Harmonic Measure and Conformal Length
Author(s): Knut Øyma
Source: Proceedings of the American Mathematical Society, Vol. 115, No. 3 (Jul., 1992), pp. 687-689
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2159215

Accessed: 19/11/2009 09:26

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0]
HARMONIC MEASURE AND CONFORMAL LENGTH

KNUT ØYMA

(Communicated by Clifford J. Earle, Jr.)

Abstract

Let $f(z)$ be any univalent function that maps the unit disc onto a domain Ω. We prove that for any line L the length of $f^{-1}(\Omega \cap L)$ is less than 4π.

Let D be the open unit disc. Throughout this paper $f(z)$ is a univalent function that maps D onto a simply connected domain $\Omega . z$ lives in D and w lives in $\Omega . f\left(z_{n}\right)=w_{n}$. The pseudohyperbolic metric in D is defined by

$$
\rho\left(z_{1}, z_{2}\right)=\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|,
$$

where ρ is conformally invariant.
In Ω, ρ can be defined by $\rho\left(w_{1}, w_{2}\right)=\rho\left(z_{1}, z_{2}\right)$. In Π^{+}, the upper halfplane,

$$
\rho\left(w_{1}, w_{2}\right)=\left|\frac{w_{1}-w_{2}}{w_{1}-\bar{w}_{2}}\right| .
$$

The length of a curve K is denoted $|K|$. We will prove
Theorem. If L is any line, $\left|f^{-1}(\Omega \cap L)\right|$ add an absolute value sign $<4 \pi$.
The theorem without the constant is due to Hayman and Wu [5]. See also [4]. The best previously known constant is $4 \pi^{2}$ (see [3]). It is known that the constant cannot be less than

$$
C=8 \int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}
$$

and it has been conjectured that the best constant is C. For enlightening discussions and generalizations of the Hayman-Wu theorem, see [1] and [4]. Our proof of the theorem depends on the following
Lemma. Assume $\left\{w_{n}\right\} \subset L \cap \Omega$ satisfies $\rho\left(w_{n}, w_{m}\right) \geq \delta$ for $n \neq m$. Then $\sum\left(1-\left|z_{n}\right|\right) \leq \frac{2 \pi}{\arctan \delta}$.
Proof. Note that $\rho\left(w_{1}, w_{2}\right)=\sup \left\{\left|f\left(w_{1}\right)\right|: f \in \operatorname{ball} H^{\infty}(\Omega), f\left(w_{2}\right)=0\right\}$. Therefore ρ increases when Ω decreases. We may assume that $L=\mathbb{R}$ and

[^1]that Ω is a Jordan domain. If Ω is not, approximate Ω by the domains $f_{r}(D)$ where $f_{r}(z)=f(r z)$.

Let L_{k} be the components of $L \cap \Omega$, and let Ω_{k} be the component of $\Omega \cap\{z: \bar{z} \in \Omega\}$ that contains $L_{k} .\left\{\Omega_{k}\right\}$ is a disjoint family of Jordan domains. If $k \neq s, \partial \Omega_{k}$ and $\partial \Omega_{s}$ are essentially disjoint. They have at most one point in common.

Assume that $w_{n}, w_{m} \in L_{k}$. Let φ map Ω_{k} conformally onto Π^{+}such that $\varphi\left(L_{k}\right)=i \mathbb{R}^{+} . \varphi\left(w_{r}\right)=i y_{r}$. Since ρ is conformally invariant we have

$$
\begin{equation*}
\left|\frac{y_{n}-y_{m}}{y_{n}+y_{m}}\right| \geq \delta . \tag{*}
\end{equation*}
$$

Let

$$
K_{r}=\left[y_{r} \frac{1-\delta}{1+\delta}, y_{r}\right] \cup\left[-y_{r},-\frac{1-\delta}{1+\delta} y_{r}\right] .
$$

K_{n} and K_{m} are essentially disjoint by (*). Interpreting harmonic measure in the upper halfplane as normalized angles we see that $\omega\left(i y_{r}, K_{r}, \Pi^{+}\right)=$ $(2 / \pi) \arctan \delta$. Let $K_{r}^{*}=\left\{\zeta \in K_{r}: \varphi^{-1}(\zeta) \in \partial \Omega\right\}$. By the symmetry of Ω_{k} and the choice of φ we have $\zeta \in K_{r}, \zeta \notin K_{r}^{*}$ implies $-\zeta \in K_{r}^{*}$. Therefore $\omega\left(i y_{r}, K_{r}^{*}, \Pi^{+}\right) \geq(\arctan \delta) / \pi=\delta^{\prime}$. Let $C_{r}=\varphi^{-1}\left(K_{r}^{*}\right)$. Conformal invariance gives $\omega\left(w_{r}, C_{r}, \Omega_{k}\right) \geq \delta^{\prime}$ and, by the maximum principle, $\omega\left(w_{r}, C_{r}, \boldsymbol{\Omega}\right) \geq \delta^{\prime}$. If $r \neq s, C_{r}$ and C_{s} are essentially disjoint. Let $E_{r}=f^{-1}\left(C_{r}\right)$, and let $P_{z_{r}}$ be the Poisson kernel of z_{r}. We have

$$
\delta^{\prime} \leq \omega\left(z_{r}, E_{r}, D\right)=\frac{1}{2 \pi} \int_{E_{r}} P_{z_{r}} \leq \frac{1}{2 \pi} \cdot \frac{1-\left|z_{r}\right|^{2}}{\left(1-\left|z_{r}\right|\right)^{2}}\left|E_{r}\right|
$$

Hence $1-\left|z_{r}\right|<\left|E_{r}\right| / \arctan \delta$. This proves the lemma since $\sum\left|E_{r}\right| \leq 2 \pi$.
Proof of the theorem. For $\delta>0$ let $D_{\rho}(w, \delta)=\left\{w^{\prime}: \rho\left(w, w^{\prime}\right) \leq \delta\right\}$. By Theorem 2.13 in [2] $D_{\rho}(w, \delta)$ is (euclidean) convex if $\delta<2-\sqrt{3}$. Therefore for small $\delta>0$ we can choose $\left\{w_{n}\right\}$ in $L \cap \Omega$ such that
(i) if w_{n} and w_{m} are neighbours $\rho\left(w_{n}, w_{m}\right)=\delta$,
(ii) $\cup D_{\rho}\left(w_{n}, \delta\right)$ covers $L \cap \Omega$ twice.

Since f is a pseudohyperbolic isometry, $f^{-1}\left(D_{\rho}\left(w_{n}, \delta\right)\right)$ is a euclidean disc whose diameter is easily computed to be

$$
2 \delta \frac{1-\left|z_{n}\right|^{2}}{1-\delta^{2}\left|z_{n}\right|^{2}}
$$

Every univalent function in the unit disc satisfies $\left|f^{\prime \prime}(z) / f^{\prime}(z)\right|<6 /\left(1-|z|^{2}\right)$. Integration leads to $\left|\arg f^{\prime}\left(z^{\prime}\right)-\arg f^{\prime}\left(z^{\prime \prime}\right)\right|<K \rho\left(z^{\prime}, z^{\prime \prime}\right)$ if $\rho\left(z^{\prime}, z^{\prime \prime}\right)<\delta_{0}<$ 1. Therefore $\left(f^{-1}\right)^{\prime}(w)$ satisfies the same inequalities. Hence

$$
\begin{aligned}
\left|f^{-1}\left(L \cap D_{\rho}\left(w_{n}, \delta\right)\right)\right| & =\int_{L \cap D_{\rho}\left(w_{n}, \delta\right)}\left|\left(f^{-1}\right)\left(f^{-1}\right)^{\prime}(w)\right||d w| \\
& \leq(1+o(1))\left|\int_{L \cap D_{\rho}\left(w_{n}, \delta\right)}\left(f^{-1}\right)^{\prime}(w) d w\right| \\
& \leq 2 \delta \frac{1-\left|z_{n}\right|^{2}}{1-\delta^{2}\left|z_{n}\right|^{2}}(1+o(1)) \leq \frac{4 \delta}{1-\delta^{2}}(1+o(1))\left(1-\left|z_{n}\right|\right)
\end{aligned}
$$

uniformly in n.

We now apply the lemma,

$$
\begin{aligned}
2\left|f^{-1}(L)\right| & \leq \frac{4 \delta}{1-\delta^{2}}(1+o(1)) \sum\left(1-\left|z_{n}\right|\right) \\
& \leq \frac{4 \delta}{1-\delta^{2}}(1+o(1)) \frac{2 \pi}{\arctan \delta} \rightarrow 8 \pi \quad \text { when } \delta \rightarrow 0
\end{aligned}
$$

We have used the crude inequality $1+\left|z_{n}\right|<2$. Since this holds uniformly on a large part of $f^{-1}(L)$, we have strict inequality.

References

\rightarrow C. J. Bishop and P. W. Jones, Harmonic measure and arclength, Ann. of Math. (2) 132 (1990), 511-547.
2. P. L. Duren, Univalent functions, Springer-Verlag, Berlin, Heidelberg, and New York 1983.
3. J. L. Fernandez, J. M. Heinonen, and O. T. Martio, Quasilines and conformal mappings, J. d'Analyse Math. 52 (1989), 117-132.
4. J. B. Garnett, F. W. Gehring, and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809-829.
5. W. Hayman and J. M. G. Wu, Level sets of univalent functions, Comment. Math. Helv. 56 (1981), 366-403.

Agder College, P. O. Box 607, N-4601 Kristiansand S, Norway

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Received by the editors June 9, 1990 and, in revised form, December 27, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 30C85.
 Key words and phrases. Harmonic measure, univalent function.

