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THE HAYMAN-WU CONSTANT 

KNUT 0YMA 

(Communicated by Clifford J. Earle, Jr.) 

ABSTRACT. The Hayman-Wu constant is at least 7r2. 

Let D be the open unit disc and T its boundary. The length of a curve K 
is denoted IKI . The Hayman-Wu theorem says that there is a constant C such 
that if f(z) is univalent in D and L is any line then If- (L)I < C (see [3]). 
The Hayman-Wu constant is the least possible value of C. Its numerical value 
is unknown, but in [4] it is proved that C < 47r. It has been conjectured that 
C = 8 f1 dx/ + X4 (see [ 1 ]); however, we will prove 

Theorem. C > 72. 

Flinn proved in [2] that if f(D) contains one component of C\L then 
If I(L) I < 7o2. Our example shows that this is the best possible result in this 
case. The proof uses an elementary fact about harmonic measure: If I is a 
subarc of T and 0 < c < 1 then the level curve co(z, I, D) = c is a circular 
arc through the endpoints of I meeting T\I at an angle of Ctr. 

Let fl+ and fl- be the upper and lower half planes respectively. If I is 
an interval of the real line and 0 < c < 1 then let C, , be the circle centered 
in fl+ meeting R at the endpoints of I such that the (least) angle between 
C,,, and ]R is e. We define C,,, no f+ = SI, . Let Qj, be the unbounded 
component of C\(SI, e U S., /2). Two lemmas are needed. 

Lemma 1. For z E I, co(z) = wt(z, SI,,, Q.,) < +e. 

Proof. Without loss of generality I equals [0, 1]. If we use the transformation 
g(z) = l/z- 1 , we may assume that Qj,_ = {reiO: r > 0, -7r+e < 0 < 7r+e/2} 
and that I = R+I. Then co(z) is given by the formula 

co(re" ) = (7r + e/2 - 0)/(27r - e/2). 

Therefore, co(z) = (7r + c/2)/(27r - c/2) < 2 + c for z E R+ . 

Lemma 2. For every ( > 0 there exist numbers b > 0 and c > 0 such that if 
I is a subarc of T of length less than b and K is a crosscut in D connecting 
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the endpoints of I satisfying co(z, I, D) < 2 + e for every z E K, then IKI > 

III (I 1-J)7Z/2 . 
Proof. K lies outside the convex curve wo(z, I, D) = 2 + e. If lII and e are 
small then this curve is almost a half circle whose diameter is almost III. A 
routine but tedious calculation shows that 

Ico(z, I, D) = 2 + ci > (sin(JII/2))(7t - II - 2esr). 

Proof of the theorem. If 3 > 0 choose e as in Lemma 2. Define Io = [0, 1] 
and d = diam(CI1,,/2). For k E Z let Ik = Io + 2kd. The circles CIl ,2 

are disjoint. Let R\ U Ik = U J4l, where the intervals Jk are disjoint. Choose 
closed intervals In2 c U Jk, such that: 

(i) S, / 2fnSI2,e/2 = 0 for m =n ; 

(ii)n , e / 2nSI,' C/2 = o for all m , n; 
(iii) Each compact subset of C intersects only finitely many Ik; 
(iv) IUIknJj> lJl/3d forall m. 
We can obtain (iv) by choosing each Ik small. Let R\(U I2 U In) = U J, . 

Continue the construction inductively. 
Renumber the set {If} = {In}. Define Sn = SI,,, and let On be the inside 

of Cin e, . Define Q = (U On)Ufl- . The domain Q is simply connected and the 
boundary of Q equals (U Sn) U E where E c R. This is a Jordan arc, which is 
locally rectifiable since Sn l/lI In = constant. Therefore co(z, E, Q)- 0 since 
JEl = 0 by (iv). It follows that if f(z) maps D conformally onto Q then 
E lf (Sn)l =-27. 

By comparison wOn(z) = Cw(z, Sn, Q) < co(z, Sno Qj ,,). Therefore, by 
Lemma , I n(z) < 1 + e for z E In . Choose f(z) such that f(O) =-ia 
where a is so large that (On(-ia) < b for all n. The constant b comes from 
Lemma 2. f- I(In) is a crosscut in D connecting the endpoints of f I(Sn). 
Lemma 2 shows that If- (In)I > If- (Sn) (I -5)7t/2. This proves the theorem 
since 

1f1(IR-)l =Z lf-'(I')l E I-lf(Sn)l(1 - 3)7r/2 = 7r2(1 as). 

Conjecture. C = 7. 
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