MAT 342 Fall 2016, Sample Midterm 2,
Actual Midterm is 10:00-10:53am, Wed., November 16, 2016

Name	ID	\square

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH ONE POINT. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-10: Write C (for converges) or D (for diverges) for each sequence or series.
(1)
$\square\left(\frac{i}{2}\right)^{n}, n=1,2, \ldots$
(6)
$\square i^{n}+(-i)^{n}, n=1,2, \ldots$
(2)
 $1+n, n=1,2, \ldots$.
(3)
(7) \square $|\exp (i \pi n / 4)|, n=1,2, \ldots$.

(4)

(9)

(5) \square $\sum_{n=0}^{\infty} \frac{i^{n}}{n^{3}}$.
(10)

11-20: Match each function with its Maclaurin series.
(11)

A. $z^{3}-\frac{1}{6} z^{5}+\frac{1}{120} z^{7}-\ldots$
B. $1-\frac{1}{2} z^{2}+\frac{1}{24} z^{4}-\ldots$
C. $z^{3}-\frac{1}{2} z^{5}+\frac{1}{24} z^{7}-\ldots$
(13)

D. $1+2 z+3 z^{2}+4 z^{3}+5 z^{4}+\ldots$
E. $1+z+z^{2}+z^{3}+\ldots$
(14)

F. $1+z^{4}+z^{6}+z^{8}+\ldots$
G. $1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}+\ldots$
H. $z+\frac{1}{2} z^{2}+\frac{1}{3} z^{3}+\frac{1}{4} z^{4}+\ldots$
(16)

I. $z+z^{2}+z^{3}+z^{4}+\ldots$
J. $1-\frac{1}{2} z^{4}+\frac{1}{24} z^{6}-\ldots$
K. $1-z+\frac{1}{2} z^{2}-\frac{1}{6} z^{3}+\ldots$
L. $1+2 z^{3}+\frac{2}{3} z^{4}+\ldots$.
M. $1+z^{2}+\frac{1}{2} z^{4}+\frac{1}{6} z^{6}+\ldots$
(19)

N. $z+\frac{1}{6} z^{3}++\frac{1}{120} z^{5}+\ldots$
P. $1+\frac{1}{2} z^{2}+\frac{1}{24} z^{4}+\ldots$
(20)

Q. none of the above

21-30: Write T (for true) or F (for false) in each box.

\square If $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at $z=1$, then if converges for all $|z| \leq 1$.
\square If $\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} b_{n} z^{n}$ for all $|z|<1$, then $a_{n}=b_{n}$ for all $n=0,1,2, \ldots$
\square If $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at $z=1$, then the $\left\{a_{n}\right\}$ are a bounded sequence.
\square The power series for $\frac{1}{z^{2}+1}$ at $z=2$ has radius of convergence equal to 1 .
\square If $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at $z=1$, then if converges for all z with $|z|=1$.
(26) \square If f has a power series expansion on $|z-1|<2$, then f is analytic in that disk.
\square The function $f(z)=\sin (x)$ has a convergent Laurent series expansion on $|z|>\pi / 2$.
\square If f has an essential singularity at 0 it takes every complex value in every neighborhood of 0 .

\square If $f(z)$ has a pole of order m at $z=0$, then $g(z)=z^{m} f(z)$ has removable singularity at 0 .

31-35: Compute the residue of each function at the given point.
(31) \square
(32) \square
(33) \square $\frac{1}{1+z^{6}}$ at $z=i$.
\square $\frac{\log z}{z^{2}+1}$ at $z=i$.
\square $\frac{4 z-5}{z(z-1)}$ at $z=\infty$.

36-40: For each function and point, identity the type of singularity: $\mathrm{R}=$ removable, $\mathrm{P}=$ pole, $\mathrm{E}=$ essential singularity.
$\square f(z)=\sin \left(\frac{1}{1-z}\right), z=1$.
$\square f(z)=\exp \left(1+z+z^{2}\right) / \sin (z), z=0$.
$\square f(z)=\frac{1-\cos z}{z^{2}}, z=0$.
\square
$\square f(z)=\frac{z}{\sin z}, z=0$.

41-46 Evaluate $\int_{-\infty}^{\infty} f(x) d x$ where $f(x)=\frac{1}{x^{2}+2 x+2}$, following the steps below.
(41) State the Cauchy residue theorem
(42) Draw a closed contour C_{R} that contains the interval $[-R, R]$ and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points $-R$ and R.
(43) \square List all the singularities of f inside the contour.
\square Compute the residues of f at the singularities inside the contour.
\square Compute the integral $\int_{-\infty}^{\infty} f(x) d x$.

41-46 Evaluate $\int_{-\infty}^{\infty} f(x) d x$ where $f(x)=\frac{\sin x}{x^{2}+4 x+5}$, following the steps below.
\square Give the analytic function $f(z)$ that you will apply the Cauchy residue theorem to evaluate this integral.
(47) Draw a closed contour C_{R} that contains the interval $[-R, R]$ and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points $-R$ and R.
(48) \square List all the singularities of $f(z)$ inside the contour.
(49) \square Compute the residues of f at all the singularities inside the contour.
\square Compute the integral $\int_{0}^{\infty} f(x) d x$.

