bk is sent to a half-plane tangent to the unit circle. The

maps τk must therefore be sent to rotations by angle θ/n around the points where the
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a

L

θ

d

a*

θ

c

b a*

d

c

Figure 13. Case 3: equidistant from a point and a line. On the
left is the family of circles passing through a and tangent to L. On
the right we have conjugated a to ∞ and L to the unit circle. The
converted τk maps are rotations around the white dots.

boundaries of the kth and (k + 1)st half-planes meet. In the limit, the composition

of these maps is simply “rolling” a line counterclockwise around the unit circle, i.e.,

is σ(z) = eiθ(z − θ). Thus τ = η−1 ◦ σ ◦ η.

If we are in the other case, when the vertex is on the left, then we define the point

a using (2) instead of (1), Similarly c, d are now defined using −θ in place of θ. Then

define η as before. The σ map now rolls a line clockwise around the unit circle, i.e.,

σ(z) = (z + θ)e−iθ. We have now completed the proof of Theorem 1.

Estimates of hyperbolic distance lead to a modification of ι in this case as well.

Take σ(z) = e±iθ(z ∓ 2θ) for the modified map.

5. Concluding remarks

Theorem 1 gives guesses for the Schwarz-Christoffel parameters of a polygon which

are close to the correct parameters in a precise sense. If we put our guesses into the

Schwarz-Christoffel formula we get a locally 1-1 map of the disk to a polygonal

region (possibly overlapping itself) which has all the correct angles and which can

be mapped to the desired region by a quasiconformal map with uniformly bounded

constant and with vertices mapping to vertices. Figure 14 shows five such polygons

and the corresponding regions using the ι map and modified ι map to guess the

parameters. (The curved “S” shape is actually a 100-gon.)
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Figure 14.
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As expected, the figures show that the ι map tends to shorten long corridors and

this is partially corrected by the modified map. We can measure this distortion

by estimating the quasiconformal distance dQC between our guesses and the actual

prevertices as follows. This metric was defined by minimizing the quasiconformal

constant over all self-maps of the disk which send the true prevertices to our guesses.

Thus any such map gives an upper bound for the distance. Suppose Ω is our target

polygon and Ω∗ is the Schwarz-Christoffel image using our ι map guesses, and let

f and f ∗ be the conformal maps from the disk onto these domains. If Φ is any

quasiconformal map from Ω to Ω∗ which maps vertices to vertices, then ϕ = (f ∗)−1 ◦

Φ◦f is a quasiconformal map of the disk to the disk which sends the true prevertices

to our guesses and has the same quasiconformal constant as Φ does (since composing

by conformal maps does not change this). Moreover, there is a an obvious way to

try to construct the desired map Φ: triangulate Ω and Ω∗ in equivalent ways and use

affine maps on each triangle.

Given two triangles in the plane with the same orientation, it is easy to compute

the quasiconformal constant of the affine map that sends the three vertices of the

first to the three vertices of the second. We can first use a conformal linear map to

send each triangle to ones of the form {0, 1, a} and {0, 1, b}. The affine map which

fixes 0 and 1 and sends a to b is of the form f(z) → αz + βz̄ where α + β = 1 and

β = (b− a)/(a− ā) and from this it is easy to compute that

µf =
fz̄

fz

=
β

α
=
b− a

b− ā
,

and so the quasiconformal constant is

Kf =
1 + |µf |

1 − |µf |
.

We compute this K for each element of our triangulation and take the maximum,

which must be an upper bound for the dQC distance between our guessed parameters

and the true values. In general, this will be a strict upper bound, since the optimal

map sending the true prevertices to our guesses will not correspond to a piecewise

affine map. Moreover, a different triangulation might give a better estimate. Figure

15 shows triangulations for two of the polygons from Figure 14. Doing the compu-

tations above gives K = 1.6988 (for the usual ι map) and K∗ = 1.24475 (for the

modified ι map) for the polygon on the top row. The polygon on the bottom has
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Figure 15. On left is the triangulation of the original polygon and
on the right the triangulation of the Schwarz-Christoffel image using
the modified ι map. The most distorted triangle is shaded.

bounds of K = 2.80955, K∗ = 1.23762 for the two verions of the ι map. In both cases,

the constant K is smaller than the theoretical upper bound of 7.82 and the modified

map is better the unmodified map. (If we modify ι by only altering the maps for the

edge-edge bisectors, but not for the edge-point bisectors, then the bounds for the two

polygons become K∗ = 1.176455 and K∗ = 2.36412 respectively; this is better for

the first but worse for the second. Thus it is not always clear how much modifying

to do.)

Can we use these bounds to define an iteration which will converge to the correct

parameters (i.e. decrease K to 1)? Note that in the definition of Kf we use only

the modulus of µf , which measures the degree of stretching between the triangles.

The argument of µf describes the direction of this stretching; can this information

be used to modify our parameter guesses more accurately?
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