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THE HAYMAN-WU CONSTANT

KNUT YMA

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. The Hayman-Wu constant is at least 72 .

Let D be the open unit disc and T its boundary. The length of a curve K
is denoted |K|. The Hayman-Wu theorem says that there is a constant C such
that if f(z) is univalent in D and L is any line then |f~!(L)| < C (see [3]).
The Hayman-Wu constant is the least possible value of C . Its numerical value
is unknown, but in [4] it is proved that C < 4z . It has been conjectured that

C=38 fol dx/V1+ x4 (see [1]); however, we will prove
Theorem. C > 72.

Flinn proved in [2] that if f(D) contains one component of C\L then
|f~Y(L)] < =%. Our example shows that this is the best possible result in this
case. The proof uses an elementary fact about harmonic measure: If [ is a
subarc of T and 0 < ¢ < 1 then the level curve w(z, I, D) = c is a circular
arc through the endpoints of I meeting 7\I at an angle of cx.

Let IT* and II- be the upper and lower half planes respectively. If I is
an interval of the real line and 0 < ¢ < 1 then let C; . be the circle centered
in IT* meeting R at the endpoints of I such that the (least) angle between
Cr,. and R is ¢. We define C; . NITt =Sy .. Let €; . be the unbounded

component of C\(S7 ¢ USs ¢2). Two lemmas are needed.

Lemma 1. For zel, w(z)=w(z, 81, Q)< 3+¢.

Proof. Without loss of generality I equals [0, 1]. If we use the transformation
g(z) = 1/z—1, we may assume that Q; . = {re’: r >0, -n+e < ¢ < m+¢/2}
and that / = R*. Then w(z) is given by the formula

o(re’) = (n+¢/2 - ¢)/(2n —&/2).
Therefore, w(z) = (n+¢/2)/(2n —¢/2) < 1 +¢ for zeR*.

Lemma 2. For every § > 0 there exist numbers b > 0 and ¢ > 0 such that if
I is a subarc of T of length less than b and K is a crosscut in D connecting
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the endpoints of 1 satisfying w(z, I, D) < % +¢ forevery z € K, then |K| >
I|(1—-08)m/2.

Proof. K lies outside the convex curve w(z, I, D) =1+¢.If |I| and ¢ are
small then this curve is almost a half circle whose diameter is almost |/|. A
routine but tedious calculation shows that

lo(z, 1, D) =L+ é| > (sin(I]/2))(x — |I| - 2em).

Proof of the theorem. If § > 0 choose ¢ as in Lemma 2. Define I} = [0, 1]
and d = diam(Cys ,). For k € Z let I} = Ij +2kd. The circles Cpi ,),
0° k?
are disjoint. Let R\{JI} = |J J}}, where the intervals J! are disjoint. Choose
closed intervals 12 c {JJ] such that:
(1) Sp,e2NSp epp=2 for m#n;
(ii) Sz o2 NS o2 =92 forall m, n;

(iif) Each compact subset of C intersects only finitely many I7;

(iv) |UIEnJy| > |Jhl/3d forall m.

We can obtain (iv) by choosing each I? small. Let R\(UZZ UI})=UJ32.
Continue the construction inductively.

Renumber the set {IX} = {I,} . Define S, = S;, . and let O, be the inside
of Cj, .. Define Q = (| O,)UIl” . The domain Q is simply connected and the
boundary of Q equals (|JS,)UE where E C R. This is a Jordan arc, which is
locally rectifiable since |S,|/|I,| = constant. Therefore w(z, E, Q) = 0 since
|E| = 0 by (iv). It follows that if f(z) maps D conformally onto Q then
SIS = 2.

By comparison w,(z) = w(z, Sy, Q) < w(z, Sy, Q, ). Therefore, by
Lemma 1, w,(z) < 3 +¢ for z € I,. Choose f(z) such that f(0) = —ia
where a is so large that w,(—ia) < b for all n. The constant b comes from
Lemma 2. f~!(I,) is a crosscut in D connecting the endpoints of f~!(S,).
Lemma 2 shows that |f~'(1,)| > |/~1(S,)|(1—6)n/2. This proves the theorem
since

I/~ (R)| = Z I/~ > Z I/~ (Sn)I(1 = 6)m/2 = 7*(1 - 6).
Conjecture. C = n°.
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