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HARMONIC MEASURE AND CONFORMAL LENGTH 

KNUT 0YMA 

(Communicated by Clifford J. Earle, Jr.) 

ABSTRACT. Let f(z) be any univalent function that maps the unit disc onto a 
domain Q. We prove that for any line L the length of f 1 (Q n L) is less 
than 4n:. 

Let D be the open unit disc. Throughout this paper f(z) is a univalent 
function that maps D onto a simply connected domain Q. z lives in D and 
w lives in Q. f(z,) = w, . The pseudohyperbolic metric in D is defined by 

p(ZI, Z2) = 

- 
Z2 

where p is conformally invariant. 
In Q, p can be defined by p(W1, W2) = p(ZI, Z2). In f+l, the upper 

halfplane, 

P(W1, W2) =WI -W2 

The length of a curve K is denoted IKI . We will prove 

Theorem. If L is any line, If-1 (Q n L) I add an absolute value sign < 4t. 

The theorem without the constant is due to Hayman and Wu [5]. See also 
[4]. The best previously known constant is 47r2 (see [3]). It is known that the 
constant cannot be less than 

I dx 
C =Jo '1+ ' 

and it has been conjectured that the best constant is C. For enlightening dis- 
cussions and generalizations of the Hayman-Wu theorem, see [1] and [4]. Our 
proof of the theorem depends on the following 

Lemma. Assume {wf} c L nf Q satisfies p(wn, Wm) > 3 for n 54 m. Then 

Z(1-IZnI)?<arctan,6 
Proof. Note that p(W1, W2) = Sup{If(wI)I: f E ballH??(Q), f(w2) = O}f 
Therefore p increases when Q decreases. We may assume that L = ]R and 
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that Q is a Jordan domain. If Q is not, approximate Q by the domains fr(D) 
where f,(z) = f(rz). 

Let Lk be the components of L n Q, and let Qk be the component of 
Qn f {z: Z E Q} that contains Lk. { k} is a disjoint family of Jordan domains. 
If k :$ s, a0k and oa2S are essentially disjoint. They have at most one point 
in common. 

Assume that w,, Wm E Lk. Let fo map 9?k conformally onto II+ such 
that p(Lk) = iR+1. p(Wr) = iYr. Since p is conformally invariant we have 

(*) | Yn-Ym > 
Yn +Ym 

Let 

Kr = [Yrl Yr] U [ Yr 1 -I JYr 

Kn and Km are essentially disjoint by (*). Interpreting harmonic measure 
in the upper halfplane as normalized angles we see that co(iYr, Kr, fl+) = 
(2/7r)arctan3. Let Kr = {C E Kr: V,'(C) E dQ}. By the symmetry of 
Q2k and the choice of o we have C E Kr, C ? Kr* implies - E Kr*. 
Therefore c(jyr, Kr*, f+) > (arctand)/n = 3'. Let Cr = q-'(Kr*). Con- 
formal invariance gives (O(Wr, Cr, Qk) ? 3' and, by the maximum princi- 
ple, OW(Wr, Cr, Q) > 3'. If r : s, Cr and C, are essentially disjoint. Let 
Er = f1(Cr), and let PZr be the Poisson kernel of Zr. We have 

3' < W(Zr, Er, D) = Zr ?1 2 1 _Z!2 7r P~r <y7r: ( - IZr pl) l 
Hence 1 - zr! < IErI/ arctan 3 . This proves the lemma since E IEr! < 27 . 
Proof of the theorem. For 3 > 0 let Dp(w, 3) = {w': p(w, w') < 3}. By 
Theorem 2.13 in [2] Dp(w, 3) is (euclidean) convex if 3 < 2 - V3. Therefore 
for small 3 > 0 we can choose {wnI in L n Q such that 

(i) if Wn and Wm are neighbours P(Wn, Wm) =3 
(ii) U Dp(wn, 3) covers L n Qi twice. 

Since f is a pseudohyperbolic isometry, f-1(Dp(w,, 3)) is a euclidean disc 
whose diameter is easily computed to be 

251 
- Jzn 12 

1 -3521zn12 

Every univalent function in the unit disc satisfies If'(z)/f'(z)J < 6/(l - Jz12). 
Integration leads to I argf'(z') - argf'(z") I < Kp(z', z") if p(z', z") < do < 
1. Therefore (f)- 1)(w) satisfies the same inequalities. Hence 

(Ln Dp(Wn 3 ))J = / I(f-)(f-)?'(w)IIdwl 
LnDp(wn , 6) 

< (1 + o(l))/ (ff)'(w) dw 
LnDp(Wn ,5) 

<2 -JznJ2 435 
< 26 1 J2 12 2( + o(0)) < I -2 (l + o(1))(l-IznJ) 

uniformly in n. 
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We now apply the lemma, 

21Jf(L)lJ 1 _ 2(l + o(l)) (l - lznl) 

< (l (I+0(l)) r ---+ 87r when .-+O. 
lf -,2 arctan 3 

We have used the crude inequality 1 + Iz.1 < 2. Since this holds uniformly on 
a large part of f- (L), we have strict inequality. 

AGDER COLLEGE, P. 0. Box 607, N-4601 KRISTIANSAND S, NORWAY 
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