MAT 342 Fall 2016, Sample Midterm 2, Actual Midterm is 10:00-10:53am, Wed., November 16, 2016

Name	ID	

THIS EXAM IS WORTH 50 POINTS. EACH QUESTION IS WORTH ONE POINT. NO BOOKS, NOTES OR CALCULATORS ARE ALLOWED.

1-10: Write C (for converges) or D (for diverges) for each sequence or series.

11-20: Match each function with its Maclaurin series.

(11)

$$z^2 \cos(z)$$
 A. $z^3 - \frac{1}{6}z^5 + \frac{1}{120}z^7 - \dots$

 (12)
 $\sinh(z)$
 B. $1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots$

 (13)
 $\frac{1}{(1-z)^2}$
 D. $1+2z+3z^2+4z^3+5z^4+\dots$

 (14)
 $\log(1-z)$
 F. $1+z^4+z^6+z^8+\dots$

 (15)
 $\cosh(2z)$
 H. $z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \dots$

 (16)
 e^{-z}
 I. $z+z^2+z^3+z^4+\dots$

 (17)
 $\cos(z)$
 K. $1-z + \frac{1}{2}z^2 - \frac{1}{6}z^3 + \dots$

 (18)
 $\frac{1}{1-z}$
 M. $1+z^2 + \frac{1}{2}z^4 + \frac{1}{6}z^6 + \dots$

 (19)
 $\sin(z)$
 N. $z + \frac{1}{6}z^3 + \frac{1}{120}z^5 + \dots$

 (20)
 $\exp(z^2)$
 Q. none of the above

31-35: Compute the residue of each function at the given point.

(32)
$$\exp(z+z^2)$$
 at $z=0$.

(33)
$$\frac{1}{1+z^6}$$
 at $z = i$.

(34)
$$\frac{\log z}{z^{2}+1} \text{ at } z = i.$$

(35)
$$\frac{4z-5}{z(z-1)} \text{ at } z = \infty.$$

36-40: For each function and point, identity the type of singularity: R = removable, P = pole, E = essential singularity.

(36)
$$f(z) = \sin(\frac{1}{1-z}), z = 1.$$

(37) $f(z) = \exp(1 + z + z^2) / \sin(z), z = 0.$
(38) $f(z) = \frac{1-\cos z}{z^2}, z = 0.$
(39) $f(z) = \frac{1}{1-\cos z}, z = 0.$
(40) $f(z) = \frac{z}{\sin z}, z = 0.$

41-46 Evaluate $\int_{-\infty}^{\infty} f(x) dx$ where $f(x) = \frac{1}{x^2 + 2x + 2}$, following the steps below.

(41) State the Cauchy residue theorem

(42) Draw a closed contour C_R that contains the interval [-R, R] and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points -R and R.

41-46 Evaluate $\int_{-\infty}^{\infty} f(x) dx$ where $f(x) = \frac{\sin x}{x^2 + 4x + 5}$, following the steps below.

- (46) Give the analytic function f(z) that you will apply the Cauchy residue theorem to evaluate this integral.
- (47) Draw a closed contour C_R that contains the interval [-R, R] and so that the integral over the rest of the contour tends to zero as $R \nearrow \infty$. Label the points -R and R.

(49) Compute the residues of f at all the singularities inside the contour.

