The Hayman-Wu Constant
Author(s): Knut Øyma
Source: Proceedings of the American Mathematical Society, Vol. 119, No. 1 (Sep., 1993), pp. 337-338
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2159862

Accessed: 19/11/2009 09:27

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0]
THE HAYMAN-WU CONSTANT

KNUT ØYMA
(Communicated by Clifford J. Earle, Jr.)

Abstract. The Hayman-Wu constant is at least π^{2}.

Let D be the open unit disc and T its boundary. The length of a curve K is denoted $|K|$. The Hayman-Wu theorem says that there is a constant C such that if $f(z)$ is univalent in D and L is any line then $\left|f^{-1}(L)\right| \leq C$ (see [3]). The Hayman-Wu constant is the least possible value of C. Its numerical value is unknown, but in [4] it is proved that $C \leq 4 \pi$. It has been conjectured that $C=8 \int_{0}^{1} d x / \sqrt{1+x^{4}}$ (see [1]); however, we will prove

Theorem. $C \geq \pi^{2}$.
Flinn proved in [2] that if $f(D)$ contains one component of $\mathbb{C} \backslash L$ then $\left|f^{-1}(L)\right| \leq \pi^{2}$. Our example shows that this is the best possible result in this case. The proof uses an elementary fact about harmonic measure: If I is a subarc of T and $0<c<1$ then the level curve $\omega(z, I, D)=c$ is a circular arc through the endpoints of I meeting $T \backslash I$ at an angle of $c \pi$.

Let Π^{+}and Π^{-}be the upper and lower half planes respectively. If I is an interval of the real line and $0<\varepsilon<1$ then let $C_{I, \varepsilon}$ be the circle centered in Π^{+}meeting \mathbb{R} at the endpoints of I such that the (least) angle between $C_{I, \varepsilon}$ and \mathbb{R} is ε. We define $C_{I, \varepsilon} \cap \Pi^{+}=S_{I, \varepsilon}$. Let $\Omega_{I, \varepsilon}$ be the unbounded component of $\mathbb{C} \backslash \overline{\left(S_{I, \varepsilon} \cup S_{I, \varepsilon / 2}\right)}$. Two lemmas are needed.

Lemma 1. For $z \in I, \omega(z)=\omega\left(z, S_{I, \varepsilon}, \Omega_{I, \varepsilon}\right)<\frac{1}{2}+\varepsilon$.
Proof. Without loss of generality I equals [0, 1]. If we use the transformation $g(z)=1 / z-1$, we may assume that $\Omega_{I, \varepsilon}=\left\{r e^{i \phi}: r>0,-\pi+\varepsilon<\phi<\pi+\varepsilon / 2\right\}$ and that $I=\mathbb{R}^{+}$. Then $\omega(z)$ is given by the formula

$$
\omega\left(r e^{i \phi}\right)=(\pi+\varepsilon / 2-\phi) /(2 \pi-\varepsilon / 2) .
$$

Therefore, $\omega(z)=(\pi+\varepsilon / 2) /(2 \pi-\varepsilon / 2)<\frac{1}{2}+\varepsilon$ for $z \in \mathbb{R}^{+}$.
Lemma 2. For every $\delta>0$ there exist numbers $b>0$ and $\varepsilon>0$ such that if I is a subarc of T of length less than b and K is a crosscut in D connecting

Received by the editors October 3, 1991 and, in revised form, January 17, 1992.
1991 Mathematics Subject Classification. Primary 30C85.
Key words and phrases. Harmonic measure, conformal mapping.
the endpoints of I satisfying $\omega(z, I, D)<\frac{1}{2}+\varepsilon$ for every $z \in K$, then $|K|>$ $|I|(1-\delta) \pi / 2$.
Proof. K lies outside the convex curve $\omega(z, I, D)=\frac{1}{2}+\varepsilon$. If $|I|$ and ε are small then this curve is almost a half circle whose diameter is almost $|I|$. A routine but tedious calculation shows that

$$
\left|\omega(z, I, D)=\frac{1}{2}+\varepsilon\right|>(\sin (|I| / 2))(\pi-|I|-2 \varepsilon \pi)
$$

Proof of the theorem. If $\delta>0$ choose ε as in Lemma 2. Define $I_{0}^{1}=[0,1]$ and $d=\operatorname{diam}\left(C_{I_{0}^{1}, \varepsilon / 2}\right)$. For $k \in Z$ let $I_{k}^{1}=I_{0}^{1}+2 k d$. The circles $C_{I_{k}^{1}, \varepsilon / 2}$ are disjoint. Let $\mathbb{R} \backslash \bigcup I_{k}^{1}=\bigcup J_{m}^{1}$, where the intervals J_{k}^{1} are disjoint. Choose closed intervals $I_{n}^{2} \subset \bigcup J_{k}^{1}$ such that:
(i) $S_{I_{m}^{2}, \varepsilon / 2} \cap S_{I_{n}^{2}, \varepsilon / 2}=\varnothing$ for $m \neq n$;
(ii) $S_{I_{m}^{2}, \varepsilon / 2} \cap S_{I_{n}^{1}, \varepsilon / 2}=\varnothing$ for all m, n;
(iii) Each compact subset of \mathbb{C} intersects only finitely many I_{k}^{2};
(iv) $\left|\cup I_{k}^{2} \cap J_{m}^{1}\right|>\left|J_{m}^{1}\right| / 3 d$ for all m.

We can obtain (iv) by choosing each I_{k}^{2} small. Let $\mathbb{R} \backslash\left(\cup I_{m}^{2} \cup I_{n}^{1}\right)=\bigcup J_{m}^{2}$. Continue the construction inductively.

Renumber the set $\left\{I_{m}^{k}\right\}=\left\{I_{n}\right\}$. Define $S_{n}=S_{I_{n}, \varepsilon}$ and let O_{n} be the inside of $C_{I_{n}, \varepsilon}$. Define $\Omega=\left(\bigcup O_{n}\right) \cup \Pi^{-}$. The domain Ω is simply connected and the boundary of Ω equals $\left(\cup S_{n}\right) \cup E$ where $E \subset \mathbb{R}$. This is a Jordan arc, which is locally rectifiable since $\left|S_{n}\right| /\left|I_{n}\right|=$ constant. Therefore $\omega(z, E, \Omega) \equiv 0$ since $|E|=0$ by (iv). It follows that if $f(z)$ maps D conformally onto Ω then $\sum\left|f^{-1}\left(S_{n}\right)\right|=2 \pi$.

By comparison $\omega_{n}(z)=\omega\left(z, S_{n}, \Omega\right)<\omega\left(z, S_{n}, \Omega_{I_{n}, \varepsilon}\right)$. Therefore, by Lemma $1, \omega_{n}(z)<\frac{1}{2}+\varepsilon$ for $z \in I_{n}$. Choose $f(z)$ such that $f(0)=-i a$ where a is so large that $\omega_{n}(-i a)<b$ for all n. The constant b comes from Lemma 2. $f^{-1}\left(I_{n}\right)$ is a crosscut in D connecting the endpoints of $f^{-1}\left(S_{n}\right)$. Lemma 2 shows that $\left|f^{-1}\left(I_{n}\right)\right|>\left|f^{-1}\left(S_{n}\right)\right|(1-\delta) \pi / 2$. This proves the theorem since

$$
\left|f^{-1}(\mathbb{R})\right|=\sum\left|f^{-1}\left(I_{n}\right)\right| \geq \sum\left|f^{-1}\left(S_{n}\right)\right|(1-\delta) \pi / 2=\pi^{2}(1-\delta)
$$

Conjecture. $C=\pi^{2}$.

Acknowledgment

I want to thank the referee for suggesting a better proof of Lemma 1.

References

1. J. Fernandez, J. Heinonen, and O. Martio, Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117-132.
2. B. Flinn, Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J. 32 (1983), 831-841.
3. W. K. Hayman and J. M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403.
4. K. Øyma, Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), 687-690.

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

