

The Hayman-Wu Constant Author(s): Knut Øyma Source: Proceedings of the American Mathematical Society, Vol. 119, No. 1 (Sep., 1993), pp. 337-338 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2159862</u> Accessed: 19/11/2009 09:27

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

THE HAYMAN-WU CONSTANT

KNUT ØYMA

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. The Hayman-Wu constant is at least π^2 .

Let D be the open unit disc and T its boundary. The length of a curve K is denoted |K|. The Hayman-Wu theorem says that there is a constant C such that if f(z) is univalent in D and L is any line then $|f^{-1}(L)| \le C$ (see [3]). The Hayman-Wu constant is the least possible value of C. Its numerical value is unknown, but in [4] it is proved that $C \le 4\pi$. It has been conjectured that $C = 8 \int_0^1 dx / \sqrt{1 + x^4}$ (see [1]); however, we will prove

Theorem. $C \ge \pi^2$.

Flinn proved in [2] that if f(D) contains one component of $\mathbb{C}\setminus L$ then $|f^{-1}(L)| \leq \pi^2$. Our example shows that this is the best possible result in this case. The proof uses an elementary fact about harmonic measure: If I is a subarc of T and 0 < c < 1 then the level curve $\omega(z, I, D) = c$ is a circular arc through the endpoints of I meeting $T \setminus I$ at an angle of $c\pi$.

Let Π^+ and Π^- be the upper and lower half planes respectively. If I is an interval of the real line and $0 < \varepsilon < 1$ then let $C_{I,\varepsilon}$ be the circle centered in Π^+ meeting \mathbb{R} at the endpoints of I such that the (least) angle between $C_{I,\varepsilon}$ and \mathbb{R} is ε . We define $C_{I,\varepsilon} \cap \Pi^+ = S_{I,\varepsilon}$. Let $\Omega_{I,\varepsilon}$ be the unbounded component of $\mathbb{C} \setminus \overline{(S_{I,\varepsilon} \cup S_{I,\varepsilon/2})}$. Two lemmas are needed.

Lemma 1. For $z \in I$, $\omega(z) = \omega(z, S_{I,\varepsilon}, \Omega_{I,\varepsilon}) < \frac{1}{2} + \varepsilon$.

Proof. Without loss of generality I equals [0, 1]. If we use the transformation g(z) = 1/z - 1, we may assume that $\Omega_{I,\varepsilon} = \{re^{i\phi}: r > 0, -\pi + \varepsilon < \phi < \pi + \varepsilon/2\}$ and that $I = \mathbb{R}^+$. Then $\omega(z)$ is given by the formula

$$\omega(re^{i\phi}) = (\pi + \varepsilon/2 - \phi)/(2\pi - \varepsilon/2).$$

Therefore, $\omega(z) = (\pi + \varepsilon/2)/(2\pi - \varepsilon/2) < \frac{1}{2} + \varepsilon$ for $z \in \mathbb{R}^+$.

Lemma 2. For every $\delta > 0$ there exist numbers b > 0 and $\varepsilon > 0$ such that if I is a subarc of T of length less than b and K is a crosscut in D connecting

©1993 American Mathematical Society 0002-9939/93 \$1.00 + \$.25 per page

Received by the editors October 3, 1991 and, in revised form, January 17, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C85.

Key words and phrases. Harmonic measure, conformal mapping.

the endpoints of I satisfying $\omega(z, I, D) < \frac{1}{2} + \varepsilon$ for every $z \in K$, then $|K| > |I|(1-\delta)\pi/2$.

Proof. K lies outside the convex curve $\omega(z, I, D) = \frac{1}{2} + \varepsilon$. If |I| and ε are small then this curve is almost a half circle whose diameter is almost |I|. A routine but tedious calculation shows that

$$|\omega(z, I, D)| = \frac{1}{2} + \varepsilon| > (\sin(|I|/2))(\pi - |I| - 2\varepsilon\pi).$$

Proof of the theorem. If $\delta > 0$ choose ε as in Lemma 2. Define $I_0^1 = [0, 1]$ and $d = \operatorname{diam}(C_{I_0^1, \varepsilon/2})$. For $k \in \mathbb{Z}$ let $I_k^1 = I_0^1 + 2kd$. The circles $C_{I_k^1, \varepsilon/2}$ are disjoint. Let $\mathbb{R} \setminus \bigcup I_k^1 = \bigcup J_m^1$, where the intervals J_k^1 are disjoint. Choose closed intervals $I_n^2 \subset \bigcup J_k^1$ such that:

- (i) $S_{I_m^2, \varepsilon/2} \cap S_{I_n^2, \varepsilon/2} = \emptyset$ for $m \neq n$;
- (ii) $S_{I_m^2, \varepsilon/2} \cap S_{I_n^1, \varepsilon/2} = \emptyset$ for all m, n;
- (iii) Each compact subset of \mathbb{C} intersects only finitely many I_k^2 ;
- (iv) $|\bigcup I_k^2 \cap J_m^1| > |J_m^1|/3d$ for all m.

We can obtain (iv) by choosing each I_k^2 small. Let $\mathbb{R} \setminus (\bigcup I_m^2 \cup I_n^1) = \bigcup J_m^2$. Continue the construction inductively.

Renumber the set $\{I_m^k\} = \{I_n\}$. Define $S_n = S_{I_n,\varepsilon}$ and let O_n be the inside of $C_{I_n,\varepsilon}$. Define $\Omega = (\bigcup O_n) \cup \Pi^-$. The domain Ω is simply connected and the boundary of Ω equals $(\bigcup S_n) \cup E$ where $E \subset \mathbb{R}$. This is a Jordan arc, which is locally rectifiable since $|S_n|/|I_n| = \text{constant}$. Therefore $\omega(z, E, \Omega) \equiv 0$ since |E| = 0 by (iv). It follows that if f(z) maps D conformally onto Ω then $\sum |f^{-1}(S_n)| = 2\pi$.

By comparison $\omega_n(z) = \omega(z, S_n, \Omega) < \omega(z, S_n, \Omega_{I_n,\varepsilon})$. Therefore, by Lemma 1, $\omega_n(z) < \frac{1}{2} + \varepsilon$ for $z \in I_n$. Choose f(z) such that f(0) = -iawhere *a* is so large that $\omega_n(-ia) < b$ for all *n*. The constant *b* comes from Lemma 2. $f^{-1}(I_n)$ is a crosscut in *D* connecting the endpoints of $f^{-1}(S_n)$. Lemma 2 shows that $|f^{-1}(I_n)| > |f^{-1}(S_n)|(1-\delta)\pi/2$. This proves the theorem since

$$|f^{-1}(\mathbb{R})| = \sum |f^{-1}(I_n)| \ge \sum |f^{-1}(S_n)|(1-\delta)\pi/2 = \pi^2(1-\delta).$$

Conjecture. $C = \pi^2$.

ACKNOWLEDGMENT

I want to thank the referee for suggesting a better proof of Lemma 1.

References

- J. Fernandez, J. Heinonen, and O. Martio, *Quasilines and conformal mappings*, J. Analyse Math. 52 (1989), 117-132.
- 2. B. Flinn, Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J. 32 (1983), 831-841.
- 3. W. K. Hayman and J. M. G. Wu, *Level sets of univalent functions*, Comment. Math. Helv. 56 (1981), 366-403.
- 4. K. Øyma, Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), 687-690.

DEPARTMENT OF MATHEMATICS, AGDER COLLEGE, 4604 KRISTIANSAND, NORWAY