

Harmonic Measure and Conformal Length Author(s): Knut Øyma Source: Proceedings of the American Mathematical Society, Vol. 115, No. 3 (Jul., 1992), pp. 687-689 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2159215</u> Accessed: 19/11/2009 09:26

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at <a href="http://www.jstor.org/page/info/about/policies/terms.jsp">http://www.jstor.org/page/info/about/policies/terms.jsp</a>. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

## HARMONIC MEASURE AND CONFORMAL LENGTH

## KNUT ØYMA

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. Let f(z) be any univalent function that maps the unit disc onto a domain  $\Omega$ . We prove that for any line L the length of  $f^{-1}(\Omega \cap L)$  is less than  $4\pi$ .

Let D be the open unit disc. Throughout this paper f(z) is a univalent function that maps D onto a simply connected domain  $\Omega$ . z lives in D and w lives in  $\Omega$ .  $f(z_n) = w_n$ . The pseudohyperbolic metric in D is defined by

$$\rho(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z}_1 z_2} \right|,$$

where  $\rho$  is conformally invariant.

In  $\Omega$ ,  $\rho$  can be defined by  $\rho(w_1, w_2) = \rho(z_1, z_2)$ . In  $\Pi^+$ , the upper halfplane,

$$\rho(w_1, w_2) = \left| \frac{w_1 - w_2}{w_1 - \overline{w}_2} \right|.$$

The length of a curve K is denoted |K|. We will prove

**Theorem.** If L is any line,  $|f^{-1}(\Omega \cap L)|$  add an absolute value sign  $< 4\pi$ .

The theorem without the constant is due to Hayman and Wu [5]. See also [4]. The best previously known constant is  $4\pi^2$  (see [3]). It is known that the constant cannot be less than

$$C = 8 \int_0^1 \frac{dx}{\sqrt{1 + x^4}} \,,$$

and it has been conjectured that the best constant is C. For enlightening discussions and generalizations of the Hayman-Wu theorem, see [1] and [4]. Our proof of the theorem depends on the following

**Lemma.** Assume  $\{w_n\} \subset L \cap \Omega$  satisfies  $\rho(w_n, w_m) \geq \delta$  for  $n \neq m$ . Then  $\sum (1 - |z_n|) \leq \frac{2\pi}{\arctan \delta}$ .

*Proof.* Note that  $\rho(w_1, w_2) = \sup\{|f(w_1)|: f \in \text{ball } H^{\infty}(\Omega), f(w_2) = 0\}$ . Therefore  $\rho$  increases when  $\Omega$  decreases. We may assume that  $L = \mathbb{R}$  and

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page

Received by the editors June 9, 1990 and, in revised form, December 27, 1990.

<sup>1980</sup> Mathematics Subject Classification (1985 Revision). Primary 30C85.

Key words and phrases. Harmonic measure, univalent function.

that  $\Omega$  is a Jordan domain. If  $\Omega$  is not, approximate  $\Omega$  by the domains  $f_r(D)$  where  $f_r(z) = f(rz)$ .

Let  $L_k$  be the components of  $L \cap \Omega$ , and let  $\Omega_k$  be the component of  $\Omega \cap \{z : \overline{z} \in \Omega\}$  that contains  $L_k$ .  $\{\Omega_k\}$  is a disjoint family of Jordan domains. If  $k \neq s$ ,  $\partial \Omega_k$  and  $\partial \Omega_s$  are essentially disjoint. They have at most one point in common.

Assume that  $w_n$ ,  $w_m \in L_k$ . Let  $\varphi$  map  $\Omega_k$  conformally onto  $\Pi^+$  such that  $\varphi(L_k) = i\mathbb{R}^+$ .  $\varphi(w_r) = iy_r$ . Since  $\rho$  is conformally invariant we have

(\*) 
$$\left|\frac{y_n - y_m}{y_n + y_m}\right| \ge \delta$$
.

Let

$$K_r = \left[ y_r \frac{1-\delta}{1+\delta}, y_r \right] \cup \left[ -y_r, -\frac{1-\delta}{1+\delta} y_r \right]$$

 $K_n$  and  $K_m$  are essentially disjoint by (\*). Interpreting harmonic measure in the upper halfplane as normalized angles we see that  $\omega(iy_r, K_r, \Pi^+) =$  $(2/\pi) \arctan \delta$ . Let  $K_r^* = \{\zeta \in K_r: \varphi^{-1}(\zeta) \in \partial \Omega\}$ . By the symmetry of  $\Omega_k$  and the choice of  $\varphi$  we have  $\zeta \in K_r$ ,  $\zeta \notin K_r^*$  implies  $-\zeta \in K_r^*$ . Therefore  $\omega(iy_r, K_r^*, \Pi^+) \ge (\arctan \delta)/\pi = \delta'$ . Let  $C_r = \varphi^{-1}(K_r^*)$ . Conformal invariance gives  $\omega(w_r, C_r, \Omega_k) \ge \delta'$  and, by the maximum principle,  $\omega(w_r, C_r, \Omega) \ge \delta'$ . If  $r \ne s$ ,  $C_r$  and  $C_s$  are essentially disjoint. Let  $E_r = f^{-1}(C_r)$ , and let  $P_{z_r}$  be the Poisson kernel of  $z_r$ . We have

$$\delta' \le \omega(z_r, E_r, D) = \frac{1}{2\pi} \int_{E_r} P_{z_r} \le \frac{1}{2\pi} \cdot \frac{1 - |z_r|^2}{(1 - |z_r|)^2} |E_r|.$$

Hence  $1 - |z_r| < |E_r| / \arctan \delta$ . This proves the lemma since  $\sum |E_r| \le 2\pi$ .

Proof of the theorem. For  $\delta > 0$  let  $D_{\rho}(w, \delta) = \{w': \rho(w, w') \leq \delta\}$ . By Theorem 2.13 in [2]  $D_{\rho}(w, \delta)$  is (euclidean) convex if  $\delta < 2 - \sqrt{3}$ . Therefore for small  $\delta > 0$  we can choose  $\{w_n\}$  in  $L \cap \Omega$  such that

- (i) if  $w_n$  and  $w_m$  are neighbours  $\rho(w_n, w_m) = \delta$ ,
- (ii)  $\bigcup D_{\rho}(w_n, \delta)$  covers  $L \cap \Omega$  twice.

Since f is a pseudohyperbolic isometry,  $f^{-1}(D_{\rho}(w_n, \delta))$  is a euclidean disc whose diameter is easily computed to be

$$2\delta \frac{1-|z_n|^2}{1-\delta^2|z_n|^2}.$$

Every univalent function in the unit disc satisfies  $|f''(z)/f'(z)| < 6/(1-|z|^2)$ . Integration leads to  $|\arg f'(z') - \arg f'(z'')| < K\rho(z', z'')$  if  $\rho(z', z'') < \delta_0 < 1$ . Therefore  $(f^{-1})'(w)$  satisfies the same inequalities. Hence

$$\begin{split} |f^{-1}(L \cap D_{\rho}(w_{n}, \delta))| &= \int_{L \cap D_{\rho}(w_{n}, \delta)} |(f^{-1})(f^{-1})'(w)| |dw| \\ &\leq (1 + o(1))| \int_{L \cap D_{\rho}(w_{n}, \delta)} (f^{-1})'(w) \, dw| \\ &\leq 2\delta \frac{1 - |z_{n}|^{2}}{1 - \delta^{2}|z_{n}|^{2}} (1 + o(1)) \leq \frac{4\delta}{1 - \delta^{2}} (1 + o(1))(1 - |z_{n}|) \end{split}$$

uniformly in n.

688

We now apply the lemma,

$$2|f^{-1}(L)| \le \frac{4\delta}{1-\delta^2}(1+o(1))\sum_{n=1}^{\infty}(1-|z_n|)$$
  
$$\le \frac{4\delta}{1-\delta^2}(1+o(1))\frac{2\pi}{\arctan\delta} \to 8\pi \quad \text{when } \delta \to 0.$$

We have used the crude inequality  $1 + |z_n| < 2$ . Since this holds uniformly on a large part of  $f^{-1}(L)$ , we have strict inequality.

## References

- 1. C. J. Bishop and P. W. Jones, *Harmonic measure and arclength*, Ann. of Math. (2) 132 (1990), 511-547.
- 2. P. L. Duren, Univalent functions, Springer-Verlag, Berlin, Heidelberg, and New York 1983.
- 3. J. L. Fernandez, J. M. Heinonen, and O. T. Martio, *Quasilines and conformal mappings*, J. d'Analyse Math. **52** (1989), 117-132.
- 4. J. B. Garnett, F. W. Gehring, and P. W. Jones, *Conformally invariant length sums*, Indiana Univ. Math. J. **32** (1983), 809-829.
- 5. W. Hayman and J. M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403.

AGDER COLLEGE, P. O. BOX 607, N-4601 KRISTIANSAND S, NORWAY